Ann. Inst. Statist. Math. Vol. 47, No. 1, 171–176 (1995)

A CHARACTERIZATION OF THE PEARSON SYSTEM OF DISTRIBUTIONS AND THE ASSOCIATED ORTHOGONAL POLYNOMIALS

V. PAPATHANASIOU

Department of Mathematics, University of Athens, Panepistemiopolis, 15784 Athens, Greece

(Received July 5, 1993; revised April 18, 1994)

Abstract. A new derivation of the classical orthogonal polynomials is given by using the *w*-function which appears in the variance bounds and some properties of the Pearson system of distributions. Also a characterization of the Pearson system of distributions through some conditional moments is obtained by using a result obtained by Johnson (1993) concerning this family.

Key words and phrases: Variance bounds, Pearson system, orthogonal polynomials, characterization.

1. Introduction and summary

Papathanasiou (1989) obtained upper and lower bounds for the variance of a function g(X) where X is a continuous random variable with $E(X) = \mu$, $Var(X) = \sigma^2$ and g absolutely continuous with continuous derivative $g^{(2m+3)}$ of order 2m+3 $(m \ge 0)$. Specifically,

(1.1)
$$S(2m+1) \le \operatorname{Var}[g(X)] \le S(2m),$$

where S(n) is given by

(1.2)
$$S(n) = \sum_{\nu=0}^{n} \frac{(-1)^{\nu}}{\nu!(\nu+1)!} \int_{-\infty}^{+\infty} [g^{(\nu+1)}(t)]^2 a_{\nu}(t) dt$$

and

(1.3)
$$a_{\nu}(t) = (-1)^{\nu} E[X-t]^{\nu+1} \int_{-\infty}^{t} (x-t)^{\nu} f(x) dx + (-1)^{\nu+1} E[X-t]^{\nu} \int_{-\infty}^{t} (x-t)^{\nu+1} f(x) dx.$$

The upper (lower) bound is attained if and only if g is a polynomial of degree at most 2m+1 (2m+2). If m = 0 we have the upper bound for the variance obtained by Cacoullos and Papathanasiou (C-P) (1985), namely,

(1.4)
$$\operatorname{Var}[g(X)] \leq \int_{-\infty}^{+\infty} [g'(t)]^2 a_0(t) dt$$

where

$$a_0(t) = \int_{-\infty}^t (\mu - x) f(x) dx$$

and we set

(1.5)
$$\sigma^2 w(t) f(t) = \int_{-\infty}^t (\mu - x) f(x) dx$$

if the support of f is an interval.

The same w-function features also in the lower bound $\operatorname{Var}[g(X)] \geq \sigma^2 E^2[w(X)g'(X)]$ (cf. Cacoullos and Papathanasiou (1989)) obtained from the identity

(1.6)
$$\operatorname{Cov}(X,g(X)) = \sigma^2 E[w(X)g'(X)],$$

where the w-function is defined by (1.5). Furthermore, the w-function characterizes the corresponding distribution of X (C-P (1989)).

Korwar (1991) showed that the *w*-function is a quadratic if and only if X is a Pearson random variable, that is, its density f satisfies the differential equation

(1.7)
$$\frac{d\ln f}{dx} = \frac{\alpha - x}{\beta_0 + \beta_1 x + \beta_2 x^2}$$

for some values of α , β_0 , β_1 , β_2 .

Johnson (1993) proved that if X is a Pearson random variable such that

$$\lim_{x \to r} x^j w(x) f(x) = \lim_{x \to s} x^j w(x) f(x) = 0, \qquad j = 0, 1, 2, \dots, n$$

where (r, s) is the support of f, then the function $a_{\nu}(t)$, given by (1.3), can be written as follows:

(1.8)
$$a_{\nu}(t) = \nu! b\sigma^{2(\nu+1)}(w(t))^{\nu+1} f(t).$$

Here $b = 1/\prod_{j=0}^{\nu} (1-jk)$, $k = \beta_2/(1-2\beta_2)$ and w is the w-function, as given by (1.5), which for the Pearson system is quadratic and

$$\sigma^2 w(x) = rac{eta_0 + eta_1 x + eta_2 x^2}{1 - 2eta_2}$$

In the present paper using inequality (1.1) and Johnson's result (1.8) a characterization of the Pearson system of distributions is obtained through some conditional moments. Furthermore using the fact that the *w*-function, which appears in the variance bounds, for the Pearson family is quadratic (see Korwar (1991) or Johnson (1993)) a new derivation of the classical orthogonal polynomial is obtained.

2. Some identities and orthogonal polynomials

For our purpose we obtain an identity, interesting in itself.

THEOREM 2.1. Let X be a Pearson random variable with density f and support an interval (r, s). If

(2.1)
$$\lim_{x \to r} x^j w(x) f(x) = \lim_{x \to s} x^j w(x) f(x) = 0, \quad j = 0, 1, 2, \dots, n,$$

then

(2.2)
$$\operatorname{Cov}(X^{n+1}, g(X)) = \sum_{\nu=0}^{n} (-1)^{\nu} c_{\nu,n} E[g^{(\nu+1)}(X) X^{n-\nu} (w(X))^{\nu+1}]$$

provided these moments exist and g has a continuous derivative of order n+2 and

$$c_{\nu,n} = \binom{n+1}{\nu+1} b\sigma^{2(\nu+1)}.$$

PROOF. Let n = 2m. We apply the second inequality in (1.1) for the function $x^{n+1} + \theta g(x)$ where θ is an arbitrary real number. Since (2.1) holds we use Johnson's result. For x^{n+1} (1.1) becomes equality and we have

(2.3)
$$\theta^{2} \operatorname{Var}[g(X)] + 2\theta \operatorname{Cov}[X^{n+1}, g(X)]$$

$$\leq \theta^{2} \sum_{\nu=0}^{n} \frac{(-1)^{\nu}}{(\nu+1)!} b\sigma^{2(\nu+1)} E[(g^{(\nu+1)}(X))^{2} (w(X))^{\nu+1}]$$

$$+ 2\theta \sum_{\nu=0}^{n} \frac{(-1)^{\nu}}{(\nu+1)!} b\sigma^{2(\nu+1)} (n+1)_{\nu+1}$$

$$\cdot E[(w(X))^{\nu+1} X^{n-\nu} g^{(\nu+1)}(X)].$$

Since (2.3) holds for arbitrary θ we conclude (2.2). The case n = 2m + 1 can be treated similarly. \Box

THEOREM 2.2. Under the assumptions of Theorem 2.1 we have

(2.4)
$$x^{n+1} - \mu_{n+1} = -\sum_{\nu=0}^{n} c_{\nu,n} \frac{1}{f} \frac{d^{\nu+1}}{dx^{\nu+1}} [x^{n-\nu}(w(x))^{\nu+1} f(x)]$$

where $\mu_{n+1} = E[X^{n+1}].$

PROOF. In (2.2) take first $g(x) = \operatorname{Re}[e^{itx}]$, where $i = \sqrt{-1}$, and then $g(X) = \operatorname{Im}[e^{itx}]$. Integrating the RHS by parts $(\nu + 1)$ -times $\nu = 0, 1, \ldots, n$, since (2.1) holds we have (see the proof of Theorem 2.3)

$$\lim_{x \to r} \frac{d^j}{dx^j} [x^{n-\nu} w(x)^{\nu+1} f(x)] = \lim_{x \to s} [x^{n-\nu} w(x)^{\nu+1} f(x)] = 0$$

 $j = 0, 1, ..., \nu, \nu = 0, 1, ..., n$. By the uniqueness of the Fourier transform the proof is complete. \Box

Using the same arguments, identities (2.2) and (2.4) can be easily extended in the general case as follows. We have

(2.5)
$$\operatorname{Cov}(X^{n+1}, g(X)) = \sum_{\nu=0}^{n} \frac{(-1)^{\nu}}{\nu!} \binom{n+1}{\nu+1} E\left[g^{(\nu+1)}(X)X^{n-\nu}\frac{a_{\nu}(X)}{f(X)}\right]$$

and

(2.6)
$$x^{n+1} - \mu_{n+1} = -\sum_{\nu=0}^{n} \frac{1}{\nu!} \binom{n+1}{\nu+1} \frac{1}{f(x)} \frac{d^{\nu+1}}{dx^{\nu+1}} [x^{n-\nu}a_{\nu}(x)]$$

provided that

$$\lim_{x \to \pm \infty} \frac{d^j}{dx^j} (x^{n-\nu} a_{\nu}(x)) = 0, \quad j = 0, \dots, \nu, \quad \nu = 0, 1, \dots, n.$$

THEOREM 2.3. Under the assumptions of Theorem 2.1, the function $h_j(x)$ defined by

(2.7)
$$h_j(x) = \frac{(-1)^j}{f} \frac{d^j}{dx^j} [(w(x))^j f(x)], \quad j = 0, 1, \dots, n+1$$

is a polynomial of degree j and

$$E[h_i(X)h_j(X)] = 0 \quad for \quad i \neq j, \quad i, j = 1, \dots, n+1.$$

PROOF. We consider a polynomial $Q_s(x)$ of degree s. Since w(x) is quadratic, for $j \leq n$, we observe that

$$\begin{split} \frac{d^{j}}{dx^{j}}[Q_{s}(x)w^{j}(x)f(x)] &= \frac{d^{j-1}}{dx^{j-1}} \bigg[(Q_{s}(x)w(x))'w^{j-2}(x)(w(x)f(x)) \\ &\quad + (Q_{s}(x)w(x))(j-2)w'(x)w^{j-3}(x)(w(x)f(x)) \\ &\quad + \frac{(Q_{s}(x)w(x))w^{j-2}(x)(\mu-x)f(x)}{\sigma^{2}} \bigg]. \end{split}$$

Hence

$$\frac{d^{j}}{dx^{j}}[Q_{s}(x)w^{j}(x)f(x)] = \frac{d^{j-1}}{dx^{j-1}}[P_{s+1}(x)w^{j-1}(x)f(x)]$$

where

$$P_{s+1}(x) = (Q_s(x)w(x))' + Q_s(x)w'(x)(j-2) + \frac{(\mu - x)Q_s(x)}{\sigma^2}$$

is a polynomial of degree s + 1.

If $Q_s(x) = Q_{s-2}(x)w(x)$, then $P_{s+1}(x) = P_{s-1}(x)w(x)$ (where $Q_{s-2}(x)$ and $P_{s-1}(x)$ are polynomials of degrees s-2 and s-1 respectively). Moreover if $P_n(x)$ is a polynomial of degree n

$$\frac{1}{f}\frac{d}{dx}[P_n(x)w(x)f(x)] = P'_n(x)w(x) + \frac{P_n(x)(\mu - x)}{\sigma^2}$$

is a polynomial of degree n + 1. Hence proceeding by induction we conclude that

(2.8)
$$\frac{1}{f}\frac{d^{j}}{dx^{j}}[Q_{s}(x)w^{j}(x)f(x)] = P_{s+j}(x).$$

For $Q_s(x) = 1$, (2.8) gives that $h_j(x)$ is a polynomial of j degree. To show the orthogonality suppose without loss of generality i < j. Then integrating by parts we have

$$\begin{split} E[h_i(X)h_j(X)] &= \int_r^s h_i(x) \frac{d^j}{dx^j} [w^j(x)f(x)] dx \\ &= \lim_{x \to s} \sum_{k=1}^j (-1)^{k-1} \frac{d^{k-1}}{dx^{k-1}} h_i(x) \frac{d^{j-k}}{dx^{j-k}} [w^j(x)f(x)] \\ &- \lim_{x \to r} \sum_{k=1}^j (-1)^{k-1} \frac{d^{k-1}}{dx^{k-1}} h_i(x) \frac{d^{j-k}}{dx^{j-k}} [w^j(x)f(x)] \\ &+ (-1)^j \int_r^s \frac{d^j}{dx^j} [h_i(x)] w^j(x)f(x) dx. \end{split}$$

Hence $E[h_i(X)h_j(X)] = 0$ provided that relation (2.1) holds for $j \leq 2n - 1$. \Box

If all the moments μ_r , r = 1, 2, ..., of X exist then Theorem 2.3 yields the Rodrigues formula for the classical orthogonal polynomials by using only the properties of the w-function which appears in the variance bounds.

3. Characterization of the Pearson system

Relation (1.3) and Johnson's result (1.8) gives the following

THEOREM 3.1. Under the assumptions of Theorem 2.1 we have

(3.1)
$$(-1)^{\nu+1} E[X-t]^{\nu+1} E[(X-t)^{\nu} \mid X > t] + (-1)^{\nu} E[X-t]^{\nu} E[(X-t)^{\nu+1} \mid X > t] = c_{\nu}(w(t))^{\nu+1} h(t)$$

where $c_{\nu} = \nu! b\sigma^{2(\nu+1)}$ and h(t) is the failure rate f(t)/(1 - F(t)).

Recently several characterizations for a Pearson random variable have been obtained through some conditional moments. Specifically Glänzel (1991) proved that under certain conditions the distribution of the random variable X belongs to the Pearson system iff

$$E(X^2 \mid X \ge x) = P(x)E(X \mid X \ge x) + Q(x)$$

where P(x) and Q(x) are polynomials of degree one at most with real coefficients.

Unnikrishnan and Sankaran (1991) proved that X belongs to the Pearson family iff

$$E(X \mid X > x) = E(X) + (a_0 + a_1 x + a_2 x^2)h(x)$$

where h(x) is the failure rate and a_0 , a_1 , a_2 real constants.

Now we prove the following

THEOREM 3.2. Let X be a continuous random variable with density f, distribution function F and support an interval (r, s). If there exist a function w such that relation (3.1) holds for $\nu = 0$ (only) and $-\frac{f'}{f} = \frac{P_1}{w}$ ($P_1(x)$ is a linear function), then X belongs to a Pearson system of distributions, provided that condition (2.1) holds for j = 0.

PROOF. From the assumption of Theorem 3.2 we conclude that $a_0(t) = c_0 w(t) f(t)$ where

$$a_0(t) = E[X - t]F(t) - \int_{\tau}^{t} (x - t)f(x)dx = \int_{\tau}^{t} (\mu - x)f(x)dx.$$

Hence $w(t) = \frac{1}{c_0 f(t)} \int_{\tau}^{t} (\mu - x) f(x) dx$ and $w'(t) = -\frac{f'(t)}{f(t)} w(t) + \frac{\mu - t}{c_0}$. Since $\frac{-f'(t)}{f(t)} = \frac{P_1(t)}{w(t)}$ we conclude that $w'(t) = P_1(t) + (\mu - t)/c_0$ which gives $w(t) = P_2(t)$ (P_2 is quadratic). Hence $\frac{-f'}{f} = \frac{P_1(t)}{P_2(t)}$ which completes the proof (or by Korwar's result). \Box

References

- Cacoullos, T. and Papathanasiou, V. (1985). On upper bounds for the variance of functions of random variables, *Statist. Probab. Lett.*, 3, 175–184.
- Cacoullos, T. and Papathanasiou, V. (1989). Characterization of distributions by variance bounds, Statist. Probab. Lett., 7, 351–356.
- Glänzel, W. (1991). Characterization through some conditional moments of Pearson-type distributions and discrete analogues, Sankhyā Ser. B, 53, 17–24.
- Johnson, R. (1993). A note on variance bounds for a function of a Pearson variate, Statist. Decisions, 11, 273–278.
- Korwar, R. (1991). On characterizations by mean absolute deviation and variance bounds, Ann. Inst. Statist. Math., 43, 287–295.
- Papathanasiou, V. (1989). Variance bounds by a generalization of the Cauchy-Schwarz inequality, Statist. Probab. Lett., 7, 29–33.
- Unnikrishnan, N. and Sankaran, P. (1991). Characterization of the Pearson family of distributions, *IEEE Transactions on Reliability*, 40, 75–77.