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Abs t r ac t .  A new derivation of the classical orthogonal polynomials is given 
by using the w-function which appears in the variance bounds and some prop- 
erties of the Pearson system of distributions. Also a characterization of the 
Pearson system of distributions through some conditional moments is obtained 
by using a result obtained by Johnson (1993) concerning this family. 
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1. introduction and summary 

Papathanas iou  (1989) obtained upper and lower bounds for the variance of a 
function g(X) where X is a continuous random variable with E ( X )  = #, Vat(X)  = 
a2 and g absolutely continuous with continuous derivative g(2m+3) of order 2m + 3 
(m _> 0). Specifically, 

(1.1) 

where S(n) is given by 

(1.2) 

and 

(1.3) 

S(2m + 1) _< Var[g(X)] _< S(2m), 

n 

S(n) = ~ ( - 1 ) "  
,=0 v!(~ + 1)! [g(~+l)(t)]2a'(t)dt 

/ av(t) = ( - 1 ) v E [ X  - t] v+l (x - t )Vf(x)dx 

/ + ( - 1 ) ' + I E [ X  - t]" (x - t ) '+ l f (x )dx .  
O C  
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The upper (lower) bound is attained if and only if g is a polynomial of degree at 
most 2 m +  1 (2m+2).  If m = 0 we have the upper bound for the variance obtained 
by Cacoullos and Papathanasiou (C-P) (1985), namely, 

(1.4) 

where 

Var[g(X)] 

f ao(t) = (# - x ) f ( x ) d x  

and we set 

f (1.5) ~2w( t ) f ( t )  = (~ - x ) f ( x ) d x  

if the support of f is an interval. 
The same w-function features also in the lower bound Var[g(X)] _> 

a2E2[w(X)g ' (X)]  (cf. Caeoullos and Papathanasiou (1989)) obtained from the 
identity 

(1.6) Coy(X, g( X )  ) = ~r2 E[w( X )g '  ( X )  ], 

where the w-function is defined by (1.5). Furthermore, the w-function character- 
izes the corresponding distribution of X (C-P (1989)). 

Korwar (1991) showed that the w-function is a quadratic if and only if X is a 
Pearson random variable, that is, its density f satisfies the differential equation 

d l n f  a - x 
(1.7) dx --  /30 -~-/31 x ~-/32 x2 

for some values of a,/3o,/31,/32. 
Johnson (1993) proved that if X is a Pearson random variable such that 

lim x J w ( x ) f ( x )  = lim x J w ( x ) f ( x )  = O, j = O, 1 , 2 , . . . , n  
X----+r X---->8 

where (r, s) is the support of f ,  then the function a,( t ) ,  given by (1.3), can be 
written as follows: 

(1.8) a~(t) = , !ba 2('+l)(w(t)  ) '+l  f ( t ) .  

1 Here b = 1 / l - [ j = 0 ( - j k ) ,  k =/32/(1 - 2/32) and w is the w-function, as given by 
(1.5), which for the Pearson system is quadratic and 

a2w(x)  =/3o +/31x +/32x 2 
1 - 2/32 

In the present paper using inequality (1.1) and Johnson's result (1.8) a char- 
acterization of the Pearson system of distributions is obtained through some con- 
ditional moments. Furthermore using the fact that  the w-function, which appears 
in the variance bounds, for the Pearson family is quadratic (see Korwar (1991) 
or Johnson (1993)) a new derivation of the classical orthogonal polynomial is ob- 
tained. 
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PEARSON SYSTEM AND ORTHOGONAL POLYNOMIALS 

Some identities and orthogonal polynomials 

For our purpose we obtain an identity, interesting in itself. 

THEOREM 2 . 1 .  
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Let X be a Pearson random variable with density f and sup- 
port an interval (r, s). If  

(2.1) lim xYw(x)f(x)  -- lira xJw(x) f (x)  = O, 
X - - + ? "  X - - - > 8  

then 

(2.2) 

j = O, 1 ,2 , . . . ,n ,  

r~  

Cov(X~+I,g(X)) = E ( - 1 ) ' C u , n E [ g ( v + l ) ( x ) x n - y ( w ( X ) )  ~'+1] 

provided these moments exist and g has a continuous derivative of order n + 2 and 

( n  + ~) bG2(u+l). 
Cu,n -~ P + 

PROOF. Let n = 2m. We apply the second inequality in (1.1) for the func- 
tion x n+l + Og(x) where 0 is an arbi t rary real number.  Since (2.1) holds we use 
Johnson's  result. For x ~+1 (1.1) becomes equality and we have 

(2.3) 02 Var[g(X)] ~- 20 Cov[X n+l,  g(X)] 

_< 02 ~ ( -1 )~  bo.2(v÷l)g[(g(~,+l)(x))2(w(X))~,+l] 
,=0 (v + 1)! 

n 

+ 20 E (--1)" bG2(v+l)(~ t "~- 1)~,+1 
,=0 (y + 1)! 

• E[(w(X))U+lxn-'g( '+l)(X)]. 

Since (2.3) holds for arbi t rary  0 we conclude (2.2). The case n = 2m + 1 can be 
t rea ted  similarly. [] 

THEOREM 2.2. Under the assumptions of Theorem 2.1 we have 

1 d "+1 
(2.4) x n + l - p n + l = - E C u , n f  dxu+l[xn-V(w(x))U+Xf(x)] 

t J = 0  

where #n+a = E[Xn+I] .  

PROOF. In (2.2) take first g(x) = Re[ptx], where i = vzL~, and then g(Z) = 
Im[eitZ]. Integrat ing the RHS by parts  (u + 1)-times , = 0, 1 , . . . ,  n, since (2.1) 
holds we have (see the proof of Theorem 2.3) 

dd 3-~xj [Xn-~ w(x)~+l f (x)] lim = lira [x~-" w(x) '+l f(x)] = 0 
X " " + 7 "  X - - + 8  
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j = 0, 1 , . . . ,  u, u = 0, 1 , . . . ,  n. By the uniqueness of the Fourier transform the 
proof is complete. [] 

Using the same arguments, identities (2.2) and (2.4) can be easily extended in 
the general case as follows. We have 

(2.5) 

and 

(2.6) 

Cov(Xn+l ,g (X) )  -= (--1)u•! +-~ E g ( u + l ) ( x ) x n - u  f ( X )  J 
zJ=o 

n [ (~-~-~) 1 d u+l 
x n+a - P,+t = - E ~. + f (x)  dx "+1 [x~-'a'(x)] 

lz~O 

provided that 

lim dJ ( x ~ _ . a . ( x ) ) = 0 ,  j = O ,  ,u, u=O,  1, ,n. 
x ---+ :t: ~ ~x J . . . . . .  

THEOREM 2.3. Under the assumptions of Theorem 2.1, the function hi(x) 
defined by 

(2.7) hi(x)- (-1)J dJ f dxJ [(w(x))Jf(x)]' j = O, 1 , . . . , n  + 1 

is a polynomial of degree j and 

E[h i (X)h j (X) ]=O for i C j ,  i , j = l , . . . , n + l .  

PROOF. We consider a polynomial Q, (x) of degree s. Since w (x) is quadratic, 
for j <_ n, we observe that 

dJ dJ-1 I 
[Qs (x)w j (x)f(x)] - dxJ_ 1 (Q~ (x)w(x))' w j-2 (x)(w(x)f(x))  

+ (Qs(x)w(x))(j  - 2)w'(x)wJ-a(x)(w(x)f(x))  

(Q,(x)w(x) )w j -2(x)(#  - x) f (x) ] + 
0 .2 J 

Hence 

where 

d j d j -  1 
dxJ [Qs (x)w j (x)f(x)] - dxJ_ 1 [Ps+l (x)w j - l ( x ) f ( x ) ]  

Ps+l(x) = (Q,(x)w(x)) '  + Qs(x)w'(x)(j  - 2) + O-2 

is a polynomial of degree s + 1. 
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If Q~(x) = Qs_2(x)w(x), then Ps+l(X) : r s - l ( X ) W ( X )  (where Q~-2(x) and 
Ps-1  (x) are polynomials of degrees s - 2 and s - 1 respectively). 

Moreover if P~(x) is a polynomial  of degree n 

l d  
f dx [P~(x)w(x)f(x)] = P~(x)w(x)+ 

p~(x)(,-x) 
0-2 

is a polynomial  of degree n + 1. Hence proceeding by induction we conclude that  

(2.8) idJ 
f dxJ [Q~(x)wJ(x)f(x)] = P~+j(x). 

For Qs(x) = 1, (2.8) gives tha t  hi(x) is a polynomial  of j degree. To show the 
orthogonali ty suppose wi thout  loss of generality i < j .  Then integrating by parts 
we have 

E[hi(X)hj(X)] = hi(x) [wJ(x)f(x)]dx 

J d k - 1  d j - k  j 

= l im e y ~ . ( - 1 ) k - 1  dxk_ 1 h~(X)d-~[w (x)f(x)] 
k = l  

J d k -- 1 d j - k 

-- liin r E ( - - 1 ) k - l d x k _ l  hi(X)d-~L~[wJ(x)f(x)] 
k = l  

+ (-ly ff dJ [hi (x)]w J (x) f (x)dx. 

Hence E[hi(X)hj(X)] = 0 provided that  relation (2.1) holds for j _< 2n - 1. [] 

If all the moments  Pr, r = 1, 2 , . . . ,  of X exist then Theorem 2.3 yields the 
Rodrigues formula for the classical orthogonal polynomials by using only the prop- 
erties of the w-function which appears  in the variance bounds.  

3. Characterization of the Pearson system 

Relat ion (1.3) and Johnson 's  result (1.8) gives the following 

THEOREM 3.1. Under the assumptions of Theorem 2.1 we have 

(3.1) ( - 1 ) " + I E [ X  - t ] ' + i E [ ( X  - t) ~ I X > t] 

-~- ( - 1 ) U E [  x - t]UE[( x - t) y + I  I X > t] = c v ( w ( t ) ) U + l h ( t )  

where c, = ~!ba 2(~+1) and h(t) is the failure rate f( t) /(1 - F(t)). 

Recently several characterizations for a Pearson random variable have been 
obtained through some conditional moments. Specifically Glgnzel (1991) proved 
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that under certain conditions the distribution of the random variable X belongs 
to the Pearson system iff 

E( I X >_ x) = P ( x ) E ( X  I X > + Q(x) 

where P(x)  and Q(x) are polynomials of degree one at most with real coefficients. 
Unnikrishnan and Sankaran (1991) proved that X belongs to the Pearson 

family iff 
E ( X  I X > x) = E ( X )  + (ao + a lx  + a2x2)h(x) 

where h(x) is the failure rate and a0, al,  a2 real constants. 
Now we prove the following 

THEOREM 3.2. Let X be a continuous random variable with density f ,  dis- 
tribution function F and support an interval (r, s). I f  there exist a function w such 
that relation (3.1) holds for y = 0 (only) and f' P1 f - -~ (Pl(X) is a linear func- 
tion), then X belongs to a Pearson system of distributions, provided that condition 
(2.1) holds for j = O. 

PROOF. From the assumption of Theorem 3.2 we conclude that ao(t) = 
CoW(t)f(t) where 

ao(t) = E [ X  - t]F(t) - (x - t ) f ( x ) d x  = (p - x ) f ( x ) d x .  

t 
H e n c e w ( t ) -  eof(t)l f ~ ( # - x ) f ( x ) d x a n d w ' ( t ) -  /'(t)w(t)+"-tf(t) -/J-o" Since -2'(t) - 
Pl(t) ~(t) we conclude that w'(t) = Pl(t)  + (# - t)/Co which gives w(t) = P2(t) (/)2 

- / '  Pl(t) which completes the proof (or by Korwar's is quadratic). Hence ] - p2(t) 

result). [] 
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