
Ann. Inst. Statist. Math. 

Vol. 47, No. 1, 129 136 (1995) 

RESIDUALS IN THE GROWTH CURVE MODEL 

DIETRICH VON ROSEN 

Department of Mathematics, Uppsala University, Bo~ 480, S-751 06 Uppsala, Sweden 

(Received April 8, 1994; revised October 11, 1994) 

A b s t r a c t .  Residuals for the Growth Curve model will be discussed. In uni- 
variate linear models as well as the ordinary multivariate analysis of variance 
model residuals are based on the difference between the observations and the 
mean whereas for the Growth Curve model we have three different residuals 
all showing various aspects useful for validating analysis. For these residuals 
some basic properties are established. 
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1. Introduction 

In this paper  we will discuss residuals in the Growth  Curve model  due to 
Pot thof f  and Roy (1964). For more details we refer to yon Rosen (1994) where the 
results, via Edgewor th  type  expansions, are applied to a real da t a  set. According 
to the terminology put  forward in von Rosen (1989) we will refer to the model  as 
a M L N M ( A B C ) .  The  reason for this nota t ion follows from the next  definition as 
well as from some extensions presented in von Rosen (1989). 

DEFINITION 1.1. The  M L N M ( A B C ) .  Let X : p x n, A : p x q q _< p, B : q x k, 
C : k x n p(C) + p <_ n and E : p x p is positive definite. The  columns of X are 
independent ly  p-variate normal ly  dis t r ibuted with an unknown dispersion mat r ix  
E and E[X] = A B C ,  where A and C are known design matr ices and B is an 
unknown paramete r  matr ix.  

In the definition as well as in the sequel p(.) denotes the rank. The 
MLNM(ABC) is an extension of the ordinary multivariate analysis of variance 
model and is applicable when a linear mean structure exists within the experi- 
mental units. There exist many fields where the MLNM(ABC) has been applied. 
In particular the model is useful for analysing short time series of repeated mea- 
surements when little knowledge about the covariance structure is available. For 
example, growth curves. Fundamental to all analysis with the MLNM(ABC) are 
the interpretation of the design matrices A and C. In our setting A models the 
within individuals structure, i.e. the repeated measurements on each experimental 
unit, and C models the between individuals structure, i.e. C is the same design 
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matrix as in univariate linear models and ordinary multivariate analysis of vari- 
ance. For reviews of the model and related works see Woolson and Leeper (1980), 
Seber (1984) or yon Rosen (1991). Maximum likelihood estimators for the param- 
eters in the M L N M ( A B C )  are given by (e.g. see Srivastava and Khatri (1979) or 
yon Rosen (1989)) 

(1.1) = ( A ' S - 1 A ) - A ' S - 1 X C ' ( C C ' )  - + (A')°Z1 + A 'Z2C °', 

where Z1 and Z2 are arbitrary matrices, 

(1.2) S : X ( I  - C ' ( C C ' ) - C ) X '  

and 

(1.3) nE = ( X  - A B C ) ( X  - A B C ) '  

= S + S A ° ( A ° ' S A ° ) - I A ° ' X C ' ( C C ' ) - C X ' A ° ( A ° ' S A ° ) - I A ° ' S .  

In (1.1) and (1.3) we have used the notation A ° for any matrix of full rank which 
is spanning the orthogonal complement to C(A), i.e. C(A °) = C(A) ± where C(A) 
stands for the linear space generated by the columns of A (column vector space, 
range space). The matrix A ° is not unique but all results presented in this paper 
will be invariant with respect to the choice of A ° (see formula 2.4 given below). 
Furthermore, in (1.1)-(1.3), - stands for an arbitrary g-inverse in the sense of 
G G - G  = G. The estimator E is always unique and B is unique if A and C are 
of full rank. Since (1.1) is a weighted estimator with a random weight S -1 (1.1) 
is more difficult to handle than univariate least squares estimators. Furthermore, 
note that 

(1.4) A[~C = A ( A ' S - 1 A ) - A ' S - I X C ' ( C C ' ) - C  

which is always unique. 

2. Residuals 

In principle, when doing inference there are mainly two different strategies. 
One is to require as few assumptions as possible for the data, leading to so called 
robust methods. The other approach is to find models and then inference is based 
on these models together with diagnostic tools for validating the model. When 
considering univariate linear models many diagnostic tools are based on residuals. 
There exist many types of residuals, e.g. ordinary residuals, studentized resid- 
uals, external residuals, internal residuals (see Belsley et al. (1980), Cook and 
Weisberg (1982)), recursive residuals (Tobing and McGilchrist (1992)), as well 
as others. However, for multivariate linear models very few results exist and for 
the M L N M ( A B C ) ,  to our knowledge, any discussion of residuals does not exist. 
Hence, if using the M L N M ( A B C )  in practise, it is important to fill this gap and 
indeed, some completely new problems arise. 
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In the univariate linear model, X = /3C + e, the residuals are obtained if 
projecting X on C(C') ±, i.e. X ( I -  C'(CC')-C) .  In the MLNM(ABC) there 
are two spaces of interest, namely Cp.(A) and C(C), or more precisely the tensor 
product of these, i.e. C(C') ® C~(A). Here Cz(A) means that we have an inner 
product which is defined by aid of E - i ,  i.e. (x,y) = x 'E - i y  and C(A) = CI(A). 
Unfortunately, for the MLNM(ABC),  E is unknown, but we see that the maximum 
likelihood estimators, given by (1.1) and (1.3), respectively, are build up with the 
help of projectors where the inner product is based on S - i .  Hence, maximum 
likelihood theory tells us that we can replace E by S. Furthermore, from (1.4) 
follows that  A B C  is obtained with the help of the projection of X on C (C')®Cs (A). 
In order to study residuals according to ideas for univariate linear models we will 
study (C(C')® Cs (A)) ±, i.e. residuals are defined on the space which is orthogonal 
to the space generated by the design matrices. Typically for the MLNM(ABC) is 
that  (C(C') ® Cs(A)) ± consists of three orthogonal spaces: 

(C( C') ® Cs(A) ) ± = C( C') ± ® Cs(A) ± []C(C') ± ® Cs(A) []C(C') ® Cs(A) ±, 

where [] stands for the orthogonal sum. Hence the following residuals are obtained; 

(2.1) 
(2.2) 
(2.3) 

R1 = S A ° ( A ° ' S A ° ) - A ° ' X ( I  - C ' ( C C ' ) - C ) ,  

R2 = A ( A ' S - i A ) - A ' S - i X ( I  - C ' ( C C ' ) - C ) ,  

R3 = SA°(A° 'SA°) -A° 'XC' (CC' ) -C ,  

where R1 is obtained from the space C(C') ± ® Cs(A) ±, R2 from C(C') ± ® Cs(A) 
and Ra from C(C') ® Cs(A) ±. If we for simplicity just will look at R1 + R2 and 
R3 the interpretation is fairly clear. Ri + R2 = X ( I  - C' (CC')-C)  represents the 
difference between the observation and X C ' ( C C ' ) - C  (the mean) and R3 reflects 
the difference between the mean and the estimated model ABC, since (2.3) is 
identical to R3 = X C ' ( C C O - C  - ABC which follows from the fact that 

(2.4) I - A ( A ' S - i A ) - A ' S  - i  = SA°(A° 'SA°) -A  °'. 

However, we recommend that Ri and R2 should be calculated separately because 
elements in these matrices may appear with opposite sign and of the same size 
and then elements in R] + R2 will be close to zero. 

Remember that 6r,(A) represents the within individuals structure. Hence, if 
studing Ri and R2 separately we note that R2 stands for the projection of the 
difference between the observation and the mean on Cs (A) whereas R1 stands for 
the projection of the difference between the observation and the mean on Cs(A) ±. 
This means that both Ri and R3 mirror the within individuals model assumption 
whereas R1 and R2 can be used to investigate the between individuals assumptions. 
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3. Basic properties 

Unfor tunate ly  the distr ibution for (R1, R2, R3) is difficult to obtain as well as 
the marginal distr ibutions for Ri, i = 1, 2, 3. Therefore we will be concentrat ing 
on moment  relations. These give us a possibility to unders tand the est imators 
as well as to approximate  the distr ibution in a convenient manner. Indeed, in 
practise, already for the  univariate linear model  the complete  distr ibution for the 
residuals is not always utilized. For instance, residuals are oRen t rea ted as if 
they are independently dis tr ibuted which is not the case. The most  e lementary 
propert ies for R1,R2, R3 are presented in our first theorem and especially for 
graphical representations of residuals they may be important .  Let Cr [Ri] represent 
the cumulants of Ri of r - th  order and in part icular CI[Ri] = E[R~] and C2[Ri] = 

k 
D[Ri] = E[vec(Ri - E[Ri ] )vec ' (Ri  - E[Ri])]. In the theorem ® Ri stands for 

0 
Ri  ® Ri ® ' "  ® R~ and ® Ri = 1 where ® stands for the right Kronecker product .  

Y 

k times 

THEOREM 3.1. Let R1, R2 and R3, respectively be given by (2.1), (2.2) and 
(2.3). Then 

(i) E[Ri] = 0, i = 1, 2, 3, 

(ii) El® R~] = 0, i = 1, 2, 3 for odd r, 
Off) C~ [Ri] = 0, i = 1, 2, 3 for odd r. 

PROOF. R~, i = 1, 2, are odd functions in X ( I - C ( C C ' ) - C )  which in turn  is 
normally dis tr ibuted with mean zero. Since the normal distr ibution is symmetr ic  
E[R~] = 0, i = 1, 2. For R3 it is noted that  X C ' ( C C ' ) - C  is independent  of S 
and since E[A° 'XC ' (CC ' ) -C]  = 0 we obtain that  E[R3] = 0. These results can 

T 

immediately be generalized to cover moments  of odd order, i.e. E[® Ri] = 0, i = 
1, 2, 3, for odd r. Furthermore,  by the correspondence of moments  and cumulants  
(iii) follows from (ii). [] 

One consequence of the theorem is tha t  the distr ibution for the residuals are 
symmetric.  

In the subsequent  it will be convenient to rewrite Ri in a canonical form and 
we will use the following representation; 

A °' = T(Ip_p(A) : 0 ) r E  -1/2 

where T is non-singular, F' = (F~ : F~) p × p - p ( A )  : p×p(A) is orthogonal and E 1/2 
is supposed to be symmetric.  Fur thermore let, Y ~ Np,n(O, I, I - C ' (CC ' ) -C) ,  
Z '  = (Y~: Z~) n - p ( C )  x p - p ( A )  : n - p ( C )  xp(A)  and Z ~ Np,n(O, I, C ' (CC ' ) -C) .  
Observe tha t  Z and Y are independent  and that  also YI and ]I2 are independent.  
Using these definitions we obtain from (2.1), (2.2) and (2.3) canonical representa- 
tions of the residuals, i.e. 

(3.1) R'~ ~ Y[ (Y IY[ ) - 'Y~Y 'FE  ~/2 = {Y{: Y((Y1Y[)-~Y~Y~}FE ~/2 

(3.2) R'2 ~ (I - Y ; (Y1Y; ) - I y1 )Y 'FE  1/2 = (I - Y1~(YIY;)-IY1)Y~F2E 1/2 

(3.3) R~ ~ Z ' (Y1Y~) - IYIY 'FE 1/2 = Z ' { I  : (YIYf) - IY~Y~}FE 1/~ 
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where ~ stands for equality in distribution. Furthermore, for later use note that 

(3.4) 
E1/2F~plE1/2 = E - A ( A ' E - 1 A ) - A  ' 

E1/2p~F2E1/2 = A ( A ' E - 1 A ) - A  '. 

and 

The next theorem includes the covariance matrix between two matrices U and 
V which is given by C[U, V] = E[vec(U) vec(V)'] - E[vec(U)]E[vec(V)'] where the 
vec-operator is the operator defined by vec: R ~×'~ ~ R ~'~, xy ~ ~ y ® x  for vectors 
x and y of size n and rn, respectively. 

THEOREM 3.2. Let R1, R2 and R3, respectively be given by (2.1), (2.2) and 
(2.3). Then C[Ri, Rj] = O, i 7 ~ j,  i, j = 1, 2, 3. 

PROOF. From (3.1) and (3.2) follows since Y1 and Y2 are independent that  

c[R1, R2] = E[vec(r?/2r'lY1)vec'{E1/2r'2Y2(I- Y~(YIY~)-Iy1)}] 
+ E[vec(EI/2F'2Y2Y~(Y1Y~)-IY~) vec'(r~/~rIY2(~ _ y;(yiy;)-ey1))] 

= o + E[(Y;(YlV;)-IY~)(S- Y;(Y1Y;)-%)] ® r l / ~ r ~ r ; r l / ~  = 0. 

We also have, because S and X C ' ( C C ' ) - C  are independent and E[X] = ABC,  
that 

C[R2, R3] = E [ v e c { A ( A ' S - 1 A ) - A ' S - 1 X ( I  - C ( C C ' ) - C ) }  

x E[vec ' {XC' (CC' ) -C}]( I  ® A°(A° 'SA°)- IA° 'S)]  = O. 

The proof that C[R1, R3] = 0 is identical. [] 

In Theorem 3.2 we have established that  R1, R2 and R3 are uncorrelated. 
It would be of advantage for the interpretation of the values of the residuals if 
the residuals also are independently distributed. However, the next lines show 
that this is not the case. If R1 and R2 are independent they must be normally 
distributed because R1 -~-R2 : X( f -  C'(CC t)- C) is normally distributed which 
is a well known characteristic of the class of normal distributions. We are going to 
show that R2 is not normally distributed and from (3.2) follows that it is enough 
to show that Y2Y{(Y1Y~)-Y1 is not normally distributed which also confirms that 
R1 can not be normally distributed. It would indeed be very suprising if this 
expression is normally distributed. Put  

2 
H = s i c  Y2v~'(Y1Y/)-Y1] 

and if Y2Y{(Y1Y~)-Y1 is normally distributed the fourth ordered moments are 
related to H in the following manner; 

4 
E[® ~ ( Y I ~ ) - ~ ]  

2 2 
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where K~,~ stands for the commutation matrix (see Magnus and Neudecker 
(1979)), r = p - p(A) and s = n - p(C). However, since Y2 is normally distributed 
and is independent of Y1 this is only true if 

2 2 
E [ O V; ( Vl V; ) - Vi ] = 0 E [ V; ( Y; ) - ] 

which is not the case. To show that R1 and R3 are not independent we may note 
that 

E[R1R' 1 ® R3R~3] ¢ E[R1R~] ® E[R3R'3]. 

Similar calculations also give that R~ and R3 can not be independent. However, 
note that RIR~ and R2R~2 are independent. As already mentioned we will in 
this paper not obtain the exact distributions of the residuals because they are 
complicated. The only simple distribution property which we are able to obtain is 
that R2R~ is Wishart distributed, i.e. W p ( A ( A ' E - 1 A ) - A  ', n - p(C) - p + p(d)). 

In univariate linear models and the ordinary multivariate analysis of variance 
model the residuals are independent. Therefore it is of interest to see how the 
residuals Ri,  R2 and R3 are related to the estimated mean structure A B C .  

THEOREM 3.3. Let R1, R2 and R3, respectively be given by (2.1), (2.2) and 
(2.3), and let A B C  be as in (1.4). Then C[I~, ABC] = 0, i = 1, 2, and 

C[R3, ABC] = p - p(A) C ' ( C C ' ) - C  ® A ( A ' E - 1 A ) - A  ' 
- p ( C )  - p + p ( A )  - 1 

if  n - p ( C ) - p + p ( A ) - l > O .  

PROOF. Since C[Ri, ABC] = C[Ri, ABC], i = 1, 2, the first part is proved. 
The second part follows from a result in Grizzle and Allen (1969) concerning the 
dispersion matrix for B since 

and 

C[R3, ABC] = C[X C' ( C C ' ) -  C, A[3C] - D[ABC] 

C [ X C ' ( C C ' ) - C ,  A[~C] = D[XC' (CC' ) -C]  (I ® E [ S - 1 A ( A ' S - 1 A ) - A  '] 

= ( C ' ( C C ' ) - C  ® E)(I  ® E - 1 A ( A ' E - 1 A ) - A  ') 

= C ' ( C C ' ) - C  ® A ( A ' E - I A ) - A  '. [] 

Theorem 3.3 establishes that P~, i - 1, 2 and A[~C are uncorrelated but in 
the same manner as it was shown that the residuals are not independent it can 
also be shown that /~i ,  i = 1, 2, and A[~C are not independent. 

In the next theorem we are going to obtain the dispersion matrices for the 
residuals. These give then some ideas about the randomness among the elements 
in Ri and then, to some extent, can be used to identify extreme observations. 

THEOREM 3.4. Let R1, R2 and R3, respectively be given by (2.1), (2.2) and 
(2.3). Then if  n - p(C) - p + p(A) - 1 > 0 
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(i) 
(ii) 

(iii) 
where 

D[R1] = (I - C ' (CC' ) -C)  ® E - cl(I  - C ' (CC' ) -C)  ® A ( A ' E - Z A ) - A  ', 
D[R2] = Cl(I - C ' (CC' ) -C)  ® A ( A ' E - 1 A ) - A  ', 
D[Ra] = C' (CC') -  C ® E - c2C' ( C C ' ) - C  ® A(A'E-Z A ) -  A ' 

Cl z 

C2 ---~ 

n - p ( C )  - p + p ( A )  

- p ( c )  ' 

n - p ( C )  - 2 ( p  - p ( A ) )  - 1 

n - p ( C )  - p + p ( A )  - 1 

PROOF. Since ]I1 and Y2Y~(YIY~)-IY1 are uncorre la ted s t ra ightforward cal- 
culat ions yield 

D[R1] = D[E1/2FIY1 ] + D[E1/2F~y2Y~(YIY~)-Iy1]. 

N o w  

and 

D[E1/2FIYI] = (I - C ' (CC' ) -C)  ® E1/2FIFIE  ~/2 

D[E1/2P'2Y2Y~ (Y1Y~)-~Y1] = E[Y~ (Y1Y~)-~YI] ® E1/2F~F2E 1/2. 

If using (3.4) and  tha t  

( 3 . 5 )  E[y[(y1y~)_ly1] = p - p(A) (I - C ' (CC' ) -C) ,  

D[R1] in (i) is established. 
D[R2] in (ii) is obta ined  since R1 and R2 are uncorre la ted and Rz + R2 = 

X ( I  - C ' (CC' ) -C) .  For D[R3] in (iii) we note  tha t  

D[Ra] = C ' ( C C ' ) - C  ® {r~/~rlrlr~l/~ 
+ E1/2F~E[Y2Y~(YIY~) -1 (Y1 YI')-~YzY~]F2E 1/2 } 

and some calculations together  with (3.4) establishes the  theorem.  [] 

If the intent ion is to apply the  results in Theo rem 3.4 we have to es t imate  
D[Ri] i = 1, 2, 3. Unbiased es t imators  are given in the next  theorem.  

THEOREM 3.5. Let D[Ri], i = 1, 2, 3 be given in Theorem 3.4. The following 
estimators are unbiased. 

(i) D[R1] = (I - C ( C C ' ) - C )  ® 

+(°(-~c2 - c 1 ) ;~-p(C):p+p(A)n ( I _ C , ( C C , ) - C ) ® A ( A , E _ I A ) _ A , ,  

I (ii) D[R2] = ~ (  - C' (CC' ) -C)  ® A ( A ' E - 1 A ) - A  ', 

(iii) D[R3] = C ' ( C C ' ) - C  ® {E 

+ ( @ ~  e ~ ' ' -  - 2)n_p(C~=p+p(A)C ( C C )  C ® A ( A @ , - 1 A ) - A ' } .  
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PROOF. For this theorem it is utilized tha t  

E[E] = E - P ( C ) C 2 A ( A ' E - 1 A ) - A '  
n 

which was obtained by von Rosen (1990). Furthermore,  

(3.6) n A ( A ' E - ] A ) - A  ' 

= A ( A ' S - 1 A ) - A  ' ~ W p ( A ( A ' E - 1 A ) - A  ', n - p(C)  - p + p(A) )  

and combining these two results verifies the theorem. [] 
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