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Abstract .  Admissibility of prediction intervals is considered in a specified 
family. It is shown that the best invariant prediction interval is strongly ad- 
missible in a location family and in a scale family. Though the similar result has 
not been obtained for a location and scale family, the best invariant prediction 
interval for a normal distribution is shown to be weakly admissible. 
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i .  Introduction 

A prediction set is a set determined by the observed sample and having the 
property that  it contains the result of a future sample with a specified probability. 
A prediction interval corresponds to the special case that  the set is an interval. 
Prediction intervals are widely used for reliability problems and other related prob- 
lems. Patel (1989) provided a review on the construction of prediction intervals. 
The present paper deals with admissibility of prediction sets. 

Suppose that  the observed variable X and the predicted variable Y have a 
joint distribution, which depends on an unknown parameter 0. A prediction set 
S(X)  is examined by its coverage probability Po{Y E S(X)} and its volume 
~(S(X)) with respect to some measure ~ on the sample space of Y. The larger its 
coverage probability and the smaller its volume are, the better the prediction set 
is. Hence a prediction set S(X)  is said to be strongly admissible if there exists no 
other prediction set S~(X) such that  

(1.1) 

and 

(1.2) 

Po{Y e S' (X)}  > Pe{Y e S(X)} for all 0 

E0{~(S'(X))} ~ E0{~(S(X))} for all 0 

and the strict inequality holds for at least one 0 either in (1.1) or in (1.2). Weak 
admissibility is defined by replacing (1.2) by 

~(S'(x)) < ~(S(x)) for almost a l l .  
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and requiring the strict inequality to hold for at least one 0 in (1.1). See Joshi 
(1970). Strong admissibility of a prediction set implies its weak admissibility. 

Section 2 deals with a strong admissibility of the best invariant prediction set 
in a location family and in a scale family. It has not been known if the similar 
result holds in a location and scale family or not. In Section 3 we shall take a 
normal distribution with unknown mean and unknown variance as an example of 
a location and scale family and show that the best invariant prediction interval is 
weakly admissible among prediction intervals. 

2. Strong admissibility 

Given a prediction set S ( X ) ,  consider a function ¢ defined by 

1 i f y  C S(x),  

¢(~'Y) = 0 otherwise. 

Then it holds that  

(2.1) 

and 

(2.2) 

po{r e s ( x ) }  = Eo(¢(X, r ) }  

Eo{e(S(X))}= Eo { f 
Conversely, every function ¢ with 0 < ¢(x,  y) < 1 defines a prediction procedure 
by which a randomized prediction set is constructed such that (2.1) and (2.2) are 
satisfied. In this section, prediction sets considered are randomized and identified 
with such a function ¢. Further, strong admissibility is discussed among the class 
of randomized prediction sets. 

First we treat a location family. Suppose that the observed sample X consists 
of n random variables X 1 , . . . ,  Xn and X and Y have a joint probability density 
function 

(2.3) f ( x l  - 0 , . . . ,  X n -- O, y -- O) 

with respect to Lebesgue measure, where f is known and 0 is unknown. 
A prediction set ¢ is said to be invariant if 

(2.4) ¢(xl + a , . . . ,  x n -~- a,  y -t- a )  = ¢ ( x ,  y )  for all x, y, a .  

An invariant prediction set is said to be the best invariant with respect to ~ if 
it uniformly minimizes (2.2) among the class of invariant prediction sets with 
coverage probability not less than a specified value. 

Assuming ~(dy) = dy, a prediction set given by 

1 if F ( x , y )  _> b 
(2.5) ¢0(~,Y) = 0 otherwise 
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is shown to be the best invariant, where b > 0 is a suitable constant, 

(2 .6)  
F ( x , y )  = f f(x~ - O, . . . , xn  - O , y -  O)dO 

f h(xa - O, . . . ,Xn - O)dO 

and h(xl - 0 , . . . ,  xn - 0) is the probability density function of X.  The proof is 
given in Section 4 of Takeuchi (1975). See also Takada (1983) and Hooper (1986). 
We now consider the strong admissibility of the prediction set (2.5). 

Let X = X1 and Z~ = Xi+l - X1 (i = 1 , . . . , n  - 1). Then the probability 
density function of Z = (Z1, . . . ,  Z~-I)  becomes 

u(z) = / h(t, t + Zl , . . . ,  t ~- Zn-1)dt, 

and the joint probability density function of X, Z and Y is written as 

where 

p(x - O, z, y - 0), 

p ( x -  6, z , y -  O) : f ( x -  O , x -  0 + Z l , . . . , x -  O+ z n - l , y -  0). 

It follows from (2.6) that 

g ( x ,  y) = u(z)  -1 . /  p(t, z ,  y - x -~- t)dt (2.7) 

= g ( y  - x ,  z )  ( say) .  

Let k(x - O) be the probability density function of X1. 

THEOREM 2.1. Suppose that for a location family (2.3) 

(2.8) f Itlk(t)dt < 

(2.9) / ' / "  u (z )dzdy  = O. 
JJ[g (y,z)=b] 

Then the best invariant prediction set (2.5) is strongly admissible. 

PROOF. The proof follows the method used by Joshi (1970) who proved the 
strong admissibility of the best invariant confidence intervals in a location family. 

Suppose that there exists a prediction set (~I(X~ Y) such that 

E o { ¢ I ( X , Y ) }  >_ E o { ¢ o ( X , Y ) }  for all 0 

and 

E e { / ¢ l ( X , y ) d y }  ~ _ E o { / O o ( X , y ) d y }  for all O. 
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Write 

and let 
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¢(.,.) =f¢(z,y)@ 

q(x, y) = [b¢0(x, .) - Co(X, y)] - [b¢1 (x, .) - ¢1(x,  y)]. 

Then it holds tha t  for all 0 

i i i  q(x z,  y)p(x - O, z ,  y - O)dxdzdy >>_ O, 

so that  for any L > 0 

(2.10) S_< { iiS ) q(x, z ,  y)v(x - O, z ,  y - O)dxdzdy dO > O. 
L 

It is easy to see that  the order of integration can be changed. Hence the left hand 
side of (2.10) is equal to 

{i ; } (2.11) 

-- q(x, z ,y)p(t ,  z , y  x 

} = q(x, z ,  y + x)p(t, z ,  y + t)dt 
Jx--L 

_ f f  {f~'~ f~,~ +f-~,~ {~+. J-Zl2 dx J-Zl2 J - 3 L 1 2  J-Zl2 

..~_ faL/2 LI2 £~ t+L 
dx f dr+ f dx 

JL/2 Jx--L / 2 d t a t - L  

f 
-L /2  f t + L  "] 

+ dt I dx~q(x,z ,y+x>(t ,z ,y+t)  
--oc J t--L J 

= TI + T2 + T3 + T4 + T5 (say). 

See (21) of Joshi (1970). From (2.5) and (2.7) 

f 1 
= J g(Y - 

so that  we have 

f 
z )dy > b I dy = b¢o(X, z,  .), x~ 

J[y ;g(y--x,z)>_b] 

q(x , z , y )  < 2. 
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Then 

Hence from (2.8) 

The proof of the results that 

are similar to those of (66) and (67) of Joshi (1970) and are therefore omitted. 
Combining (2.12) and (2.13) with (2.11) and using (2.10), we have 

It can been shown that  

See (32) of Joshi (1970). Hence it follows from (2.14) and (2.15) that  

it follows from (2.5) and (2.7) that  
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where 

W(x,  z) = 

Therefore from (2.16) 

leo(X, z, y) - Cx(x, z, Y)]Ig(Y - x, z) - bldy. 

/ W ( x ,  z)u(z)dxdz O. 

Let B = {(x, z, y); g(y - x, z) = b}. Then by (2.9) 

~ 0 .  

Hence we have 
a.e. 

with respect to u(z)dxdzdy, so tha t  the best invariant prediction set is strongly 
admissible, which completes the proof. 

Example 1. Let X1,...,X,~ be an observed sample from a normal distri- 
but ion N(#, a 2) and let Y1,... ,Ym be a future sample from the same distribu- 
tion. Based on X = ( X 1 , . . . ,  Xn), we consider a prediction of the sample mean 

= (Yl + " "  + Ym)/m. Assume tha t  0 = # is unknown but  ~ is known. Then it 
easily follows from (2.5) tha t  

i ( x )  = ( 2  - 2 - ca)  

is the best invariant prediction interval, where c(> 0) is a suitable constant  and 
-~ -- (X1 + . . .  + Xn)/n. It is easy to see tha t  the conditions of Theorem 2.1 are 
satisfied, so tha t  I(X)  is strongly admissible. 

Next we turn  our a t tent ion to a scale family. Suppose tha t  X = ( X 1 , . . .  ,Xn) 
and Y have a joint probability density function 

(2.17) O-(n+l)f(xl/O,...,xn/O,y/O), xl > 0 , . . . , x ~  > 0, y > 0 

with respect to Lebesgue measure, where f is known and 0 > 0 is unknown. 
A prediction set ¢(x ,  y) is said to be invariant if 

(2.18)- ¢ ( a x l , . . . , a x n , a y )  -- ¢ ( x , y )  for all ~, y, a > 0. 

Let X~ = log X~ (i -- 1 , . . . ,  n), Y' = log Y and 0' ---- log 0. Then it is easy to 
see tha t  the joint probability distribution of X '  = ( X ~ , . . . ,  X~) and Y' belongs 
to a location family (2.3) with location parameter  0 p. Let 

¢ ' (x ' ,  y') = ¢ (exp(x~) , . . . ,  exp(x~), exp(y')).  
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Then ¢ satisfies (2.18) if and only if ¢' satisfies (2.4). Further, 

E,o{¢(x, z ) }  = Eo,{¢'(x',  Y')}. 

Assuming ~(dy) = y - l d y ,  y > O, 

Eo { f ¢(X,y)~(dy)} = Eo, { f ¢'(X',y')dy'}. 

Hence it easily follows from (2.5) that  a prediction set given by 

1 i f F ( x , y )  >_ b, 
(2.19) ¢ o ( x , y ) - -  0 otherwise, 

is the best invariant with respect to ~, where 

(2.20) F(x,v)  = y / o  o-(n+2) f(xl/O, " .,xn/O,y/O)dO 
-2oo  O, . ,Tj/o  

and O - n h ( x l / O , . . . ,  x~/O) is the probability density of X.  Let 

O O  n Y fo t I(t, zlt,...,z~_lt, yt)dt 
g(y,z)= f - -~ t~~ - t : :  . . . . .  ' • ., Z~- l t )d t  

with z = ( z l , . . . ,  z~_l). Then it follows from (2.20) that  

(2.21) F(~, y) = g(y/x, z), 

where zi = x i + l / x l  (i -- 1 , . . . ,  n - 1 )  and x = xl. The probability density function 
of Z = ( Z1, . . . , Zn -1 )  becomes 

/2 (2.22) u(z) = tn-lh(t, z l t , . . . ,  z~_lt)dt, 

and let O-lk (x /O)  be the probability density function of X1. Now the strong 
admissibility of the prediction set (2.19) follows from Theorem 2.1. 

THEOaEM 2.2. Suppose that for  a scale family  (2.17) 

fo ~ l l o g t l k ( t ) d t  < ec, (2.23) 

and 

(2.24) j f [g  u ( z ) y - l d z d y  = O. 
(y,z)=b] 

Then the best invariant prediction set (2.19) is strongly admissible. 
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Remark. The case that  {(dy) = dy can also be similarly t rea ted (cf. Remark  
5.1 in Cohen (1972)). 

Example 2. Let X(1) ~ X(2) _< " "  ~ X(n) be an ordered sample of size n 
from an exponential  distr ibution with density 

8 - l e x p ( - x / O ) ,  x > 0, 0 > 0. 

Suppose that  only the first r of these order statistics are observed. Let Y(1) 
Y(2) _< "'" -< Y(,~) be a future ordered sample of size m from the same distribution. 
Based on X = (X(1) ,X(2) , . . .  ,X(~)), we consider a prediction of Y = Y(s) (1 _< 
s _< m). The joint probabil i ty density function of X and Y is given by 

(const.) X ~--(r+l) exp(--v/O){1 -- exp(--y/O) } s-1 exp{-- (m -- s + 1)y/0}, 

where v = ~-]i~=1 x(i) + (n - r)X(r ). Then from (2.20) we find tha t  F(x ,  y) is 
proport ional  to 

L 
OO 

g * (y/v) = (y/v) tr{1 - -  exp( - - (y /v ) t ) }  s-1 exp{- t [1  + (m - s + 1)y/v]}dt. 

It can be shown that  g*(y) > b is equivalent to cl < y < c2, where g * ( C l )  = g * ( C 2 )  

(e.g. Takada (1979)). Hence the best  invariant prediction set becomes an interval 

given by 
I ( X )  = (51V, c2V). 

We check the conditions of Theorem 2.2 to show its strong admissibility. Take 
X1 -- X(~). Then it is easy to see tha t  (2.23) is satisfied. From (2.22) u(z) is 
proport ional  to {zl + " -  + zr-1 + n -  r + 1} -~, 0 < zi < 1 (i = 1 , . . . , r -  1). It 
follows from (2.21) tha t  g(y, z) is proport ional  to g * (y/v') with v' = zl + ' - "  + 
z~-i  + n - r + 1. Hence (2.24) is satisfied, so that  I ( X )  is strongly admissible. 

3. Normal distribution 

The arguments  used to prove the strong admissibility in Section 2 can not be 
applied to a location and scale family. In this section, we consider the  problem of 
Example 1 in Section 2 in which both  # and a are unknown. 

The usual prediction interval of Y based on X is 

(3.1) i ( x )  = ( 2  - 2 + 

where  S 2 ---- (X  1 - X)2  _.~.. , + ( X  n _ 2 ) 2  and  c ( }  0) is a su i t ab le  cons tan t .  I t  can  

be shown that  (3.1] is the best  invariant with respect to Lebesgue measure (e.g. 
Takeuchi (1975), Section 4). Now we shall show that  (3.1) is weakly admissible 
among the class of prediction intervals. For the proof  we need the following lemma. 
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LEMMA 3.1. Suppose that a prior distribution of # is N(0,72).  Then the 
conditional distribution of Y given X = x is N ( # ( x ) ,  A2), where 

n~/cr 2 

, ( x )  - n / ~ 2  + 1 / 7 2  

and 

°-2/m (m/~2 + n/~2 + 1/T2). 
A2 - n/~2 + 1/7 2 

PROOF. It is straightforward to see that given X = x, the conditional dis- 
tribution of # is N(#(x) ,  1 / ( n / a  2 + 1/72)). Then the result follows from the fact 
that the conditional distribution of !? given X = x is obtained by integrating the 
density of Y with respect to the conditional distribution of # given X = x. 

Given a statistic 5(X),  define its risk by 

R(0,5)  = 1 - Po{5(X)  - cS < Y < 5(X)  + cS}, 

where 0 = (#, a). Consider a prior distribution N(0, 7 2) for p and denote the 
average risk by R~(7, 5), that  is 

5) = f R(O, 5)(27r72) -1/2 exp{ -#z / (272)}d# .  

Then by the lemma we get 

R~(7, 5) = 1 - E*{+[(5(X) + cS - #(X) ) /A) ]  - +[(5(X) - cS - #(X)) /A) ]} ,  

where the expectation E* is taken with respect to the marginal distribution of X .  
It is easy to see that 

(3.2) R~(7, #*) = Inf R~(7, 5) 
6 

= 1 -  E*{~(cS/Zx)- ~(-cs/zx)} 
= 1 - E { ~ ( c S / ~ )  - ~(-cS/ZX)}, 

where # ,  = # ( X )  and we used the fact that the marginal distribution of S does 
not depend on the prior distribution of #. 

THEOREM 3.1. For the normal distribution with unknown mean and un- 
known variance, the prediction interval (3.1) is weakly admissible among the class 
of prediction intervals. 

PROOF. Suppose that the prediction interval (X - ~S, X + dS) is not weakly 
admissible so that there exists a prediction interval ( L ( X ) ,  U ( X ) )  such that 

(3.3) U ( X )  - L ( X )  < 2cS a.e. 

and 
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(3.4) Po{L(X) < Y < U ( X ) }  > Po{X - cS < F < 2 + cS} for all 0 

and the strict inequality holds for at least one 0 in (3.4). Let 

6 ( X )  = (L(X) + U(X))/2. 
Then from (3.3) 

(5(X) - cS, 5(X) + cS) D_ (L(X), U(X)) a.e., 

so that  from (3.4) we get 

(3.5) R(O, 5) <_ R(O, 2)  for all 0 

and the strict inequality holds for at least one 0 (cf. (2) of Joshi (1966)). Observing 

R.O-,  2 )  = 1 - E { ~ ( c S / : 9  - ~(-cS/~)}, 
where A = {a2(1 /n  + 1/m)} 1/2, it follows from (3.2) tha t  

(3.6) ~{R.(~, 2 )  - R,(~, ~,)} = 2 ~ E { ~ ( - c S / ~ )  - +(-~s/~)}. 
It is easy to see that  the right hand side of (3.6) converges to zero as ~- --+ c~. 
Hence we get 

(3.7) ~-{R,(%2)-R~(%#,)}---+O as ~- ---~ cx~. 

Since R(O, 5) is a continuous function of #, it follows from (3.5) tha t  there exist 
e > 0, cr and #1 < #2 such that  

R(0, 5) < R(0, x )  - 
for 0 = (#, a) with #1 < # < #2. Then we get 

R. (% 2 )  - R,~ (% 5) e f ; :  (27r) -1/2 e x p { - p 2 / ( 2 7 2 )  }d r 
> 

R~(~, 2 ) -  R.(~, ..) ~{R.(~, 2 ) -  n.(~,..)} 
By (3.7) the above right hand side converges to oe as 7 --* oe. Hence there exists 
~- such that  

:: R , (~ ,  5) < R , (~ ,  , * ) ,  

which contradicts  (3.2), so that  the proof  is completed. 
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