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Abstract .  In this paper we develop the technique of a generalized rescaling 
in the smoothed bootstrap, extending Silverman and Young's idea of shrinking. 
Unlike most existing methods of smoothing, with a proper choice of the rescal- 
ing parameter the rescaled smoothed bootstrap method produces estimators 
that have the asymptotic minimum mean (integrated) squared error, asymptot- 
ically improving existing bootstrap methods, both smoothed and unsmoothed. 
In fact, the new method includes existing smoothed bootstrap methods as spe- 
cial cases. This unified approach is investigated in the problems of estimation 
of global and local functionals and kernel density estimation. The emphasis 
of this investigation is on theoretical improvements which in some cases offer 
practical potential. 

Key words and phrases: Bootstrap, functional estimation, kernel density esti- 
mation, mean integrated squared error, mean squared error, quantile, rescaling, 
smoothing. 

1. Introduction 

The bootstrap introduced by Efron (1979) is a computationally intensive tech- 
nique that  has been shown useful in many statistical problems and applications. 
Its smoothed version has potential improvements over the standard bootstrap, as is 
studied by Efron (1979, 1982), Silverman and Young (1987), Hall et al. (1989), De 
Angelis and Young (1992) and others; see Efron and Gong (1983) for an interesting 
introduction. 

Suppose that  X 1 , . . . , X ~  is a random sample from an unknown continuous 
distribution F with density f .  We are interested in estimating a population func- 
tional of interest ~(F)  with bootstrap estimator c~(i/'), where/7 is the empirical 
distribution Fn or its smoothed versions discussed below. Bootstrap resampling 
may often be required to obtain c~(/~) and its statistical properties. 

Let K be a symmetric kernel function such that  it is itself a density with 
unit variance. The assumption of unit variance is merely for simplicity in the 
presentation and could be dropped with some extra notation. The standard kernel 
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estimator fh(x) of f(x) is given 

(1.1) l~K(X--hXi ) 
A(X) = ~ i=1 

where h is the smoothing parameter. The corresponding distribution function 
estimator is Fh(x) = f~ fh(t)dt. 

The method of shrinking in the smoothed bootstrap was given in Silverman 
and Young (1987) as a means of preserving the variance structure, i.e., the re- 
sulting kernel density estimate has the same variance structure as the original 
data. This idea of shrinking was ealier presented in a special case in Silverman 
(1981). In kernel density estimation, the most complete study to date of correcting 
an inflated variance is given by Jones (1991), but earlier references date back to 
Fryer (1976). As in the case of standard smoothing, it has been shown that their 
shrunk smoothing is beneficial in certain situations in the problems of functional 
estimation (Silverman and Young (1987)) and density estimation (Jones (1991)). 

Their methods may not be applicable in some other general situations as is 
explained in their papers. It is because the amount of shrinking is fixed no matter 
what the true underlying distribution might be. That is, the amount of shrinking 
takes good care of preserving the variance structure, but does not take into account 
other factors determined by the true distribution that are also important in the 
estimation procedures, since the behavior of an estimator is affected by other 
factors such as curvature, besides the variance structure. Another useful reference 
is Fisher et al. (1994) in the case of testing for multimodality. 

In this paper we extend Silverman and Young's (1987) method of shrinking 
and propose the following rescaled version of the smoothed bootstrap. This is an 
attempt to unify different versions of the smoothed bootstrap and make optimal 
use of smoothing, at least in asymptotic sense. Let 

(1.2) /h,b(X) = (1 + r)fh{X +r(x- -  )f)}, 

n where )(  = £ ~ i=1  Xi, r = (1 + Iblh2) sgn(b)/2 1, and b is a constant (rescaling 
n 

parameter) that is independent of n and can be less than zero. However, it is 
always true that 1 + r > 0. Moreover, conditional on X I , . . . ,  Xn, fh,b(x) is a well 

defined density with the distribution function Fu,b(X). Let the mean and variance 

of density fh(x) be Ph and ~ .  Then /~h = 2 and the mean and variance of 
/h,b(X) a r e  2 and (1 - bh2)~r~ + Op(h4). Therefore, /h,b(X) i s  a rescaled form of 

y~(X). We will call a(Fh,b) the rescaled smoothed bootstrap estimator for c~(F). 
Note that when b -1 is taken to be the sample variance S 2, (~(]~h,b) is the same 
as Silverman and Young's shrunk smoothed bootstrap estimator (but centered 
at )f),  and fh,b(X) is the variance corrected density estimate studied by Jones 
(1991). When b = 0, a(~'h,b) is the standard smoothed bootstrap estimator c~(Fh). 
The flexibility of b enables us to find the best possible amounts of shrinkage for 
different estimation procedures. The criterion for the selection of b is based on the 
asymptotic mean (integrated) squared error, abbreviated as MSE (MISE), as the 
sample size increases to infinity. The optimal b is often outside of interval [0, S-2], 
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as we will see in later sections. This approach can be alternatively viewed as using 
variants of S 2 with better MSE or MISE properties. We stress that the theoretical 
development of the asymptotic properties of the new estimators, rather than their 
implementations, is our focus in this paper, although some small scale simulation 
results are also reported. 

We are going to show that by allowing the optimal selection of b in (1.2), the 
rescaled estimators asymptotically improve the standard unsmoothed bootstrap 
methods, in contrast to the standard and shrunk smoothed bootstrap estimators. 
In particular, in Section 2 we will investigate the new estimator a(/?h,b) for a 
functional a(F) that depends on global properties of F, such as those considered 
in Silverman and Young (1987). Section 3 explores the problem of estimating 
functionals that depend on local properties of F, such as quantile variances. The 
rescaling in kernel density estimation is investigated in Section 4. The results of 
rescaling are appealing in that for suitable choices of b, asymptotically the MSE or 
MISE is almost always reduced, often significantly in terms of asymptotic order, 
from that of the existing bootstrap methods. 

2. Estimation of global functionals 

Suppose that we are interested in the estimation of a global functional (a 
functional that depends on global properties of the underlying distribution) a (F )  
that can be written as 

/? (2.1) a(F) = a(t) f ( t )dt  
0<3 

for some function a(t). The same setting has been considered by Silverman and 
Young (1987). Recall that the standard smoothed bootstrap estimator ~(Fh) does 
not affect the first-order asymptotics of the MSE of c~(fi). Likewise the rescaling 
technique, when applied to the problem of estimating c~(F)in (2.1), improves the 
second-order accuracy of the MSE. Therefore, the theory developed in this section 
is mainly of theoretical interest and the resultant improvement is relatively small 
in practical terms. However, the technique can improve the first-order accuracy 
in some other problems such as" estimating local functionals and kernel density 
estimation, as we will see in Sections 3 and 4. 

The main result in this section is given in the following theorem which extends 
Silverman and Young's (1987) results. We first define the following quantities: 

= E(X) ,  C1 = E { ( X  - ~ ) a ' ( X ) } ,  C2 = E{a"(X)},  Ca = E [ ( X -  ~ ) { a ( X ) -  
a(F)}a'(X)]  and C4 = E[{a(X) - a(F)}an(X)].  

THEOREM 2.1. For any global functional in the form of (2.1) with the quan- 
tities above well defined, the mean squared error of 

(2.2) a(/?h,b) = a(t)fh,b(t)dt 
o o  

can be reduced below that of a(F~) by choosing suitable h > 0 and b such that 

C4 (2.3) bsgn(C3) > 
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provided that a (4) (x)  is continuous and C3 7 ~ O. In fact, 

1 h 2 
var{a(X)} + bCa) + O ( h 4 ) .  (2.4) MSE{c~(/>S,D)} = ~ -~ - (C4-  

PROOF. From (1.1), (1.2) and (2.2) we have 

T~ 

O~( Fh,b ) = -~ 
i=1 

where 

F z (X i )  - 1 + r a( t )K[{ t  + r(t  - 2 )  - X i } /h]d t  
h oo 

h ~ 
= a ( x d  - r(X  -  )a'(Xd + T a " ( X d  + Op(cn), 

and en = h 4 q- h2/n  1/2. Note that in the last equation we replaced J( by #, 
resulting in an error of order Op(h2/n 1/2) that is absorbed into Op(en). The last 
equation shows that except for the negligible errors the z (X i )  behave like mutually 
independent random variables. Hence, 

and 

h 2 
E{o~(JFh,b) } = o~(F) -- rC1 q- ~ C 2  q- O(cn) 

n var{oz(Fh,b)  } = v a r { a ( X ) }  - 2rC3 q- h2C4 q- O(cn), 

using the fact that r = bh2/2 + O(h4). We have thus obtained (2.4). Since 
MSE{a(Fn)} = 1 var{a(X)}, it is seen that the mean squared error of a(Fh,b) 
will, at least for small h, be smaller than that of c~(F~) as long as 

C4 - bCa < O. 

The inequality above can be warranted by selecting any b satisfying (2.3), as was 
to be shown. [] 

In practice, Ca and C4 are usually unknown but may be estimated by the cor- 
responding sample means or by a kernel method with bandwidth 9 (e.g., g = h). 
Here only first-order accuracy of Ca and C4 is required since they only appear 
in the second-order term, so that such estimation results in a higher-order error 
that is absorbed in O(e~). Noticing the fact that b = 0 and b = S -2 correspond 
to the standard and shrunk smoothed bootstrap in Silverman and Young (1987) 
respectively, the flexibility of choice of b enables the new estimator to have better 
asymptotic properties. The b is usually no longer selected to be S -2, and the ob- 
jective here is to reduce the mean squared error instead of preserving the variance 
structure for the density estimator. Silverman and Young (1987) discussed the 
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optimal choice of h in the case where a(t) in (2.1) depends on n and converges to 
zero as n --+ oc, by looking ahead at the O(h 4) term in the MSE. Further  work is 
needed for the case where a(t) is a fixed function. 

As an illustrative example, now let us consider the problem of est imating the 
moments  

F M(k) = tk f ( t )dt  
o o  

for k = 1, 2, . . . .  Employing the commonly used normal kernel K(.)  = ¢(.) and 
after some algebra, the est imator defined in (2.2) is 

[k/2] 
1 r2)k_2z 

M~,~(k) - ,~(1 + ~)~ Z h~%, ' ~ ( x ~  + 
/=0 i=1 

where dk,l = (2kt)(2/- 1 ) ( 2 / -  3 ) . . - 1 ,  for l _> 1 and d0,0 = 1. In the special case of 

k = 1, ]~h,b(1) = X.  This indicates tha t  neither the smoothing nor the rescaling 
affects the est imation of mean, which is intuitive. It is not the case for other k's, 
however. For example, when k = 2, {n } 

1 I y] .(x~ + ~2)  ~ + h 2 
f/h,b(2) -- (1 + r) 2 n i=1 

_- _1 +h2 1 -  b Zx - 
~t i=1 i=1 

q- Op(h4). 

By Theorem 2.1, at least for small h, asymptotical ly Mh,b(2) has a smaller MSE 
for any fixed b tha t  has the same sign as Ca since C4 = 0 in this case. 

We have conducted a small scale simulation experiment in the simple case 
of est imating the second moment.  Table 1 reports a summary  of the root mean 
squared errors of the s tandard  and several smoothed boots t rap estimates obtained 
from the simulation results with 1,000 runs. The selection of h is somewhat arbi- 
t rary  for different n but in the spirit of the fact that h --+ 0 as n -+ oo. The 'normal' 
distribution is N(I, i), 'uniform' is rescaled (to have unit variance) U(0, i), 'log- 
normal' is rescaled lognor~al(O, i), and 'X 2' is also rescaled. In this particular 
case, b = 1.5 seems to have an overall best performance while b = 2 works better 
for skewed distributions. The shrunk bootstrap (b = i) is seen to be quite good. 
It appears that smoothing in general is worthwhile mostly for the case of small 
sample sizes. 

As is in Silverman and Young (1987), Theorem 2.1 applies to functionals 
in the form of (2.1). It is often desirable to consider a more general functional 
a(F) that does not necessarily have the expression (2.1). Instead, suppose that 
ct(F) admits a first-order yon Mises expansion such that for any /~ satisfying 

sup IF(x) - f (x) l  = op(n-~/2), 

a(P) = a(F) ÷ A@)  - A(F) + Op(n-1), 
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Table I. Root mean squared errors of standard and smoothed bootstrap estimates for the second 
moment; sample sizes n, smoothing parameters h and rescaling parameters b. 

n and h Distribution Standard Smoothed 

b = 0  b= .5  b = l  b=1.5 b = 2  

normal .762 .835 .743 .706 .699 .707 
n = 10 uniform 1.143 1 .195 1.144 1.127 1.126 1.133 

h = .6 X32 1.351 1.391 1.273 1.202 1.160 1.133 
lognormal 3.155 3 .178  2.785 2.504 2 .294 2.132 

normal .527 .583 .522 .496 .494 .504 

n = 20 uniform .800 .839 .805 .793 .792 .801 
h = .5 X~ 1.035 1.068 .992 .943 .912 .893 

lognormal 1.863 1 .871 1.694 1.559 1.454 1.371 

normal .343 .377 .343 .329 .330 .342 

n = 50 uniform .504 .530 .508 .500 .500 .511 

h = .4 X32 .632 .655 .615 .589 .574 .566 
lognormal 1.087 1 .088 1.018 .963 .919 .884 

normal .240 .252 .238 .233 .234 .243 
n = 100 uniform .356 .368 .358 .354 .354 .360 

h = .3 X~ .438 .448 .431 .420 .414 .412 
lognormal .945 .948 .910 .877 .848 .824 

where A(F) has the form (2.1) for a smooth  function a(t). Then the sampling 

properties of a ( F )  will be approximately the same as those of A(_P). Following 

the arguments  of Silverman and Young (1987) and De Angelis and Young (1992) 

the effect of smoothing on est imation of a ( F )  may be approximated by the effect 
on est imation of A(F). The smoothing effects on the latter have been summarized 

in Theorem 2.1. 

We conclude this section by remarking tha t  the discussion here is not giving 

any global prescription for smoothing (true for all f ) .  Rather ,  the result shows 
tha t  for a given f we can find a b for which the smoothed boots t rap  has advantages 
over the unsmoothed  boots t rap.  This comment  applies also to the approaches in 

the next two sections. 

3. Estimation of local functionals 

In Section 2 we have shown tha t  suitable rescaling in (1.2) improves the second- 
order accuracy of the est imator  of a global functional. We now consider the prob- 
lem of est imating a different type  of funct ionals-- local  functionals (functionals 
tha t  depend on local, rather  than  global, properties of the underlying distribu- 
tion). The s tandard  smoothed  boots t rap  est imation of this type  of functionals 
has been considered by Hall et al. (1989), and De Angelis and Young (1992); see 
also Falk and Reiss (1989) who have discussed the benefits of smoothing when 
boots t rapping  the quantile empirical process. Opt imal  plug-in est imators for non- 



OPTIMIZING THE SMOOTHED BOOTSTRAP 71 

parametric local functional estimation have been studied by Goldstein and Messer 
(1992). 

This section will be dedicated to a stronger conclusion that the same kind of 
rescaling can even generally increase the convergence rate of the mean squared 
error of the smoothed bootstrap estimator of a local functional in the sense that 
the mean squared error of a(!~h,b) converges to zero faster than that of c~(Fh) for 
properly chosen b. For simplicity, we will focus on the special case of the variance 
of a sample quantile as in Hall et al. (1989) and De Angelis and Young (1992). 
However, we will present the derivations in a general way so that the idea can be 
easily seen to apply analogously to other local functionals. 

Assume that, for given 0 < p < 1, the p-th population quantile is uniquely 
defined and is 

= 

Let Xn,s denote the s-th largest of the sample values X1 , . . . ,Xn ,  where s = 

(np}+ 1 and (x} is the largest integer strictly less than x. Then ~p = X~,s is the 

p-th sample quantile. We wish to estimate the variance of ~p given by 

/? (3.1) o~(F) = {x -/3(F)}2H{F(x); n,p}dF(x), 
o o  

where 

and 

H{F(x); n,p} = [n!/{(s - 1)!(n - s)!}]F(x)S-l{1 - F(x)} n-* 

~(F) = xH{F(x); n, p}dF(x). 

In obtaining a smoothed bootstrap estimate of a ( F )  we will continue to use 
second-order kernels since they have many nice properties such as nonnegativity 
that a higher-order kernel is lacking; see De Angelis and Young (1992). However, 
we point out that the rescaling technique works exactly in the same manner when 
a higher-order kernel is employed. Assume that f ' ( x )  exists and is uniformly 
continuous and bounded, f (x)  is bounded away from 0 in a neighborhood of ~p 
and E(]X] ~) < ~ for some ¢ > 0. Then Hall et al. (1989) have shown that the 
relative mean squared error of (~(/~h), the standard smoothed bootstrap estimator, 
is of order 0(n-4/5), in contrast to that  of order O(n -1/2) for the case of the 
unsmoothed variance estimation (Hall and Martin (1988)). We are going to show 
that o~(~'h,b), the rescaled version of o~(~'h), has an even smaller relative mean 
squared error of order O(n -8/9) for a suitably chosen b. This resembles that given 
by a fourth-order kernel estimate in the standard smoothed bootstrap approach 
for a reason given at the end of this section. 

THEOREM 3.1. Let Vnp, = -  r ~ v a r ( ~ p ) ,  D 1 =- - p ( 1  _ p)f({p)-4[f({p)f, ,({p) _ 
{f'({v)} 2] and D2 = 4p2(1 _ p)2 f ( {p )- 5 f ~ K ( t )2 dt, and assume that the general 
conditions given above hold. Then 

(3.2) MSE{na(Fh,b)} = O(n -s/9) 
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D1 
V~,p 

(3.4) 

with fixed c > 0, and thus when D1 7 £ 0, 

(3.5) MSS{~(&,b)} 

as n + oo, for any choice of hi. 

h -~- ¢n -1/9 

- , 0 ,  

PROOF. From the proof of Theorem 3.1 of Hall et al. (1989), it is seen that 
for h satisfying h log n --~ 0 and nh3/log n --+ oo as n -~ oo, 

(3.6) E{n~(&)}  = V,~,,~ + h2D1 + o{(nh) -1/2} + O(h 4) 

and 

(3.7) var{n~(Fh)}= D2 { ( ~ / 1 / 2  } - ~  + o{(nh) -1} + 0 + h s . 

By (1.2) and (3.1) we have 

/? ~(Fh,b) = xH[-Fh{X + r(x--  X)};n,p]fh,b(x)dx 
o o  

~(~) + r2 
l + r  ' 

and therefore the following interesting identity is obtained 

(3.8) na(Fh,b)=n x l + r  H[l~h{x+r(x--  f()};n,p] 
o o  

h,b(x)dx 
n~(P~) 
(i + r)~" 

Combining (3.6), (3.7) and (3.8) gives 

(3.9) MSE{n~(& b)} D~ , = ~  -I- (h2D1 - 2rVn,p) 2 

+ (h2D1 - 2rVn,p)[O{(nh) -1/2} + O(h4) ]  q- Pn, 
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= 0~[(h7)1/2  where p,~ o{(nh) -1} + ~ ~- + h s} is the remainder. Recall t h a t  r = 

bh 2/2 + O(h4). Thus, for fixed h, MSE{na(Fh,b)} is minimized by letting 

D1 
b -  

V~ ' n~p 

in which case 

D2 
(3.10) MSE{na(Fh,6)} = ~ + ,n. 

It is readily seen that the fastest rate of convergence of (3.10) is achieved for any 
c > 0 and 

h = C7~ - 1 / 9 ,  

with the rate of convergence being of order O(n-S/9). Since the optimal rate of 
MSE{na(Fh)} is n -4/5 (when D1 # 0), this verifies the theorem. [] 

The quantities D1 and Vn, p in (3.3) can be estimated by consistent estimators 
to obtain an estimator for b in practice. Note that it is possible to find the 
optimal value of c in (3.4) to minimize the coefficient of the first order term of 
MSE{nc~(~'h,b)}, by keeping track of the coefficient of the term with order h s. The 
details are lengthy and complicated. 

It is worth pointing out that even if a higher-order kernel is used in (1.2) the 
rescaling technique is still valid in reducing the first-order bias in a(Fh). Therefore, 
Theorem 3.1 is also valid in this case. The proof is very similar to the second-order 
kernel case and is thus not given here. It is interesting to observe the fact that in 
this particular variance estimation problem replacing )2 in (1.2) by any constant 
will not affect any results in Theorem 3.1 or its proof. 

Note that  the rescaling in (3.8) is to multiply a smoothed estimate by (1 + 
1 2 --2 ~bh ) . This essentially leads to an additive bias correction. One can do so in 
other settings, such as density estimation itself. A careful examination reveals that 
the additive bias corrections are asymptotically equivalent to fourth-order kernels. 
See, for example, Jones and Foster (1993) and references therein for discussion 
on properties of higher-order kernels. A main difference is that the approach 
of rescaling preserves the nonnegativity of the kernel we use, while higher-order 
kernels themselves are not nonnegative. 

4. Kernel density estimation 

Proper rescaling in (1.2) has been shown to be effective in improving bootstrap 
estimators for both global and local functionals. We now proceed to prove the fact 
that such rescaling is also useful, at least in theory, in the problem of kernel density 
estimation. 

There is rich literature concerning kernel density estimation; see for example 
the excellent monograph by Silverman (1986). However, few authors addressed 
the approach of rescaling. Jones (1991) considers the problem of correcting for 
variance inflation and concludes that  such correction can be either beneficial or 



74 SUOJIN WANG 

not, depending on the underlying distribution. A commonly used criterion to 
measure the performance of a density estimator f is the mean integrated squared 
error defined by 

F (4.1) MISE(]) = E {](x) - f(x)}2dx, 
o o  

which we will use in the current problem. 
Our objective here is to minimize MISE(fh,b) by choosing the right b value, say, 

bl. Thus, fh,bl is judged to generally perform better than the standard estimate 

fh (when b = 0) and the variance corrected estimate fh,S-2 (when b = S -2) 
considered by Jones (1991). This criterion is in contrast to that for the variance 
corrected estimate in Jones (1991) where the density estimate is defined to preserve 
the sample variance structure. 

It is well-known that the mean integrated squared error of fh has the expansion 

(4.2) F 1 K2(t)d t ~- { f l , ( x ) }2d  x ~- O(¢n), 

with the assumption that ~ " 2 f~ { f  (x)} dx < c~, where Ca ---- (nh)-X+h 4. Suppose 

further that # = E(X)  exists, limlxl__. ~ f ' ( x ) f ( x )  = 0 and f ~ { ( x - # ) f ' ( x ) } 2 d x  < 
co. We now establish the following theorem. 

THEOREM 4.1. Under the above general conditions, the asymptotic mean in- 
tegrated squared error of fh,b is minimized at 

(4.3) 
b = bl = 3 f ~ { f ' ( x ) } 2 d x  

2 f ~ { ( x -  p) f ' (x)}2dx ' 

with 

1 h 4 
(4.4) MISE(]h,bl) = _--~ A1 + -5-A2 + o(¢n), 

where 

F A1 = K2(t)dt, 
o o  

9 2 
A2 = ~{ f " (x ) }2dx  - 4 $ _ ~ ( x  = ~ d x '  

and Cn = (nh) -1 + h 4. Furthermore, when A2 ~ 0 the optimal h is 

~ A1 ~ 1/5 
h = hi = \A~2n] " 



PROOF. 

(4.5) 

and 

(4.6) 
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By the definition in (1.2), we have 

E{fh,b(X)} = (1 + r ) E [ f { x  + r(x  - X)}] 
h 2 

= f ( x )  + ~ - [ / " ( x ) +  b{f (x)  + (x - # ) / ' ( x ) } ]  + o(h2), 

var{fh,b(X)} = var{fh(x)}  + o(¢n). 

75 

(4.7) MISE{ ]h,b ( X ) } 

-- var{•(x} + -~-[f"(x) + b{f (x)  + (x - #)f ' (x)}]  2 dx 
o o  

+ 

f 1 K2(t)d t 

+ -~- [{f"(x)} 2 - 3b{f ' (x )}  2 + b2{(x - # ) f ' (x )}2 ldx  
o o  

+ 

The last equation above was obtained by using the identities 

(4.8) f f f " ( x ) f ( x ) d x  = - { f ' ( x ) }2dx  
o o  o o  

and 

f 1 { f ( i ) (x))2dx ' (x - p) f ( i ) (x) f ( i+l) (x)dx  = --~ 

for i -- 0, 1. Therefore, equation (4.7) is minimized at 

3 
b =  

2 f ' ~  {(x - # ) f ' ( x ) } 2 d x  

The asymptotic minimum value of MISE(/~h,b) is readily seen to be that in (4.4). 
The optimal choice of h is obvious, completing the proof. [] 

Theorem 4.1 indicates that  the rescaled density estimator in (1.2) for a prop- 
erly chosen b always has a smaller mean integrated squared error than that of the 
standard estimator fh. This is different from the case of the variance corrected 
density estimation where the mean integrated squared error may be decreased or 
increased depending on the underlying distribution. Furthermore, the new method 

Thus, from equations (4.5) and (4.6) and the regularity conditions, it is easily seen 
that 
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asymptotically improves the variance corrected estimator even when the underly- 
ing distribution favors variance correction, since it is in the optimized form. 

Note that  the O (h 4) term in (4.4) is nonnegative. This can be checked by 
using the identities above and the Cauchy-Schwartz inequality. Moreover, for 
the conventional kernel estimator the term f~_~{f (x)} dx in the bias in (4.2) 
indicates the curvature and when f is "more curved" greater bias would show up. 
When the rescaling adjustment in Theorem 4.1 is allowed some of the curvature is 
eliminated. In fact, [f_~{f '(x)}2dx] 2 = [E{f"(X)}] 2 reflects the significance of 

the average curvature and f ~ { ( x -  #)f ' (x)}2dx takes care of the scale. 
To appreciate the result in Theorem 4.1 we now consider the problem of esti- 

mating the following normal mean mixture distribution: 

f (x)  -- p C ( x -  a) + (1 - p ) ¢ ( x  + a). 

For simplicity, let p = 1/2. Then it is easy to obtain that bl in (4.3) is 

3gl(a) 
b l - - -  292(a)' 

and the bias reduction (the second term of A2 in (4.4)) is 

B R  - 99~(a) 
32 g2(a)' 

where gl(a) = 1 + e - a 2 ( 1 - 2 a  2) and g2(a) = 3/2+a2+e-a2(3/2-a2) .  When a = 0, 
f (x)  is the standard Gaussian density. Then 51 = 1 and B R  = -3 / (8v/~) ,  which 
is the same as in the Jones (1991) method. This indicates that the Jones method 
is optimal in this special case. Jones (1991) has demonstrated good effects of the 

'rescaling in this case. The two methods are different when a ~ 0. For example, 
for a = 1 we have S 2 approximately equal to 2, bl = .5589 and B R  -- - .0236, 
which has some improvement over - .0195 obtained by the Jones method. Thus 
it is possible that bl > S -2  in the case of density estimation. Algebraically more 
complicated results for p ¢ 0 have also been obtained with similar conclusions. 
Since the new method is applicable to a general class of densities, including those 
not satisfying equation (14) of Jones (1991), the asymptotic gain could be more 
dramatic than this example shows. However, our criterion used here, the MISE, 
is an overall measure. It does not appear to perfectly measure the performance of 
density estimates if our main interest is the tails of the distribution. 

Practically, a consistent estimator of bl may be needed in the estimation pro- 
cedure. One can first estimate i f (x)  by a kernel method 

i N ( x - X i )  
/ ; (x)  = E K'  , 

i = 1  

where g is a new smoothing parameter. Then the functionals in (4.3) may be 
estimated via numerical intergration. Alternatively, due to the nature of the func- 

! 2 tionals, by (4.8) al ---- f~_~{f (x)} dx may be estimated with 

51 - 1  ~ ^// X -  = 

n 
i = 1  
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and a2 = f_~ { f ' ( x ) ( x - / z ) } 2 d x  = - f_~ f " ( x ) ( x -  #)2f (x)dx  - 2  f ~  f ' ( x ) ( x -  
# ) f ( x )dx  may be es t imated with 

( ~ 2  z - -  

n 
^ H  

- 1  E { f , g  (Xi)(Xi  - 2 )  2 + 2f~(Xi)(Xi  - X)},  
n 

i=1 

where i"(x~ - ~ x -'~ K"(x -x~) ;  J g  \ ] - -  ng3 A.~i=l - -  see Jones and Sheather  (1991). We may use 
h or a somewhat  smaller value for g. 

Now suppose tha t  we want to es t imate  a density with a da ta  set of size n = 
100 which is in fact sampled from a t4 distribution.  Figures 1 and 2 give three 
estimates,  with D1 = 3~1/2g~2 = .90 (using bandwid th  g = .7). The  t rue  bz is 1.12 
and S -2 = .53. The  normal  kernel was used for K .  All the comput ing  was done 
with a short S +  program. Since the dis tr ibut ion is so heavy tailed, if we use h 
smaller t han  .7 it is likely to have bad est imates in the tails. In bo th  figures, bo th  
rescaled est imates improve over the s tandard  method,  and the opt imal  me thod  
appears  to perform the best. This  is especially t rue when the s tandard  me thod  is 
oversmoothed (see Jones (1991) for a similar comparison in the case of a normal  
density).  

For heavy tailed distr ibutions we might even want to purposely  use a larger h 
in the opt imal  rescaled me thod  since this will help smooth  out  unwanted bumps 
in the tails, and the me thod  is otherwise ra ther  robust  to oversmoothing.  It  seems 
to be t rue at least for symmetr ic  distr ibutions such as t distributions.  

Sometimes we may  want to measure the performance of density est imators  at 
each fixed x value. In such a case, we commonly  employ the measure of the mean  
squared error M S E { f ( x ) } .  When  f (x )  + (x - #) f ' (x )  ¢ 0 the bias in (4.5) can be 
reduced to a higher-order error by selecting a sensible b, now dependent  on x, so 
tha t  M S E { f ( x ) }  can also be reduced to a higher-order error. 

Finally we present the following corollary of Theorem 4.1. 

COROLLARY 4.1. Assume that f (x )  is twice differentiable for all x. Then 
under the same conditions as in Theorem 4.1, the quantity A2 in (4.4) is zero if 
and only if  (iff) f (x )  is a normal density with variance b-~ 1. 

PROOF. First  it is seen tha t  A2 = 0 iff 

(4.9) f " (x )  + b l{ f (x)  + ( x -  p ) f ' ( x ) }  -- 0 

for all x. This  is equivalent to 

f " (x )  = -b l{ (X  - -  p) f (x )} ' ,  

i.e., f ' (x )  = - b l ( x - p ) f ( x )  +Co for some Co. But  c0 = 0 by let t ing x ~ oc. Thus,  
equivalently [log{f (x)}]' = - b l  (x - #), or 

f (x) = cl e x p { - b l ( X  - #)2/2}.  

T h a t  is, f (x )  is a normal  density with variance b~ -1. [] 
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Fig. 1. True t4 density (solid line) and est imated densities fh (dotted line), fh ,S-2 
(long-dashed line) and fh,~,l (short-dashed line); h = .7, a = .7. 
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Fig. 2. True t4 density (solid line) and est imated densities fh (dotted line), fh,S-2 
(long-dashed line) and fh,bl (short-dashed line); h = 1.2, (~ = .7. 

Note  t h a t  if we a s s u m e  the  weaker  cond i t ion  t h a t  f (x)  is twice  d i f fe rent iab le  
in the  o p e n  in terva ls  ( x i -1 ,  x i )  for i = 1 , . . . ,  k (k m a y  be  oo), whe re  x0 = - o c  < 
x l  < " '"  < xk = co, t h e n  A2 = 0 iff f (x )  is a dens i ty  p r o d u c e d  by  k func t ions  of  
fo rm fi(x) = di e x p { - b l ( x  - # ) 2 / 2 }  (wi th  di > 0) def ined on s e g m e n t  ( x i -1 ,  x i )  
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for i ---- 1 , . . . ,  k. This  conclusion can be shown following the proof  of Corol lary 4.1. 

5. Conclusions 

In this paper we have taken a unified approach and developed the technique 
of a generalized rescaling that has potential applications in variety of statistical 
problems. In particular, we have shown that the asymptotic performance of the 
smoothed bootstrap estimators for both global and local functionals can be gen- 
erally improved by optimally choosing the rescaling parameter. In the case of 
estimating a local functional, the application of the technique even eliminates the 
first-order of mean squared error of the smoothed bootstrap estimator. This new 
technique is also proved to make asymptotic improvements in the problem of ker- 
nel density estimation. Our limited numerical experience suggests, however, that 
the shrunk smoothed bootstrap is often nearly optimal. 

It is worth mentioning that in this paper we have discussed only the univariate 
case, but it is in principle possible to extend the results developed here to the 
multivariate case. 
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