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A b s t r a c t .  Empirical Bayes (EB) estimation of the parameter  vector 0 = 
(~', ~r2) ' in a multiple linear regression model Y = X/~ + e is considered, where 
/~ is the vector of regression coetficient, e ~ N(0, a2I )  and cr 2 is unknown. In 
this paper, we have constructed the EB estimators of 0 by using the kernel 
estimation of multivariate density function and its partial derivatives. Under 
suitable conditions it is shown that  the convergence rates of the EB estimators 
are O(n-(Xk-Z)(k-2)/~(2k+P+l)), where the natural  number k _> 3, ½ < A < 1, 
and p is the dimension of vector/3. 

Key words and phrases: Empirical Bayes estimation, multiple linear regression 
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I .  Introduction 

Since the empirical Bayes (EB) procedure was first suggested by Robbins 
(1955), the EB estimation problems have been studied in a great deal of literature. 
Suppose there is a pair (X, 0) of random variables, where r.v. X is observable and 
parameter (vector) 0 is unobservable. The conditional distribution of X given 0 
is specified by density fo, and 0 has an unknown and unspecified distribution 
G on parameter space O. Based on an observation on X (which could be a 
sufficient statistics for 0), the problem is to decide about 0 under nonnegative 
loss function. If the prior distribution G were known, we could use the Bayes 
estimator 0c which achieves the minimum Bayes risk R(G) relative to G. But since 
G is not known, and therefore the optimal estimator 0c is not directly available. 
In the EB decision problem, we assume that the above problem has occurred 
independently in the past, say n times. Hence there are n + 1 independent pairs 
(X1, 01),.. •, (Xn, 0n) and (X, 0). Our purpose is to use the information contained 
in the past observation (X1, . . . ,  Xn) and the present observation X to obtain the 
estimator 0n = 0n(X1, X2 , . . . ,  X~; X) for the present parameter 0. This estimator 
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is called EB estimator. So that for large n, this estimator is "nearly" as g o o d  
as the unavailable optimal estimator 0c in the following sense: the overall risk, 
say Rn, of 0n approximates the minimum Bayes risk R(G) achieved by OG. If 
l im~o~ R~ = R(G), then the estimator is called asymptotically optimal (a.o.). If 
for some 5 > O, R~-R(G) = O(n-e) ,  we will say that the EB estimator is a.o. with 
convergence rate O(n-5).  These are two large sample properties of EB estimators. 
Prom the above statement we know that  the EB approach to statistical decision 
problems is applicable when the same decision problem presents itself repeatedly 
and independently with a fixed but unknown prior distribution of the parameters. 

The EB estimation problems for exponential families have been discussed. 
Singh (1976, 1979) considered the EB estimation problem for noncontinuous and 
continuous Lebesgue exponential families respectively. Chen (1983) studied the 
asymptotic optimality (a.o.) of the EB estimators for one-dimensional discrete 
exponential family. Singh and Wei (1992) considered the EB problem for scale 
exponential family. About the multi-parameter exponential families, Tao (1986) 
and Zhang (1985) discussed the EB estimation problems for parameters in a normal 
distribution family. Wei (1985, 1987) considered the EB estimation problems for 
continuous type multi-parameter exponential family. Recently, Yang and Wei 
(1993, 1994) studied the EB estimation problems for multi-parameter discrete 
exponential family. Singh (1985) and Wei (1990) considered the EB estimation 
and test problem in a multiple linear regression model for the regression coefficient 
under known error-variance. In this paper we will consider the EB estimation 
problem of regression coefficient and the unknown error-variance for the following 
multiple linear regression model 

(1.1) Y/x1 = Xlxp/~pxl -~ ( : / x l  

where e ~ Nz(O,G~I) with unknown G 2 and l _> p + 2, denote 0 = (~',cr2) ' e O, 
(O, Bo) is the parametric space. Let the loss function be as follows 

(1.2) L(O, d) = l id:  - f lLI2/G 2 + (dp+ l  - c r 2 ) 2 / ~  4 

where d = (d~, dp+l)' E •, (~?, By) is the decision space and Iltll 2 = ~=I~P 12~ for  a 
vector t = ( t l , . . .  , tp) I. 

In this paper we will consider the EB estimation problem for 0 = (~', G2) ~ in 
the model (1.1) with unknown a S. 

Suppose that the prior distribution G of 0 belongs to the following family 

(1.3) .~'k = {G(O) : /oa-(2k+t)dG(O) < cxD } 

where k >__ 3 is an integer. 
It is well known that the Least Square Estimators of fl and cr 2 are 

( 1 . 4 )  

( 1 . 5 )  

= = sx'Y, 

a = I IY -  lP/(l - p )  
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where E = (X'X) -1. Since (/~,,&2) is sufficient for (/3',0.2), we may substitute 
Z = (/3', &2), for the original sample Y, where Z c Z, (Z, Be) can be seen a 
sample space. 

Let ~bc(Y) = ( ~ ,  ~b~,..., ¢~) '  be the Bayes estimator of/3 and Co(Y) be the 
Bayes estimator of 0.2 under the unknown prior distribution G. By the Corollary 
1.1 in Chapter 4 of Lehmann (1983), we have 

(1.6)  

(1.7) 

cG : (¢~, ¢5 , . . . ,  ¢~ ) '=  E(0.-=ZlZ)/E(0.-~IZ), 
CG = E(0. -2 I Z ) / E ( ¢  -~ l Z). 

From (1.4), (1.5) we know that the conditional distributions of/3 and ~2 with 
given IF and ~r 2 are 

31o ~ N(A 0.2p,), 
(l -- p)&2 

O-2 
[ 0 N X~-p. 

Since/3, gr 2 are independent when 0 = (/3', 0.2), is given, the conditional density 
function of Z given 0 is 

(1.8) f (z lO)=k(310). f2(& ~10) 

= co-Z&,_p_2 exp { ( l -  P)Cr2~ ~j exp {--~12 (/3 _/3),~-1(/~ _/3) } 

where l _> p + 2, c = [ ( / -  p)/2](z-;)/2/[(2rc)p/2]E[1/2F((l - p)/2)]. The marginal 
density of Z = (/~', ~2), is 

(1.9) f(z) = / f ( z  I O)dG(O) 

=cf0.-~,-p-2exp{ (~-p)~2. } 

• exp { - -~2  (/3-/3)tP,-l(/~ - ~3)}riG(O). 

Let g(z ]O) = f(z [ O)/& l-p-2, then 

(1.10) g(z[O)=c0. -lexp{ ( l --p)&2/exp{_~_5~2(/~_/3)/p_l( /~_/3)/  
20-2 

(1.11) gtz) = ./gtz [O)dG(O) 

exp{ 
In the context of this paper c, cl, c2,.. ,  always stand for positive constants. 

They may denote different values even within the same expression. 
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LEMMA 1.1. Let G E Yk, Yrk is defined by (1.3), then g(z) has continuous 
r-th order mixed partial derivatives 

Org(z) 
g( r ) (Z  ) = 01~; 1 ,,.0~;P0(0"2)?'¥+ 1' 

0 < r { ,  i =  1 , . . . , p + 1 ,  r =  ri, 
i=1 

which satisfies 

(1.12) 9(<)(z) ---- f g(')(z I O)dG(O) and Ig(')(z)l <_ 

where a is a constant independent of G and Z. 

PROOF. This lemma is a direct extension of Lemma 2 of Tao (1986). 

From Lemma 1.1 and formula (1.11), we have 

off J 

= -g(z)G-1E(G-2(fl- 9) IZ) 

a9 

therefore 

(1.13) 

Analogously we have 

(1.14) 

(1.15) 

Let 

2pg_l(z) Og E(G-21Z) = - l -  0a 2' 

4 -1 029 
E(~-~IZ)- (l-p)2g (z)(0~2)2" 

g(])_ Og ,~(1) Og ,g2)_ 02g 
~ 0fli '  i = 1 , 2 , . . . , p ;  ~a2 = 0c}2, ~a2 0(Cr2)2 

and 
~ OgO) ,Og (1) 

From (1.13) to (1.15) and (1.6), (1.7) we get the Bayes estimators of fl and cr 2 as 
follows respectively 

(1.16) ~ a  = E(o._2fl [ Z)/E(cr_ 2 I Z ) = /~  ( l -  p)Eq(z) ,  
2 

(1.17) ¢G = E(~ -~ I z)/m( ~-~ 1 z) - l - p (~). (~) %~/%~ • 
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z ! / Let 0 (¢c ,  Ca) be the Bayes estimator of 0, then the minimum Bayes risk 
with respect to (w.r.t.) G is 

(1.18) R(G) = R(t), G) : ECz,0)[II G -/911 /o + ECz,o) E(¢G -- 

= RI(O)  + R (o) 

where E(z,o) denotes the expectation w.r.t, the joint distribution of random vectors 
Z and 0. 

We know that R(G) = inf0. R(O*, G), where the inf is taken over the set 
of all estimators 0* for which R(O*, G) is finite. The estimator which achieves 
the minimum Bayes risk (i.e., Bayes envelope) R(G) is the Bayes estimator, also 
called optimal estimator (o.e.) 0 = (¢~, CG)' given by (1.6) and (1.7). Thus 
R(O, G) = R(G). Notice that R(G) can be exactly achieved only if the prior 
distribution G is known and 0 is estimated by o.e. 0. Unfortunately G is completely 
unknown and hence 0 is unavailable to us. This leads us to use EB approach to 
exhibit estimators whose risks are close to R(G) achieved by 0. 

In Section 2 of this paper we will construct the EB estimators of 0 = (/9~, o2) ' 
and in Section 3 we will give several lemmas and get the convergence rates. Finally 
we will give an example in Section 4. 

2. Proposed EB estimators of 0 = (/9~,o2) ~ 

In the EB framework, we make the following assumptions: Let {Y(1),/9(1), o12}, 
. . . ,  {Y(~),/9(~), o i}  be independent random pairs from the past experiments and 

o L 1 }  = _- {Y(n+l),/9(n+l), {Y,/3, 02} be the present sample, with Y(i)  X/9(i) + 
e(i), i = 1, . . .  ,n + 1. The vectors Y(i),3(i),e(i), i = 1,.. .  ,n behave like Y, 3, e 
described above (/9'1 ,o~)', , (/9'n ,crY)' and (/9',02) ' are i.i.d, and have the • ( )  -.. (~) 
common unknown prior distribution G. Y(1), Y(2),. • •, Y(~) are called the historical 

samples, Y is the present sample. Let Zi = (/91i)' &/2),, i = 1 , . . . ,  n + 1, where 

/)(i) = EX'Y(/), ~ = [ I Y -  ; ) ,  = ( x ' x )  -1. Then Z1 , . . . ,  Z~, 
Zn+l = Z are i.i.d., and have the same marginal density (1.9). It is easy to 
know that  Z1, . . .  ,Z~+I are seperately sufficient statistics for 0(i) = (fli~),o2) ', 
i = 1 ,2 , . . .  , n + l .  Therefore we may substitute Zi for Y(i), i = 1,2, . . .  , n + l ,  and 
Z1, Z2 , . . . ,  Z~ can be said the historical samples, Z is called the present sample. 

In order to get the EB estimator of 0, we use a class of kernel function defined 
as follows to make the kernel estimation of multiple density and its derivatives. 

Let Pi(xi), xi E R 1, i = 0, 1 , . . . ,  k - 1  be a Class of Borel measurable functions, 
satisfying the following conditions: 

i) when xl ~ (0, 1), Pi(xi) = O, i = O, 1 , . . . , k -  1, 
ii) Pi(xi) is bounded in (0, 1), 

iii) for e a c h 0 < i < k - 1 ,  

1/01 {1 
m z 

lo! Yl°Pi(y)dy 0 10~ i ,  1 0 = 0 , . . . , k - 1  
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where k > 3 is an integer. Obviously Kr(u)  = n p+I Pr~(ui) satisfies 
- -  i = 1  

1 /R K~(u)u[~.. ot,+~du={1 i f l i=ri ,  i = l , ' " , P + l  
. - " ~p+l (2.1) 11! "'Ip+1! p+~ 0 otherwise 

K-,p+l 
w h e r e  u = ( U l , . . . , l t p + l )  ! C R p+I ,  F = z_~i=l ?~i, /'i ~ 0, 0 ~ 1~ ~_~ k -  1 a n d  

O < li < k -  l, (i = l,2, p+ l), O < ~-~+l li < k-1.  Since g(z) = f(z)/~r l-p-2, 
we estimate 

O_<ri, i = l , 2 , . . . , p + l ,  r =  ri, r < _ k - 1  
i=1 

by 

(2.2) g(r) =g(r)(Z1,...,Zn, Z ) 1  ~ Kr ( Z i -  Z )  
nhr+p+l ~l-p-2 I(&2>o) 

i=1 ° i  

where h > 0 and h --+ 0 as n --+ oc. Let 

(2.a) 

(2.4) C n -  1 - p ~  (1) .^(2)  ~ ,~ -~ Lga%~lg~Lnl~ 

where 

(2.5) qn = ( q l n , . . . , q p n ) ' ,  
r (1) .^(1)  ~ 

qin = Lg~¢,n/ga2,nJ~ , 
a if ]a] < L 

[alL= 0 i f ] a [ > L  

and _(1) and .(r) defined by (2.2), is the kernel est imator of 9(1/ (i = 1, ,p) y¢?~ ,n ~2 ,  n' ' " " 

and fir) (r = 1, 2), respectively. t/~2 

We define 0N = (¢~n, Cn)' as the EB estimator of 0 -- (/3', a2),. Let E ,  and E be 
the expectat ion w.r.t, the joint distribution of ( Z 1 , . . . ,  Z,~; (Z, 0)) and (Z1,..., Z~) 
respectively in this paper. Then the "overall" Bayes risk of 0~ is 

(2.6) R~ = Rn(0~, G) = E,[llCn -/3112/~ 2] + E*[lCn - -  ~212/~4] 
= Rim + R2~. 

By definition, if for some 5 > 0, Rn - R(G) = O(n-5), then the convergence 

rates of {On} are O(n-6). 
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3. The convergence rates of 0~ 

In order to get the convergence rates of EB estimators,  we need the following 
lemmas 

LEMMA 3.1. Suppose Y, Y' are random variables, y, y' are real numbers. 
L > 0 is a constant, then for 0 < r <_ 2 we have 

(3.1) E [ Y '  Y~lyjL[ " <-2'y]-" { E ' Y ' -  y'[r+ ( ~- q - L ) " E [ Y -  y]"}. 

PROOF. See Lemma 3 of Zhao (1981). It is similar to the Lemma 4.1 of 
Singh (1979). 

LEMMA 3.2. Suppose that R(G) < oo. Let R~, t~ln , i[{Sn be defined by (2.6) 
and R(G), < ( G ) ,  R:(G) be g~ven by (1.18), then we have 

(3.2) 

(3.3) 

(3.4) 

RSn --  R s ( G )  = E * [ I I ¢ ~  - ¢ C I I 2 / ~ 4 ] ,  

R,~ - R ( G )  -- E,[I lWn - ~ 'Gll~/o -~] + E , [ l lCn  - ¢GII2/~43.  

PROOF. We only prove (3.2). The proof of the others is analogous. 

J~ln = J~*[[[~n -- /~112/0"2] 

- -  RI(G) + E.[llOn - ~GIIS/~ 2] + 2J~. [(~n --  ~ ) G ) I ( ~ ) G  - -  / 3 ) / 0  "2] 

where 

E ,  [(~)n -- C G ) t ( ~ G  -- /~)/O-2] 

: E(Z1 ..... Z n , Z ) { ( ~ n  - ~)G)t[E(O'-2~)G I Z )  - E(o- -2 /~  I Z ) ]}  

since gac = E(cr-2/3]Z)/E(a -2 I Z) and E(a-2¢G I Z) = ¢ c E ( c r  -2 I Z), we get 
E,[(~bn - ~ba)'(~bg - /3) /or  2] = 0. Thus 

Rln - RI(a)  = E.[IICn -- ¢GII2/~2]. 

This lemma is proved. 

LEMMA 3.3. Let g(r) be defined by (2.2) with h = n-1/(Sk+P+l), r = 0, 1,2. 
Suppose G C -~k and 0 < A <_ 2, then 

(3.5) Elg(r) _ g(r)]~ < c. n-~(k-r)/(2k+P+l)(& -~(1-p-2)/2 + 1). 
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PROOF. Since 

(3.6) Elg(~ ~) - g(~)l ~ <_ 2[(Var g(~))~/2 + iE(g(~)) _ g(~)l~] 

= + 

First  notice tha t  Z1, . . . ,  Zn are i.i.d, and f (z)  = 0 when ~r = 0, then  we have 

/1 = Var g(r ) 1 ( - )  nh2(~+p+l) Var K~ Z1 h 
- 54_p_ 2 [(a~>o) 

< Tth2(r+p+l ) K~ f(zl)/cr~(z-P-2)dzl 

j __ g(Zl)/Cr I dZl. < nh2(~+p+l) K~ 

Let ( z m - z ) / h  = u (obviously •2 = a2+Up+zh). Since 0 < ui < 1, i = 1 , . . . , p + m ,  
U = ( U l , . . . ,  Up+l) t and h > 0, we have 

[1 <_ rth2r+p+ 1 I ( 2 ( u ) g (  z + hu)( (~2 + Up+lh) - ( l - p - 2 ) / 2 d u  

~-( l -p-2)  [ + 
<- fth2r+p+l 

Since G C ~-k, by Lemma 1.1 we know tha t  ]g(z)] < a. Take h = n -1/(2~+p+1), 

then we have 

11 <_ cn -2(k-r) / (2k+p+l)  • C T - ( l -p -2 ) .  (3.7) 

Secondly since 

1 E Kr  
Eg(n ~) - h~+p+l ~ I(32>0) 

Let (zl - z) /h  = u, then Eg(n r) = ~ f K~(u)g(z + hu)du. Since G c ~k, g(u) has 
the k-th order mixed continuous partial  derivatives and Ig (k) (z)] _< a.  Instead of 
g(z + hu), we use its k-th order Taylor expansion about  z with Lagrange-form of 
the remainder at the k-th term and make use of the orthogonali ty properties of 
K~(u) and the fact tha t  K~(u) vanishes outside (0, 1), then 

+ hu)du g(~) 

f g(k)(z + ~hu) ~,+13 . . . . . .  t(~r(u)Url 1 .. Zip+ 1 ,.%t = h k - r  E r l ! ' " r p + l !  
rl +...g-rp+ l =h 

<_ ch k-~ <_ cn -(k-r)/(2k+p+l) r = 1, 2. 
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Substituting (3.7) and (3.8) into (3.6), this lemma is proved. 

Let 

(3.9) 
f(z)  = L f ( z  I O>-~dG(O), 

f~()) = L f l(~ I O)cr-2dG(O), 

O(z) = A 9(z 10)~-2dG(O), 

and 

(3.10) 
f(z)  = L f ( z  I O)~r-4dG(O), 

fl(/)) = L fl(~lO)cr-4dG(O)' 

g(z) = L g(z l O)~-4dG(O), 

f~(~) = A f~(&2 I O)°--4da(O) 

where f ( z  I 0), k(/) I 0), f2(& 2 I o) are defined by (1.8) and 9(z I 0) is defined 
by (1.10). From the fact that f ( z  I O) = &(t-P-2)g(z I 0), it is obvious that 
f(z)  = ~q-P-2)~(z) and f(z)  = (~(l-P-2)0(z). Correspondingly we have/)( . ) , / )(-)  
by substituting a-2dG and (7-4dG for dG in the expression of E, (.) respectively. 
Similarly we can define/)1 (') and/)2 (') and etc., then we have the following lemma. 

1 LEMMA 3.4. Suppose that G E ~ ,  5 < A < 1 and e > 0 is an arbitrarily 
small number, ~ = p -  l + e, for d = 2 or 2 -  A we have 

(i) If E,[cr-2]]fll](l+~)(X+A)/(1-A) ] < oo and E,[~r (2~(1+~)+2~(~-p))/(1-~)] < oc 
then 

(ii) I f  E.[o--4]]/~]t (I+~)(I+A)/(1-A)] < oo and E.[o -(2~(1+A)+2A(1-p+l)-2)/(1-A)] 
< cc then 

/ ~d(1-P-2)/2[~(Z)]I-Adz < O0. 

PROOF. Since the conditional distribution of (l -p)~2/~2 and ¢) with give 
0 (/3',32)' is 2 = Xl-p and N(fl, cr2E) respectively, therefore we have 

(3.11) E ( ~  I e) _< co -a for a > - ( l - p )  

by the fact that f~% Ixl ~ - ~  e-~/~-~ax _ c.~, we get 

(3.12) E[ll/~ -/~ll ~ I O] : f rl/~ - 9ll~e~ -~ exp 

-< f II/~ -/~11 ~ - p  exp 

_<ccr < for r > O  
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where 0 < Ao = min( root  E - l ) .  
By HSlder's inequali ty and from (1.8) and (3.9) we have 

(3.13) f (z )  = .IA f ( z  l O)~-2dG(O) = . L  [0"-1 f l  (¢)] O)][c r-1 f2(Cr210)]dG(O) 

< [£f2(~] 0)0.-2dG(0)]1/2 [£f2(~.2 ] O)o.-2d~(O)] 1/2 

<_ ~[L (~)]v2[L(c,~)]l/~. 

(3.14) f ( z )  <__ c[f 1 (~)11/2 If2 (~_2)]1/2. 

Using the above facts we can prove this l emma as follows. 
Let I = f (~d(1-P-2)/2[[?(z)]l-Xdz = f cr(d+2X-2)(l-P-2)/2[f(z)]l-Xdz, r = (d + 

2A - 2)(l - p - 2)/2,  and  by (3.13) we have 

ir < C. / I  ~_r[~(/~)](1-),)/2. [i(~2)](1-A)/2dz 

f[]l(~)](1-~>/2d~ f er[L(e2)](1-x>/2de2 = c / 1 . / 2  ~ C 

where 

±1-- j[L(~)](1-~)/2d~ 

= f ~ []1(~)](1-~)/2d~ = Ii1~112 ~l]<_p[]l(~)](1-A)/2d~ -t- /3n>p 

obviously I n  < oo and by HSlder 's inequali ty we get 

[11;)11_((1+~)(1÷x))/21, [11/~11(1÷~)(1+x)/2 . (f1(~))(1-X)12]d~ 112 = ~ll>p 

_< ]l/)ll-(l+~)d/) ! II/)ll 0+~)(1+)')/(1-:9 • f l  (/3)d/) 
#ll>p ~ll>p 

_ rT(1>1(1+~>/2, [±}~>](1-~>/2. 
- -  k ~ 1 2  J 

It is obviou~ that I}~ < ~ and by (3.12) we have 

I~) = .fAl>p 11¢)11(1+~)(1+~)/(1-x)fl(~)d~ =/71[11/~11 (l+~)(l÷x)/(~-a)_rIllBll>p]] 

_< ~E(o)[E(~10 ) (lib - #11 (1÷~)(1÷)~)/(1--A))] _.~ C~_J(O ) [11311 (I÷~)(1H-A)/(1-X)] 
< cE,[o (((1+'k)+3A-1)/(1-'X)] H-cE.[o'-2ll#ll (1+~)(1+x)/(1-;')] < ~. 

Similarly we have 
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Therefore I12 < [/-(1)](1+A)/2" [1}2)](1-A)/2 < oo. Thus  
- -  D 1 2  J 

I1 = I l l  -]-/12 < oo (3.15) 
and 

/2 = / &~[j~(5"2)]O-x)/2d~ 2 

: ~&=<lO'r[f2(o'2)](1-~'/2d°'2-}-~&2>1 

= I21 + I22. 

&r[j~(&2)](1-a)/2d~2 

91 

Thus  

(3.16) 

the last two inequalities are held since d = 2 or 2 - A, which implies d _< 2, and  
r = ( d +  2 A -  2 ) ( l - p -  2) /2  _< A ( / - p -  2). Therefore 

122 --< [/-(1)](1-+-A)/2[.22 ] . .go.[/~2)j(l_A)/2 < OO. 

I2 =I21q-I22 < 00. 

From (3.15) and (3.16) we know tha t  

f adt~-p-2)/2(O(z))l-~gz <_ cSl. & < oo. I 

The  par t  (i) of this l emma is proved. Similarly we can prove (ii) of this lemma.  

It is easy to see that 

12i < oc 

and by HSlder's inequality we have 

/22 = f [(~_2)--((l+e)(1+A))/2]. [~(1--ke)(l+A)+r(/2(~.2))(1-A)/2]d~_2 
Ja 2>1 

.I~2>l~2(1+e)(1--)O/(1-'x)+2r/(l-'X).]2(~r2)d~21(l-)~)/2 

It is obvious tha t  I~[ ) < oo and by (3.11) we have 

I ~  ) = /~2  [a2(1+~)(1+~)/0-x)+2~/(1-~)] _< E(e)[E(ale) (52(1+~)(1+~)/0-~)+2~/(1-x))] 

_< c/~(0)[~r 2(l+e)(l+;~)/(1-~)+2r/(1-~)] = cE ,  [or 2(l+e)(1+a)/(1-~)+zr/(1-x)-2] 

<_ cE,  [a (2~(1+~)+2~(1-p))/0-~)] < oo 
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THEOIZEM 3.1. Let ~ and 0~ be defined by (2.3), (2.4) with h = 
n -1/(2k+p+l) and ~, = (k - 2 ) / [ 2 k ( 2 k + p +  1)], ¢ c  and Ca are given by (1.16) and 
(1.17). I f  the following conditions are held: 

(i) G e 3ck, 
[(1+~)(1+a) 1 (ii) E,[a-2][/3[[ ~] < oc, E,[a-4[[~l[ ~] < oc with r =L 1-~ j V (2kA), 

[2~(l+X)+2x(1-p) 1 (iii) E , ( a  ~) < ee, with z = ~  1-a j V (4kA - 4) 
1 where 5 < A < 1, ~ = p - 1 + e, e > 0 is an arbitrarily small number and k > 3 is 

a given positive integer, then 

= O(n-((.Xk-1)(k-2))/k(2k+p+l)). 

PROOF. By L e m m a  3.2 and (1.16), (1.17), (2.3) and (2.4) we have 

Rn - R(G)  < c{E ,  ltE(qn(z ) - q(z))l[2/~2] + E,[(Cn - ¢a)2/~4]} 

<_ c A2 E E,(qin - qi)2/~r 2] + E,[(qp+l,n - qp+l)2/cr 4] 
i=1 

e E.[(qin - qi)2/c r2] -}- E.[(qp+l,n - qp+l)2/~ 4] 

= c  + J  

.(1) (z~/,~(2) iz ~ "~(1)(z)/g(~)(z) and where ), = m a x ( r o o t E ) ,  qp+l,n -'~ yO2,nt ]/y~2,nk ], qp+l "= ~ 2  
qi~, qi are defined by (2.5) and (1.16) respectively. 

First  consider I1 = E ,  [(qln -- q1)2/cr2] ~ E(z,0) { or-2 [E(qln - q1)2] }. Sup- 

pose AI~ = {z = ()' ,(r2) ' c Z,[ql(z)]  < l n ' l  B in  = Z -  AIn.  I f z  c At~ then  
- -  2 J ~  3 u Iql~ - qll -< gn  , therefore by Lemmas  3.1 and 3.3 we have 

[ 3  , 2 - ) ,  rg;lx)'n(z)(l) - -  g;11)(z)- A 

<_ cnV(2_),) ga~(1) (z) I-)'{EIg;1)n(z)-g())(z)l)', /~1 +(2n')aElg(l~)n(z)  - go20) (z)l ), } 

_< en_[X(k_l)/(2k+p+l)-2~,] . go 2(1) (z) [-;~(a -(;~(z-;-2))/2 + 1). 

Since ue2"(1)(z) = c f o  ° - 2 g (  z [ O)dG(O) = c~(z) and f ( z )  = 5 l - p - 2 .  ~(z), therefore 

E,[c_21g(1)(z)l_:,~__(~,(,_p_2))/2] = Eilge~- (1) (~) 

= Cl . I  ~(2-;~)(1-P-2)/2(~](z))l-XdZ 

and 
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2 (1)(Z~ -A] E,[0. -  g ~ ,  , = ~?[Igl)(z)l -~] 

_<c2 f ( ~ ( ~ ) ) - ~ .  ](z)dz = c2 f ~-~-~(~(~)) l -~d~.  

By Lemma 3.4 and the conditions (ii) and (iii) of theorem 3.1, we have 

(3.17) E,{ [0 . -~E(qln  - ql)~lIE~Al~l} 
< Cn -[A(k-1)/(2k-['p+l)-2~'] E .  [0 . - 5  [g;12) (Z)]--)~(~ -A(1-p-2) /2  -~- 1)] 

< cn-[)'(k-1)/(2k+P+l) -2v] 

. I /  O-(2--z~)(l--p--2)/i(g(zlll--/~dz -~ / ~l--p--21glzlll--~dZ] 
<_ cn-[,X(k-1)/(2k+p+l)-2u].  

If z C Bin then tq~(z)] > ½n ~, therefore we get (ql~ - q l )  2 _< 2q 2 -[- 2n2~' --< 10q 2, 
hence by HSlder's and Markov's inequalities we have 

(3.18) E , { 0 . - 2 E ( q l ~  - ql)2I[zeBl~]} 
-2  2 < 10E,{0. ql(z)I[iq~(~)l>~./2]} 

-- 10E,{[q~(z)0. -4/6] ~ -(2e-4)/5~ 1~ -- • [0. l[Iqx(z)l>n~'/2]Jf 

_< 10{E.(Iq~(z)l%-~)} ~/6 -2 • { E , ( 0 .  I[iq~(z)l>n~,/2])} (~-2)/5 

<_ lO{~?[llq(z)ll~]y/~- {2~n-~@(llq(~) l l~)}(  ~-2)/~ 

where 5 > 2. By (1.6) and (1.16) we get 

Ilq(z)ll ~ = (~ - CG) '~-~(~ - OG) 

< c £ 1 1 9 -  Call 2 _< ~[ll~ll 2 + II~GII23, 

E ( o . - 2 8 1 z )  - E(/~ I z) 
O c -  E(o-2lz) 

where A, = max(root  E - l ) ,  therefore by Jensen's and C~-inequality, formula (3.12) 
and the conditions of Theorem 3.1, for 6 > 2 we have 

(3.19) ~tlq(z)ll ~ _< c[~ll/~ll ~ + ~:IICGII ~] 

<_ c[(~?ll~ - 911 ~ + Eltgll ~) + EIIE(9 I z)ll ~3 
<_ c[E,(0. ~-~) + E,(0.-211911~)3 < ~ .  

Substi tut ing (3.19) into (3.18) we have 

(3.20) E ,  {0 . -2E(qln  - ql)2I[z~B~] } _< cn -'(~-9~). 

k -2  Let ~ = 2Ak with ½ < A < 1, k > 3, then 5 > 2. Since u - ~e(ek+~+l), then 
from (3.17) and (3.20) we have 

(3 .21)  I1 = E , [ ( q l n  -- q l )2 /0 .  2] = ~ , { 0 . - 2 E ( q l n  - ql)2[[Z~Al~]} 

<_ CIt - ( (kX-1)(k-2)) /k(2k+p+l) .  
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Similar to the proof o f /1 ,  we can obtain 

(3.22) Ii = E,[(qi,~ - qi)2/a 2] <_ CTt -((Ak-1)(k-2))/k(2k+p+l)) , i = 2 , . . .  ,p. 

Secondly we consider the J ,  

J ---- E.[(qp+l,n - qp+l)2/c r4] = E(z,o){~-4[(qp+l,n - qp+l)2]} • 

Similar to the proof  of 11, let Cln = {z = (~',5"2) ' E Z,  Iqp+X,n(Z)l < ~ ~ _ ~n }, and 
3 u Din = Z - Cln. If z C Cl~, then Iqp+i,n - qp+~] <- fin , therefore by Lemmas 3.1 

and 3.3 we have 

E(qp+l,n - qp+l) 2 

_< cn -[2~(k-2)/(2k+p+1)-2~'] " 9~2(2) (z) ]-~(~-(~(I-p-2)) /2 + 1). 

Since (2) g~2 (z) = c f e  cr-4g(z [ O)dG(O) = c~(z) and f ( z )  = 5Z-P-2~(z), therefore 

--4 (2) --A ~--(A(l--p--2))/2] / ~ ( 2 - A ) ( l - p - 2 ) / 2 ( 9 ( z ) ) l - A d z  E . [ ,  Ig~ (z) l • _ c~ 

and 

E,[cr-41g(2) (z)1-2'] <_ c2 J ~.l-P-2(~(z) )l-)~dz" 

By Lemma 3.4 and the conditions (ii) and (iii) of Theorem 3.1, we have 

(3.17') E,{~r-4E(qp+l,n - qp+l) 2" I[zeCl~]} 
< cn-[A(k-2)/(2k+p+l) -2v] 

• E.[~ -4 .  Ig(~)(z)l-~'(~ -:'(~-p-2)/2 + 1)1 
(Cn-[)~(k-2)/(2k+p+l) -2u] 

. [ /  #(2-) ')( l-P-2)/2(9(z))l-Adz + / ~rl-P-2(9(z))l-Adz] 

< cn-[)'(k-2)/(2k+P+l)-2~']. 

If z C Din,  then (qp+l,~ - qp+l) 2 -< 10qp2+l(z), and by (1.7) and (1.17) we have 

2 E ( -  - 2 1 z )  2 E ( ~ 2 1 z  ) 
[qPq-I(Z)[ = l - - p  E ( o ' - 4  I z)  - -  [ - ~  

then by Jensen's  inequMity and the condition (iii) of Theorem 3.1, for 5 > 2, we 
obtain 

6 

y.l%+~(z)l ~-- ~ / ~ - - E ( ~  I z)/ < c~(~ 2~) = ~E.(~ ~-~)  < ~ .  (3.19') 
L e - p  J 
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Similar to the proof  of the first par t  of this theorem and by (3.19'), for 5 > 2 we 
have 

(3.20') E,{cr -4"  E(qp+l,n - qp+l)2I[zED~]} 

_< 10E, {~-~q~+l (~)Ii, %+~ (z)1>~/21 } 
~-~ 1 0 E ,  {[o--8/S q2p+l(z)] . [(7-(45-8)/s[[Iqp+l(z)l>n./2]] } 

_< ~{~(]q,+l(~)l~)} 2/~. {2~-~'~(Iq~+~ (~)]e)}(~-2)/~ 
<_ cn-'(e-2).  

k--2 
2k(2k+p+l) Let S =  2Ak with ½ < A <  1, k ~ 3 ,  t h e n S > 2 .  Since 

~(k-2) 
2 k + p + l  

(3.23) 

such that  

2 ,  = , (~  - 2) = , (2Ak - 2), then from (3.17') and (3.20') we have 

J E,[(qp+l,n qp+l)2/(~ 4] E,[o'-4E(qp+l,n 2 . . . .  qp+l) I[zeC~.]] 

+ E,{o.-4E(qp+l,n 2 -- qp+l) I[zeDl~]} 
en-(()'k-1)(k-2))/k(2k+p+l). 

From (3.21), (3.22) and (3.23), we have 

This theorem is proved. 

¢n-(()~k-1)(k-2))/k(2k+p+l). 

COROLLARY 3.1. Let ~ba and ¢~ be defined by (1.16) and (2.3) with h = 
k-1 n -1/(2k+p+l) a n d .  - 2k(2k+p+l)" If  the conditions (i), (ii) and (iii) with 7- = 

[2~O+~l)-~-+~(l-P) ] V ( 2 A k -  2) are held, then the convergence rates of EB estimators 
of the regression coeJfieient /3, is 

R l n  - R I ( G )  = E ,  [11¢~ - ¢ c l 1 ~ / ~ 2 ]  = O(n-(( 'kk-1)(k-1))/k(2k+p+l)).  

PROOF. In the proof  of the first par t  in Theorem 3.1, t a k e ,  = k-1 2k(2k+p+l) 
k-2 2 .  = . ( 5 -  2) = .(2~k - 2), instead o f .  - 2k(2k÷p+l) which satisfies ~(k-1) ' 2 k + p + l  

then from (3.17) and (3.20) we get the conclusion. 

4. An example 

Consider the following model  Ylxl = Xlxp/3pxi + £/xl, where e ~ Nl(0, a2I). 
Suppose that  the prior distr ibution has the form G(O) = G1 (/3 ] 02) • G2(0"2), where 
dO1(/3 I ~2) = c~-~ exp{-~-~/3'/3}d/3 and da~(~ 2) = c(~-~)p+l ,  exp{ - ~ } d .  
with m > 0, p > ~ V ( ~ - I ) ,  r and ~- appeared in Theorem 3.1, then the dis tr ibut ion 
density of 0 = (/3', as)  ' is 

d e ( O )  - -  e x p  - 
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We can verify that the conditions of Theorem 3.1 are satisfied by simple cal- 
culation as follows. 

(i) For any fixed integer k > 0 

<_ c g(k+°+z/2)-le-~Ydy < oc, 

(ii)  

(iii) 

Jo 

~_ C y ( P - r / 2 ) - l e - m y d y  < cx3, 

/o = c ~ - ( 2 p + 4 )  e x p  - 

• [fCl]l /3l l%--Pexp{-~---~7/3'/3}d3]da 2 

/o ~ C y ( p - r / 2 + l ) - l e - m Y d y  < (~.  

S i m i l a r l y  

/0 ~-411911rdG(e) < ~ y(p-~/2+2/-le-~y@ < ~ .  

Therefore the conditions of Theorem 3.1 are satisfied. This example indicates that 
there exists the prior distribution G(O) satifying the conditions of Theorem 3.1. 
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