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Abstract. Empirical Bayes (EB) estimation of the parameter vector § =
(8',%) in a multiple linear regression model Y = X8+ € is considered, where
B is the vector of regression coefficient, € ~ N(0,c?I) and o2 is unknown. In
this paper, we have constructed the EB estimators of 8 by using the kernel
estimation of multivariate density function and its partial derivatives. Under
suitable conditions it is shown that the convergence rates of the EB estimators
are O(n~ M= DE=2)/k(ZE+pH1)) where the natural number k > 3, + < A < 1,
and p is the dimension of vector .
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1. Introduction

Since the empirical Bayes (EB) procedure was first suggested by Robbins
(1955), the EB estimation problems have been studied in a great deal of literature.
Suppose there is a pair (X, #) of random variables, where r.v. X is observable and
parameter (vector) ¢ is unobservable. The conditional distribution of X given #
is specified by density fg, and # has an unknown and unspecified distribution
G on parameter space ©. Based on an observation on X (which could be a
sufficient statistics for @), the problem is to decide about 6 under nonnegative
loss function. If the prior distribution G were known, we could use the Bayes
estimator f which achieves the minimum Bayes risk R(G) relative to G. But since
G is not known, and therefore the optimal estimator fc is not directly available.
In the EB decision problem, we assume that the above problem has occurred
independently in the past, say n times. Hence there are n 4+ 1 independent pairs
(X1,01),...,(Xn,0,) and (X, 6). Our purpose is to use the information contained
in the past observation (X3,...,X,) and the present observation X to obtain the

estimator én = én (X1, Xa, ..., Xpn; X) for the present parameter 6. This estimator
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is called EB estimator. So that for large n, this estimator is “nearly” as good
as the unavailable optimal estimator fc in the following sense: the overall risk,
say R,, of 0, approximates the minimum Bayes risk R(G) achieved by 0. 1If
limy, 00 Ry = R(G), then the estimator is called asymptotically optimal (a.0.). If
for some § > 0, R,,—R(G) = O(n~?%), we will say that the EB estimator is a.0. with
convergence rate O(n~?). These are two large sample properties of EB estimators.
From the above statement we know that the EB approach to statistical decision
problems is applicable when the same decision problem presents itself repeatedly
and independently with a fixed but unknown prior distribution of the parameters.

The EB estimation problems for exponential families have been discussed.
Singh (1976, 1979) considered the EB estimation problem for noncontinuous and
continuous Lebesgue exponential families respectively. Chen (1983) studied the
asymptotic optimality (a.o.) of the EB estimators for one-dimensional discrete
exponential family. Singh and Wei (1992) considered the EB problem for scale
exponential family. About the multi-parameter exponential families, Tao (1986)
and Zhang (1985) discussed the EB estimation problems for parameters in a normal
distribution family. Wei (1985, 1987) considered the EB estimation problems for
continuous type multi-parameter exponential family. Recently, Yang and Wei
(1993, 1994) studied the EB estimation problems for multi-parameter discrete
exponential family. Singh (1985) and Wei (1990) considered the EB estimation
and test problem in a multiple linear regression model for the regression coefficient
under known error-variance. In this paper we will consider the EB estimation
problem of regression coeflicient and the unknown error-variance for the following
multiple linear regression model

(1'1) Yix1 :Xlxp/BpX1+€lX1

where € ~ Ni(0,0%]) with unknown o2 and [ > p + 2, denote 8 = (8',02)' € O,
(8, Bg) is the parametric space. Let the loss function be as follows

(1.2) L(8,d) = |ldi ~ BI*/o* + (dp41 — 0*)*0*

where d = (d},d,+1)’ € D, (D, Bp) is the decision space and ||t]|2 = >°F_, ¢2 for a
vector ¢ = (t1,...,t,)".

In this paper we will consider the EB estimation problem for § = (8,02) in
the model (1.1) with unknown ¢2.

Suppose that the prior distribution GG of 8 belongs to the following family

(1.3) Fr = {G(o) : /@ o~ 0G0 < oo}

where k > 3 is an integer.
It is well known that the Least Square Estimators of 3 and o2 are

~

(14) /Bz (BhBZ)"')BP)/ :ZX’K
(1.5) 5% =Y — B|I*/(1 - p)
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where ¥ = (X'X)~L. Since (3,62) is sufficient for (8,02), we may substitute
Z = (#,62) for the original sample Y, where Z € Z,(Z,Bz) can be scen a
sample space.

Let v(Y) = (v, v%, ..., ¥%) be the Bayes estimator of 8 and ¢g(Y’) be the
Bayes estimator of ¢ under the unknown prior distribution G. By the Corollary
1.1 in Chapter 4 of Lehmann (1983), we have

(L6) Yo = (B, V%, ..., 08) = B(o™?8| 2)/B(c2 | Z),
(L.7) b = B(o™2| 2)/E(e™" | 2).

From (1.4), (1.5) we know that the conditional distributions of 3 and 62 with
given 3 and o2 are

B1o~N@Bo%), P g 5

Since 8,52 are independent when 6 = (8',0%) is given, the conditional density

function of Z given 6 is
(1.8) f(z18) = f1(B]6)- £ | 6)
22
=co 6P 2 exp {———(Z —p)o }exp { ! (ﬂA — ﬁ)’E_l(ﬁ — ﬁ)}

202 202

where [ > p + 2, ¢ = [(I — p)/2]¢=P)/2J[(27)P/?|S|/2T((I — p)/2)]. The marginal
density of Z = (#,562)" is '

(1.9) 1) = [ 1tz 16)dG16)
el )
exp{ s (- Y57 (8- 9} ac(o)

Let g(z | 0) = f(2 | 6)/6" P72, then

(110) 9(x10) = co~toxp {50 N [ L0 - 055 - 0},

(111) g(z) = [ oz 0)dG(0)
= c/a_l exp {———(l ;:2)&2 }
- exp {—%(B - B8)s B - ﬁ)} dG(6).

In the context of this paper c,ci,co,... always stand for positive constants.
They may denote different values even within the same expression.
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LEMMA 1.1. Let G € Fy, Fy is defined by (1.3), then g(z) has continuous
r-th order mized partial derivatives

g(r)(z) — 8T9(z)

BB - - 8PP B(52) et

p+1
<ogn, i=1...,p+1, r=)Ym, 0§r§k>

i=1

which satisfies
(1.12) 9G) = [ 910460 end 1g0) <a
where o 18 a constant independent of G and Z.
Proor. This lemma is a direct extension of Lemma 2 of Tao (1986).

From Lemma 1.1 and formula (1.11), we have

Og —1/ -2/
— =-X o — z | 8)dG
95 (B—PB)g9(z|0)
=—g(2)S ' E(c*(B - B) | Z)
therefore
(1.13) E(c2(B~P) | 2)=—-g (2
Analogously we have
_ 2 dg
2 [ —
(1.14) E(c™"|2)= l_pg ()82’
4 92
—4 _ -1
(1.15) E(c™™|2) = 0 _p)2g (2) CEIE
Let
w_09 . _ . oo _ 99 @ _ 9
gﬁl aﬁl’ 1= 1725'-'7]97 9&2 - 66_27 95-2 - 8(5'2)2
and
dg ag ag(l) ag(l)

!

Py qiy.--54p), qi = =
35 ( 1 p) a5,
From (1.13) to (1.15) and (1.6), (1.7) we get the Bayes estimators of 8 and o2 as
follows respectively

q(z) =

(1.16) ve = B3| 2)/B( | 2) = - L Pwya),

(1.17) bc = Blo™? | 2)/Blo™* | Z) = ——Lg%3) 92
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Let § = (4, 6g)" be the Bayes estimator of 6, then the minimum Bayes risk
with respect to (w.r.t.) G is

(1.18) R(G) (9 G) = E(ze)[llwc BI* /%) + Ez6)[(¢c —0?)? /o]
Ry (G) + Ry(G)

where E 7 ¢y denotes the expectation w.r.t. the joint distribution of random vectors
Z and 6.

We know that R(G) = infg- R(6*,G), where the inf is taken over the set
of all estimators §* for which R(#*,G) is finite. The estimator which achieves
the minimum Bayes risk (i.e., Bayes envelope) R(G) is the Bayes estimator, also
called optimal estimator (o.e.) § = (¢l, é¢) given by (1.6) and (1.7). Thus
R(0,@) = R(G). Notice that R(G) can be exactly achieved only if the prior
distribution G is known and @ is estimated by o.e. 8. Unfortunately G is completely
unknown and hence § is unavailable to us. This leads us to use EB approach to
exhibit estimators whose risks are close to R(G) achieved by 6.

In Section 2 of this paper we will construct the EB estimators of § = (3', 0?)’
and in Section 3 we will give several lemmas and get the convergence rates. Finally
we will give an example in Section 4.

2. Proposed EB estimators of § = (3, 0%)’

In the EB framework, we make the following assumptions: Let {Y{1y, 81, o1,

o AY ) Benys 02} be independent random pairs from the past experiments and
{Yint1); Bint1)s o2} = {Y,B,0} be the present sample with Yi;) = XBu) +
€@, ¢ = 1,...,n+ 1. The Vectors Y(,) ﬂ(%),e(l), i =1,...,n behave like Y, 3, ¢
described above (ﬁ(l),al "and (#,0 )/ are i.i.d. and have the
common unknown prior dlstrlbutlo (3’ Y(l), Y(Q), .y Y(n) are called the historical

samples, Y is the present sample. Let Z; = (ﬁ( ) 62)',i=1,...,n+ 1, where
ﬁ(l) = XX’ Y(Z), 62 = HY Xﬁ(z)” /(l-— ), (X'X)_l. Then Z,...,Z

Zp+1 = Z are iid., and have the same marginal density (1.9). It is easy to
know that Zi,... Zn+1 are seperately sufficient statistics for 0; = (ﬁ(z), 2y
i=1,2,...,n+1. Therefore we may substitute Z; for Y;), i = 1,2,...,n+1, and
21,29, .. Z can be said the historical samples, Z is called the present sample.

In order to get the EB estimator of 6, we use a class of kernel function defined
as follows to make the kernel estimation of multiple density and its derivatives.

Let P;(z;), z; € RY, i =0,1,...,k—1 be a class of Borel measurable functions,
satisfying the following conditions:

i) when z; ¢ (0,1), P(z;)=0,i=0,1,...,k—1,
ii) P;(z;) is bounded in (0, 1),
iii) foreach 0 <i< k-1,

2]

1
lo!

1 lp=1

lOP dy =
(v)dy = {o lo£i lo=0,... k—1
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where k > 3 is an integer. Obviously K, (u) = [[*] Py, (u;) satisfies

@21) — L _{1 il =ri=1,...,p+1

i
1 K""(u)ull o Upig

Ll lpia! Jren 0 otherwise

where u = (u1,...,ups1) € RPYL, 7 = Zf+llrz, r >0,0<r<k-1and
0<l;<k—1,(i=1,2,...,p+1),0< Zle < k—1. Since g(2) = f(2)/6'P~2,
we estimate

9g(2)
5ﬂ;1 ---5,3;p(9(5'2)rp+1’

P+l
(Ogn, i=1,2,...,p+1, TZZH’, r§k:~1>
i=1

9" (z) =

by

(22) gv(wr) = g(r)(Zla e Zna Z hr+p+1 Z

where h >0 and h — 0 as n — o0o. Let

PR P
(2.4) bn = [ (1) / (2) ]n”
where
if |a|] < L
25 n — nyce ey ’n,7 in — (1) (12) w z{a : >
25) @n=(n apn)s @i =195 9oz nlne, o=, la| > L

and g(l) and ggr) defined by (2.2), is the kernel estimator of gél_) (i=1,...,p)

52,0
and g( o (r = 1,2), respectively.
We define ,, = (¢, #n)’ as the EB estimator of § = (3',0?)". Let E, and E be
the expectation w.r.t. the joint distribution of (Z1, ..., Z,;(Z,0)) and (Z1,...,Z,)
respectively in this paper. Then the “overall” Bayes risk of 6, is

(2.6) Rp = Rn(0n,G) = Ey[||¢n — BI?/0°] + Eu[lpn — 0** /0]
= Ry, + Rap.

By definition, if for some § > 0, R, — R(G) = O(n™?), then the convergence
rates of {#,} are O(n~9%).
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3. The convergence rates of On

In order to get the convergence rates of EB estimators, we need the following
lemmas

LeMMA 3.1. Suppose Y, Y’ are random variables, y, y' are real numbers.
L > 0 is a constant, then for 0 < r <2 we have

o o4,

T ! T
<yl {7+ (2] +2) BIY -y},
PROOF. See Lemma 3 of Zhao (1981). It is similar to the Lemma 4.1 of
Singh (1979).

LEMMA 3.2. Suppose that R(G) < co. Let Ry, Ripn, Ran be defined by (2.6)
and R(G), R1(G), R2(G) be given by (1.18), then we have

(3‘2) Ry, — Rl(G) = E*“"‘/}n - wGHZ/Oz]’
. R2n _RQ(G) :E*[I|¢n _‘¢G||2/U4]7
(3.4) Ry, — R(G) = Eu[|lYn — vcl*/0®] + Eulllén — dc|?/0%).

PRrROOF. We only prove (3.2). The proof of the others is analogous.

Rip = E*[”d’ﬂ - ﬁHQ/UQ]
= Ry(G) + Eu[llvon — vcl/0”] + 2B.[(¥n — v6) (¥a — B)/0”]

where

E.(n — ¥a) (¥a — B)/07]
= E(z,,.. 2,21 (n —¥a) [E(c™*pa | Z) — E(c*8| Z)]}

since g = E(07%f | Z)/E(c™2 | Z) and E(o~%p¢ | Z) = YaE(c72 | Z), we get
E[(Yn —¥a) (Ye — B)/c? = 0. Thus

Rin — Ri(G) = Eu[|l4bn — v * /7).
This lemma is proved.

LEMMA 3.3, Let gy) be defined by (2.2) with h = n~V/@k+p+1) . — 1 2.
Suppose G € Fj, and 0 < A < 2, then

(3.5) E|g7(:) o g(r)|>\ <ec- n—)\(k—r)/(2k+p+1)(OA.—)\(l—p—Q)/2 + 1).
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Proor. Since

(36) Blg) — g < 2[(Var gD + [B(gf) — ¢
2 + 13)].
First notice that Z1,...,Z, are i.i.d. and f(z) = 0 when & = 0, then we have
Z1 — Z
- (r) —
Il Val"gr — h2(7~+p+1 a-l P I(&%>O)
< __1_ flz 2(1 p-2) 4
= nhz(r+p+1) z

1
= WplT) (
Let (21 — 2)/h = u (obviously 67 = 6%+ upy1h). Since 0 <u; <1,i=1,...,p+1,
u = (u1,...,upy1) and h > 0, we have

1 jal —_ —_—
L < W/Kz(u)g(2+hu)(g2+up+lh) (I=p-2)/2 4y,

5~ (=p=2)
< nh27“+p+l /K2 )9(z + hu)du.

Since G € Fy, by Lemma 1.1 we know that |g(z)| < o. Take h = n~1/Gk+ptl),
then we have

(3.7) I, < e~ 2(k=r)/(@ktp+1) 52,

Secondly since

Kr <Z1—Z

1 h
Egg) = hr+ptl Gl—p—2 I(&2>0)

1 21— 2

Let (21 — 2z)/h = u, then Eg(r) = [ K (u)g(z + hu)du. Since G € Fy, g(u) has
the k-th order mixed continuous partial derlvatlves and |g*¥)(2)] < o. Instead of
g(z + hu), we use its k-th order Taylor expansion about z with Lagrange-form of

the remainder at the k-th term and make use of the orthogonality properties of
K,(u) and the fact that K, (u) vanishes outside (0,1), then

38) L=|E@")-¢"|=

/K g(z + hu)du — g

(k)

ryttrppi=k Tp+1
< chFT < ep (R /@REpED =1 9
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Substituting (3.7) and (3.8) into {3.6), this lemma is proved.

Let
f) = [ f10007%60), 3 - / o= | 0)0~2dG(0),
1) N A e
() = / F1B10)072d00),  Fa6?) = [ (6% 8)2dG(6)
(S] [S)
and
F2) = [ £(z10007%G6),  3() = [ 9= | 0)0~*dG(B),
LA J

— ~

A = /@ £1(B10)074dG0),  f(6?) = /@ £2(6% | 0)0~4dG(6)

where f(z | 0), f1(8 | ), f2(6% | 0) are defined by (1.8) and g(z | ) is defined
by (1.10). From the fact that f(z | 8) = 6(0"P=2g(z | 6), it is obvious that
f(z) = 6¢=P=2§(2) and f(2) = 6¢—P=2g(2). Correspondingly we have E(-), E(-)
by substituting 0 ~2dG and ¢~*dG for dG in the expression of E, () respectively.
Similarly we can define ,(-) and F(-) and etc., then we have the following lemma.

LeMMA 3.4. Suppose that G € Fy, % < A< 1 ande >0 is an arbitrarily

small number, E =p—1+¢, ford=2 or 2 — X we have
G) If E*[0—2”5”(1+£)(1+,\)/(1—A)] < oo and E*[0.(25(1+)\)+2>\(l~p))/(1—)\)] < 00
then

/&d(l—p—Z)/2[§(z)]l—)\dz< 00,

(ii) If Eifo~4|BI|+O0+N/0=N] < oo and E*[0(25(1+/\)+2z\(l—p+1)—2)/(1—>\)]
< o0 then
[ st D <

PROOF. Since the conditional distribution of (I — p)62/62 and 3 with give
0 =(8',0%) is xj_, and N (B, 0°X) respectively, therefore we have

(3.11) E(6%|6)<co* for a>—(I—p)
—z? /252

by the fact that [ dz < co”, we get

|w}Tﬁe
312) E3 -8 10)= [ 168 eo™ exp {~05(5 - 62715~ 9) | ap

< [16- oo exw {~ 3516 - 812 } a5

<cog” for r>0
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where 0 < A\g = min(root X71).
By Holder’s inequality and from (1.8) and (3.9) we have

(3.13) / f(z] 0)0~2dG(6) = / o™ F2(3 1 0)]l~ fa(6” | 0))G(0)

A 1/2 1/2
<|[ #1000 | [ 56 190-2ac0)
e
< dfuB) 212872
Similarly we have
(3.14) F(2) < @2 o8],
Using the above facts we can prove this lemma as follows.

Let [ = f&d(l—p—2)/2[g(z)]1—>\dz — f&(d+2>‘_2)(l"1’"2)/2[f(z)]l‘)‘dz, r= (d+
2X — 2)(I — p—2)/2, and by (3.13) we have

r<e [[aR@IONE FEH)0 s
‘C/[fl (1 )‘)/zd,@ /Ar f2 )](1 2)/2 452 —cly- I

where

L= / A (B)]V243

/ ABNON2dj ¢ / RN = Iy + Iy
181<p 8l|>p

obviously 11 < oo and by Hdélder’s inequality we get

L1y = /nan [1B]-(AHOWHM2) [ 3 HOAN/2 . (Fy () N1243
>p

(14+X)/2 (1-2)/2
< [ / ) uﬂn—(“@dﬂ] [ / O |BAFOCEN/A=N L F (8)dB
I18il>p NBl1>p

_ [I{é)](1+)‘)/2 . [Il(g)](l_A)m-
It is obvious that I D) < 0 and by (3.12) we have

19 = /u , IBICHOEHN/ AN F (B)af = By[|| 4| +OON/ AN ]
>p

< cE) [E(me)(“ﬁ — B||AFOA+N/A=2)] 4 CE(e)[||ﬁ||(1+5)(1+’\)/(1_’\)]
< B, [g€Q+HNTI-1/A=N] | ¢, [0~2[ 8| GO/ AN < oo,
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Therefore I1 < [Ig)](H’\)/2 . [Ig)](l”’\)/2 < oo. Thus

(315) I =1 + I < 0
and

I2:/6r[f2(5'2)](1—>\)/2d6'2

=/ &r[f2(6_2)](1—)\)/2d6_2 +/ a_r{f2(6_2)](1—>\)/2d6_2
62<1 62>1
= Ip1 + Ipa.

It is easy to see that
121 < 0

and by Hélder’s inequality we have

Iy = /2 [(62)~(Fa0+2)/2] . [5A+O0+N+r( £, (52))(1-2)/2] 52
62>1

S [/ (62)_(1+€)d6'2
2>1

' [/ F20HOAHN/A-X42r/(1-X) . F, (5242
62>1

2 —
= 1150,

] (1+2)/2

(1-X)/2

It is obvious that IQ%) < oo and by (3.11) we have

12 = Fy[a2 AN N2/ V] < Fp (B ) (320N A-N)+2r/ (-]
< CE(g) [0_2(1+e)(1+>\)/(1—/\)+2r/(1—)\)] — ¢cE, [02(1+e)(1+)\)/(1—)\)+2r/(1——}\)—2]

< cE,[oe0+N+A=PD/(1-N] & o

the last two inequalities are held since d = 2 or 2 — A, which implies d < 2, and
r=(d+2A—-2)(l-p—2)/2 <Al — p—2). Therefore

Inp < [If))0FV/2 . [ID)A-D/2 < o0,
Thus
(3.16) Iy = Ip + Ipg < 00.
From (3.15) and (3.16) we know that

I= / UP=D/2(G )Mz < ey - I < 0.

The part (i) of this lemma is proved. Similarly we can prove (ii) of this lemma.
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THEOREM 3.1. Let ¢, and ¢, be defined by (2.3), (2.4) with h =
n~ /@Rt gnd v = (k—2)/[2k(2k +p+1)], Yg and g are given by (1.16) and
(1.17). If the following conditions are held:

(i) G e Fp,

(i) Bx[o=2BII"] < o0, Exlo =B8] < oo with r = [SH1EE] v (2k),

(iii) Bi(07) < oo, with 7 = [ELEAIRMZP) 4\ _ 4)
where % <A<, E=p—1+¢, €>0 is an arbitrarily small number and k > 3 is
a given positive integer, then

Bn — R(G) = E, {M] B, {(W;—f@ﬂ

= O(n~(OF=D)(b=2)/k(2k+p+1)y,

PRrROOF. By Lemma 3.2 and (1.16), (1.17), (2.3) and (2.4) we have
R, — R(G) < c{E.||S(gn(2) — 4(2)*/0*] + Bu[(6n — 6c)*/0*]}
<c {5\2 Z E*(Qm - %’)2/02] + E*[(Qp+1,n - Qp+1)2/04]}

i=1

<c {Z E[(gin — @:)?/0°] + Exl(gpr1.n — qp+1)2/04]}

=1
p

=c (Z I + J)
i=1

where X = max(r00t ), Gpr1,n = 953,,(2)/952,(2), @1 = 957 (2)/953 (2) and
Gin, ¢; are defined by (2.5) and (1.16) respectlvely

First consider I = B, [(qin — q1)?/0%] = E(.0) {072 [E(qin — ¢1)*] } . Sup-
pose A, = {Z = (B' A2)/ € Z, |q1( )| < 271”} By, =2Z—-A;,. Ifze Ay, then
lgin — 1] < 2 sn”, therefore by Lemmas 3.1 and 3.3 we have

A
(1) (1)
3 )\ 95" (2) 9% (z)
o2.m Jo2 (3/2)nv

v(2— 1
<@V |gQ () MBI (2) - 95 () + @) Blgli(2) - g5 (2)1*)
< e~ PE=D/@htprD)—20] | ) () =X (5 (A-p=2)/2 4 1),

Since g( 2) =c [g02%g(z | 0)dG(9) = cg(z) and f(z) = 672 . §(2), therefore
E.[o 2|g(1)(z)| “Ag=(A(-p— 2))/2] “g(l)(z)l Ag—(A- p-2))/2]

:Cl/ @2-2)(l—-p— 2)/2( (Z))l )xdz

and
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Bulo2log ()] = Bllgg? ()1
<o [N F@de = o [ 672G e
By Lemma 3.4 and the conditions (ii) and (iii) of theorem 3.1, we have

(317) E*{[UMQE(an - q1)21I[z€A1n]}

< en~PE=D/@r+pr -2 B [0_2|g§712) (Z)I—J\(&—)\(Z—ZJ—Z)/? +1)]

< en~PME=1)/(2k+p+1)—20]

| oo g [ o) e

< en~AE=1)/@k+p+1)—2v]

If 2 € By, then |g1(2)| > 1n”, therefore we get (g1, — q1)? < 2¢f + 2n*” < 104,
hence by Hoélder’s and Markov’s inequalities we have

(3.18)  E.{07?E(qin — 01)*IzeB,.1}
< 10E. {02 (2) gy (2) [ 5nv 21}
=10E.{[g} ()0~ **] - [0 =2 Iy oy p21 |}
< 10{E.(lg ()P0 ™) }? A Eulo ™ Igu ()52} 7277
< 10{E[lq(2)|I°]}*/* - {2°n =" E([lq(2)]|*)}*~2)/®
where 6 > 2. By (1.6) and (1.16) we get

2
@I = (2 - veys23 - vo)

< 2|18 —vel? < clllBl® + el
E(c?8l2) _ =
B2 E(B]2)

where )\, = max(root ¥71), therefore by Jensen’s and C,-inequality, formula (3.12)
and the conditions of Theorem 3.1, for 6 > 2 we have

(3.19) Ellg(2)||° < <[BIBII° + Elle|’)

(BB - BI° + EIBI°) + EIE(B | 2)||°)

[E(0°72) + E(072||B]|°)] < o0

Substituting (3.19) into (3.18) we have

(3.20) E {0 *E(qin — q1)*Izep,, )} < en 72
Let6:2/\kwith%<)\<1,k23,then6>2. Since v =

from (3.17) and (3.20) we have

(3.21) I = B.[(q1n — q1)%/0°] = E{0?E(gin — 01)*Ijea,,1}

+ E*{U"2E(Q1n - Q1)2I[z631n]}
—((kA=1)(k—2)}/k(2k+p+1)

Yo =
<c
<c

then

—2k(2k—|—p+1—) )

<en
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Similar to the proof of Iy, we can obtain
(3.22) I = E.[(qin — ¢:)%/0?] < en~ (W= DG=2)/k@htpt1)) - =9 | p.
Secondly we consider the J,
J = E(gp+1,n — @p+1)°/0*] = Ez.0){0 " {(gps1,n — 4p+1)°1}-

Similar to the proof of Iy, let Cin, = {z = (§,62) € Z,|gps1,n(2)] < in¥}, and
Dy, = 2Z — Ciy. If 2 € Chp, then |gpr1,n — @py1] < %n”, therefore by Lemmas 3.1
and 3.3 we have

E(gp+1,n — ‘Jp+1)2
< en~PME=2)/2k4p+1)-20] 'gt(fz)(Z)|—%(&~(/\(l—p—2))/2 +1).

Since ¢ (z) = ¢ Jo o 4g9(z | 0)dG(6) = cg(2) and f(z) = 6'"P~2g(2), therefore

&2

&2

Eufo41g2 (2)| 7> - 5~ 0-=20/2) < Cl/a_(2—A)(l—p~2)/2(g(z))l—)\dz
and
Bl @@ < e [ 62 gl0) e

By Lemma 3.4 and the conditions (ii) and (iii) of Theorem 3.1, we have

(3.17) B0 *E(gps1,n — tp1)” - Tpecy,)}

< on~A—2)/(htpt1)-24]

Eaot g ()| A e 1)

< cn—ME=2)/(2k+p+1)—2v]

. [/6_(2—>\)(l—p~2)/2(g(z))l—/\dz+/a_l~—p—2(g(z))1—)\dz
If 2 € D1, then (gp+1,n — @p+1)? < 10¢2,1(2), and by (1.7) and (1.17) we have

2 E(c™2 |2 2
a2 = o e =

SE(? | 2)

then by Jensen’s inequality and the condition (iii) of Theorem 3.1, for § > 2, we
obtain

8
(3.19%) Elgp(2)’ = E {%E(cﬁ | z)] < cE(0%) = cE.(6™) < 0.
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Similar to the proof of the first part of this theorem and by (3.19’), for § > 2 we
have

(3.20") E, {0_4 -E(gpy1,n — Qp+1)21[zeD1n]}
< 10E {0~ g 41 () f1gpa 2)i>nv /21
=10E.{[o™%%¢2 1 (2)] - [0~/ L 0 (o) mv 2]}
< {E(lgps1(2)1°) 1?8 - {2Pn ¥ E(|gpia (2) )} 0278

< en V(-2

Let 6 = 2)\k with % <A<, k>3, then § > 2. Sincev = ﬁ@—’fﬂfﬁ_—ﬁ such that

;,c(ﬁ;;i)l —2v =v(6 — 2) = v(2\k — 2), then from (3.17’) and (3.20") we have

(3.23) J = El(@p+1,n — Gp11)°/0%] = E[o T E(qp1,n — Gpt1) T izecn,)]

+ E*{U_4E(Qp+1,n - Qp+1)2I[zED1n]}
< en~(E=1)(k=2))/k(2k-+p+1)

From (3.21), (3.22) and (3.23), we have

P
R,—Rg—c (Z I+ J> < on~(k=1)(k=2))/k(2h+p+1).

=1

This theorem is proved.

COROLLARY 3.1. Let ¥g and v, be defined by (1.16) and (2.3) with h =

n~V/ @kt gnd v = W. If the conditions (1), (ii) and (iii) with 7 =

[%ﬁ’\(l_p)] V (2Ak —2) are held, then the convergence rates of EB estimators
of the regression coefficient 3, is

Rin — Ri(G) = B[ — 6> /o*] = O(n~ (Ar=DE=1)/kGREpH),

k—
2k(2k-|—17+1)
instead of v = %, which satisfies ;,c(f_;i)l - 2v =v(6 - 2) = v(2Xk — 2),
then from (3.17) and (3.20) we get the conclusion.

ProOOF. In the proof of the first part in Theorem 3.1, take v =

4. An example

Consider the following model Y;yx1 = XjxpBpx1 + €1x1, Where € ~ N;(0, o2I).
Suppose that the prior distribution has the form G(6) = G1(8 | 02)-Ga(0?), where
dG1(8 | 02) = co P exp{—5224'B}dB and dG2(c?) = c(o72)Pt! . exp{— T }do>
with m > 0, p > ZV(5—1), r and T appeared in Theorem 3.1, then the distribution
density of § = (8',0?)" is

dG(0) = co~ 2P P+2) oxp {—g} - exp {—#6'5} dBdo?.
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We can verify that the conditions of Theorem 3.1 are satisfied by simple cal-
culation as follows.
(i) For any fixed integer k > 0

~(2k+1) g — —(2k+1+2p+p+2) _m. _L / 2
/@0 G(9) /@U exp{ 02} exp{ 202[3 ﬁ} dBdo

<e / B2 =1 o=my gy o
0

(i)

1

T—(20+p+2) _m. _1lg 2
/@a exp{ 02} exp{ 2U2Bﬂ}dﬁda

c/ y(p—T/Z)*le—mydy < 00,
0

/@ o™ dG(6)

IN

(iid)
~2)g|| | ot g e T L 2
Lo 2erace = [ ooy e (-2} exp {5100} agas
— > —(2pt+4) _m
C/O g eXp{ 0_2}

| [ansrroon |- a5} as| ao®

[ee]
0

Similarly
Lo i01rac@ s [y iy < oo
(C] 0

Therefore the conditions of Theorem 3.1 are satisfied. This example indicates that
there exists the prior distribution G(#) satifying the conditions of Theorem 3.1.
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