
Ann. Inst. Statist. Math. 
Vol. 47, No. 1, 31-48 (1995) 

OPTIMAL ORDER FOR TWO SERVERS IN TANDEM* 

GENJI YAMAZAKI AND HIROSHI ITO 

Department of Engineering Management, Tokyo Metropolitan Institute of Technology, 
Hino, Tokyo 191, Japan 

(Received March 17, 1993; revised May 10, 1994) 

A b s t r a c t .  We consider two servers (server i, i -- 1, 2) in tandem for which 
the order of servers can be changed. Server 1 has a general service time dis- 
tribution and server 2 has either its 'shifted' or ' t runcated'  distribution. This 
permits that  the service times at the two servers are overlapping. An unlimited 
queue is allowed in front of the first server. For the systems having zero buffer 
capacity between the servers, we show that  the sojourn time of every customer 
is stochastically minimized under any arrival process if server 2 is first. For the 
systems with infinite buffer capacity and a Poisson arrivals,  we show that  this 
order of servers minimizes mean customer delay when traffic is light. Several 
numerical examples are presented to demonstrate that  this optimal order is 
invariant under any arrival process (the interarrival times are i . i .d.r.v. 's) and 
mild traffic condition. 

Key words and phrases: Tandem queue, optimal order, stochastic ordering, 
light traffic. 

I. Introduction 

An i m p o r t a n t  design p rob lem for queueing sys tems  is to de te rmine  the  op t ima l  
order  for two or more  single-server stat ions.  For given external  arrival process 
and  given service-t ime dis t r ibut ions at  the  stat ions,  the p rob lem is to de te rmine  
the  order  of the  s ta t ions  (to be  used by all cus tomers)  under  sui table  op t imal  
criterion. Usually, the  cri terion is to  minimize the  sojourn  t ime  (or depar tu re  
process) in some sense for sys tems  wi thout  loss of cus tomers  and  to  minimize the  
loss probabi l i ty  for sys tems with  loss of customers .  The  op t imal  order  of two 

servers in t a n d e m  depends  much on how to  select the  criterion. This  will be  
discussed in detail  in Section 3. 

Most  of the  work on the  re la ted problems has concerned sys tems wi thou t  
loss of customers .  F r iedman (1965) considered a sys tem with  a general  arrival 
process and infinite capac i ty  for wai t ing cus tomers  at each s ta t ion  in which all 
servers have determinis t ic  service times. He found t h a t  the  depar tu re  process 
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does not depend on the order of the servers (stations). Suzuki and Kawashima 
(1974) showed that this result holds for the system with blocking, i.e. with finite 
capacity at each station (except the first). Weber (1979) considered a system 
with a general arrival process and infinite capacity at each station in which all 
servers have exponential service times and found the same result as Friedman's 
for the system. Yamazaki (1981) and Chao et al. (1989) showed a similar result 
for Weber's model with two stations and blocking. Recently, Ding and Greenberg 
(1991a) studied Weber's model with blocking and showed that considering the last 
two stations, the departure process is stochastically faster if the slower server is 
last. 

Tembe and Wolff (1974) considered systems with a general arrival process 
and infinite capacity at each station. They showed that  for a system with two 
single-server stations, one with constant service times and the other with variable 
ones, the departure process is stochastically smaller if the deterministic server 
is first. Kawashima (1975) showed that  the optimal order remains valid for the 
systems with zero buffer capacity between the stations. Tembe and Wolff (1974) 
also showed that  for systems with nonoverlapping service time distributions, the 
departure process is stochastically minimized if the servers are ordered from slowest 
to fastest. Dattatreya (1978) showed that  this holds for the systems with any buffer 
capacity between the stations. These results suggest that  the optimal order for 
two single-server stations (servers) in tandem is independent of the buffer capacity 
between the servers. 

The main purpose of this paper is twofold: to give some evidence for this 
independence, and to give a generalization of the results in Tembe and Wolff 
(1974). To do so, we consider systems with two servers, servers 1 and 2, in tandem 
in which the capacity in front of the first server is infinite and the buffer capacity 
between the servers is either zero or infinite. Server 1 has a general service time 
distribution and server 2 has either its 'shifted' or ' truncated' distribution. We 
assume throughout the paper that  arriving customer's service times are selected 
independently. In this settings, note that  the service times of both servers may be 
overlapping. 

In Section 3, we consider the systems with zero buffer capacity and show 
that  for any arrival process, the sojourn time of every customer is stochastically 
minimized when server 2 is first. In Sections 4 and 5, we consider the systems with 
infinite buffer capacity in which the interarrival times of customers are i.i.d.r.v.'s. 
In Section 4, we examine the behavior of the systems with Poisson arrivals when 
traffic is light. It is shown that  the mean sojourn time of a customer is minimized 
when server 2 is first. In Section 5, many results of numerical experiments are 
presented to show that  the optimal order of servers is invariant even under mild 
traffic condition for 'standard' interarrival time distributions such as deterministic, 
Erlang, uniform and hyperexponential. 

2. Model 

Consider two servers, servers 1 and 2, in tandem for which the order of servers 
can be changed. Then we have two possible arrangements (orders) of the servers. 
Server 1 first (serverl --* server 2), which we call system i, and system 2, which is 
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server 2 first (server 2 --+ server 1). Whatever  order we choose, it is the same for 
all customers. For system i (i = 1, 2), each arriving customer receives the service 
at the first server, and then the second before leaving the queue. The service 
discipline is FCFS. An unlimited queue is allowed in front of the first server. On 
the buffer capacity between the servers, we consider two extreme cases, tha t  is, 
zero and infinite. In the former 'blocking' may occur: if the second server is busy 
when a service is completed at the first server, the completed customer remains 
at the server and blocks further service until the second becomes free. 

Let X~ and Yn be the service times of n- th  arrival customer (Cn) at servers 
1 and 2, respectively. We assume tha t  {Xn} and {Yn} are independent renewal 
sequences, and tha t  they  are independent of the arrival process. Throughout  
the paper, the distr ibution function (d.f.) and its tail distr ibution of a r.v. are 
distinguished by adding the parentheses and the mark ( - )  for the same letter: 
X(x) is the d.f. of X and J((x) = 1 - X(x). 

3. Tandem queues with zero buffer capacity 

In this section, we compare systems 1 and 2 in which the buffer capacity be- 
tween the servers is zero. Greenberg and Wolff (1988) showed tha t  the order 'faster 
server first' minimizes mean customer delay under light traffic for two server tan- 
dem queues with infinite buffer capacity and Poisson arrivals if both  distributions 
of X and Y are a kind of hyperexponential  distribution. Ding and Greenberg 
(1991b) showed tha t  this order minimizes the loss probabili ty for two server tan- 
dem queues with Poisson arrivals and zero buffer capacity at both  servers. The 
results suggest tha t  for some two server t andem queues, the order of servers is 
desirable. We begin to examine this order for our model. We assume below tha t  
both  systems 1 and 2 start  empty. 

Let 

D~ = the sum of the waiting (in front of the first server) and 

blocking times of C~ (i.e. the delay t ime of Cn in system i), i = 1, 2, 

W~ = the sojourn t ime of Cn in system i, (= D~ + X~ + Y~), i = 1, 2. 

Then the following expressions for Din were obtained in Sakasegawa and Yamazaki 
(1977). 

D 1 = 0 V (X~  V Yn-x - A,~ + X n - 1  - X n )  

V (X n V Yn-1 - An -b Xn-1 V Yn--2 -- An-1 4- Xn-2 - Xn) V ' "  

V (X,~ VY,~-I -A,~ -FXn_ 1 VY,~-2 -A,~_l  + . . .  

+ x 2  v Y~ - A2 + X1 - X n )  

] = m a x  O, ( X j V Y j _ I - A j ) + X i - X n  ( i = 1 , 2 , . . . , n - 1 )  , 
j=i+l 
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where An is the interarrival time between C~-1 and Cn and a V b = max(a, b). 

THEOREM 3.1. (a) If X ~st Y (stochastic order), then 

D~ + Xn <-c D~ + rn (convex order; see for example, Wolff (19S9)) 
(b) If X <_~h Y (reverse hazard rate order, i.e. X (x ) /Y (x )  is non-increasing 

in x ) , then 
D~ + X~ <_s, D~ + r~. 

Before proving this theorem, we introduce the following lemma. 

LEMMA 3.1. Let the r.v. 's X and Y be mutually independent and let e be any 
non-negative constant. 

(a) I f X  <st Y, t h e n X V ( Y - c )  < c Y V ( X - c ) .  
(b) I f X  <_~h Y, t h e n X V ( Y - c )  <_st Y V ( X - e ) .  

The proof of the lemma is given in Appendix 1. 

PROOF OF THEOREM 3.1. Here we prove only (a) because (b) can be simi- 
larly proved. From (3.1) we have 

(3.2) Dl~-Xn£max X1,E(XjVS'-Aj+I)-t--Xi+ 1 ( i = l , . . . , n - 1 )  , 
j = l  

where the sign ~ denotes the equality of distributions. For a fixed k (1 < k < n - 1 )  
we will look at the right hand side of (3.2) as a function of Xk and Yk, while other 
values of Xj, Yj and Aj are fixed. Let this function be f (Xk,  Yk). Then, one finds 
that for suitable constants Cl, e2 and c3, 

f (Xk,  Yk) = el V (Xk + c2) V (Xk V Yk + c3). 

Let 
g(Xk, Yk) = Cl V (Yk q- C2) V (Yk V Xk + Ca). 

If c2 _< ca, then f (Xk, Yk) = g (Xk, ]Irk). If c2 > c3, then f (Xk, Yk) = cl V (Xk + c2) V 
(Yk + c3) and (a) of Lemma 3.1 implies f (Xk,  Yk) <_~ g(Xa, Yk). Unconditioning 
we find that 

m a x  X1,E(Xj  VYj -Aj+I) -~-Xi+ 1 (i = 1 , . . . , n -  1) 
j = l  

_<~ max X1, ~_,(Xj V Yj - Aj+I) + Xi+l (i = 1,. . . ,  k - 2), 
j = l  

k--1 

~ ( x j  v ~ - Ak) + rk, 
j = l  

i 

E ( X j  V Yj - A j + I )  -[- Xi+l 
j = l  

(i = k, . . . ,  n - 1)] 
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Continuing this interchange for all values k = 1, 2 , . . . ,  n - 1 leads to 

D l + X n < _ c m a x  Y 1 , E ( Y j V X j - A j + I ) + Y i + I  (i = 1 , . . . , n - 2 ) ,  
j=l 

n--1 1 v x j  - A j ÷ I ) +  
j=l 

_<st max Y1, (Yj V Xj  - Aj+I) + !//+1 (i = 1 , . . . ,  n - 1) 

+ 

Remark 3.1. (a) Consider systems 1 and 2 in which the buffer capacity in 
front of the first server is finite. For each system, when an arriving customer finds 
full of the buffer capacity before the first server, the customer arrived, immediately 
leaves the system without being served. Suppose that customers arrive the systems 
according to a Poisson process and the buffer capacity between the servers is 
infinite. If X _<st Y, then 

[the loss probability in system 1] < [that in system 2] 

(see, e.g., Miyazawa (1990)). This supports that the rule 'faster server first' is 
useful on 'loss probability' in the systems 1 and 2. Is the rule useful for the case 
where the buffer capacity between the servers is zero? Ding and Greenberg (1991b) 
gave a positive answer to this question for systems with Poisson arrivals in which 
the buffer capacity in front of the first server is also zero. 

Theorem 3.1 gives a physical interpretation of their result and it suggests that 
the result can be extended to systems with more general arrival process and the 
finite buffer capacity before the first server, at least, on the loss probability as 
follows. 

This theorem implies that for the time interval from an arrival instant until 
the commencement of the customer at the last server (or a departure time from 
the first server), system 1, that is, the order 'faster server first' is desirable at least 
for this time interval. This suggests that for the model having finite capacity in 
front of the first server, the order minimizes the loss probability because it depends 
on the departure times from the first server. 

(b) The rule is no longer useful on the sojourn times in systems without loss 
of customers as shown in part (b) of the following theorem. Combining Greenberg 
and Wolff (1988) and the (b) implies that the optimal order on the sojourn times 
in such systems can not be uniquely determined only by usual partial orderings 
between X and Y such as X Gst Y. 

THEOREM 3.2. (Summary of Tembe and Wolff (1974), Kawashima (1975) and 
Dattatreya (1978)) (a) For our model or the model with infinite buffer capacity, 
suppose that Y = c, a constant, and let X be arbitrary. Then, 

(3.3) W~ >>_~t W ~ ?~" 
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(b) For our model or the model with any buffer capacity, suppose that P ( X  <_ 
Y) = 1. Then, 

(3.4) W~ >~  w~. 

From now on we focus on the sojourn time of a customer in system as the 

optimal criterion. We proceed to generalize Theorem 3.2 to our model. Let {X*} 

be a renewal sequence which is independent of {X~} and let X* d X, where X* is 

a generic r.v. of the sequence. Then we have 

THEOREM 3.3. For any constant c(>_ 0), let Yn be X* + c or X~ V c. Then, 

(3.5) w: >~ w:  for every ~. 

To prove this theorem we need the following lemma whose proof is given in 
Appendix 2. 

LEMMA 3.2. (a) For any constant c1(>_ 0), 

max[X, X* + c - cl] _>,~ max[X*, X* + e - cl, X - Cl]. 

(b) For any constants Cl, c2(>_ O) and c3(>_ c), 

(x* + el) v ( x  + c v x* )  v ( x  v~a - ~2 + ~ v x* )  

~s t  (X* -}-C1) V ( c V X - [ - K * )  V ( X  V C 3 -- C 2 ~- CV X*) .  

PROOF OF THEOREM 3.3. 

(i) Case of Yn -- X~ + c 
From (3.2) we find that  for this ease, 

(3.6) 

W 1 = D I + X ~ + Y n  

~x~ +c 

+ m a x  X1, ( X j V Y j - A j + I ) + X i + I  ( i = l , . . . , n - 1 )  , 
j = l  

W ~ =  D~ + Yn + Xn 

~ X o + c  

f± ] + max X ; ,  (Yj V Xj  - Aj+I) + Xi*+l (i = 1 , . . . ,  ~ - 1) . 

k j=l 
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To prove the theorem, therefore, it is sufficient to  show that  

(3.7) max X1, E ( X j  V Yj - Aj+I) + Xi+l (i = 1,... , n -  1) 
j= l  

_>st m a x  X;, Z ( g  V X j  - A j + I )  + X~;~  (i = 1 , . . .  , ~  - 1) . 
j=l 

For a fixed k(k = 1 , . . .  , n  - 1), we will look at this left hand side as a function of 
Xk and X~,  denoted by f(Xk,X[~), while other values are fixed. Using suitable 
constants  cl,  c2 and c3, f(Xk, X[~) can be written as 

f (Xk ,  X~) = max[c1, Xk n t- c2, Xk V (X~ -}- c) ~- c3]. 

Let g(Xk,  X; )  : max[el, X ;  ~-c2, (X ;  -[-c) V X  k ~-c3]. If c2 _< C3, then f ( X k ,  X[~) = 
9(Xk, X[~). If c2 > c3, then f(Xk, X~)  = max[c1, Xk + c2, X~ + c + c3] and (a) of 
Lemma 3.2 implies that  f(Xk, X[~) >_st g(Xk, X[~). Uncondit ioning  yields 

max X1, { X j V ( X ] + c ) - A j + I } + X ~ + I  ( i =  1 , . . . , n -  1) 

_>~t max X1,E{XjV(X; -~ -c ) -A j+I }+Xi+  1 (i = 1, . . . , /C--  2), 
j=l 

k-1 
E { X j  V ( X ;  -}-c) - Aj+I}-i- X~, 
j=l 

E { X j V ( X 2 + c ) - A j + I } + X i + I  (i = k , . . . , n - -  1) . 
j=l 

Continuing this procedure for all values k = 1 , . . . ,  n - 1 leads to 

,1 max X1, V Yj - Aj+I)  + X i + l  (i = 1 , . . . , n -  1 

_>st max X{, E ( X j  V Yj - Aj+I)  + Xi*+l (i = 1 , . . .  , n  - 2), 
j=l 

n-1 1 E ( X j  V Yj - Aj+I) + Xn 
j=l 

d , ~max X~, ( X j V Y j - A j + I ) + X i +  1 ( i = l , . . . , n - 1 )  . 
j=l 
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This right hand side is identical with that of (3.7). 
(ii) Case of Yn = X~* V c 
For this case we have 

i 

W n  d , , ,-, m a x [ c  V X o + X1, E ( X  j V Xj v c -  Aj+I) 
j = l  

+ Xi+, + cV X a (i = 1, . . .  , n -  1)], 
i 

Wn 2 d max[Xo + c V X; ,  E ( c  V X;  V Xj - Aj+l) 
(3.s) j= l  

* (i 1 , . . . ,  1)] + cV Xi+ 1 + X0 = n -  
i 

d max[X(~ +cV Xl,  E ( c  V X j  V X ;  - A j + I )  
j=l 

+ ~ v xi+~ + x a  (i = 1 , . . . , n -  1)]. 

For a fixed k(k = 1,..., n), we look at the right hand side of the first expression 
in (3.8) as a function of X~ and Xk, denoted by f(X~, Xk), while other values are 
fixed. Then, using suitable constants cl, c2, Ca( > _ c) and c4, 

f (X  a, Xk) = (XO + C1) V (Xk  -'[- C2 -{- C V X~)  V (Xk  V C 3 Jr- c 4 -]- c V X~)). 

Let 

g(xa,  xk) = (x¢ + cl) v (~ v x~ + c2 + xa)  v (xk v c3 + cA + c v xa).  

If c2 _< ca, then f(X~, Xk) = g(X~, Xk). If c2 > c4, (b) of Lemma 3.2 gives 

f(X~), Xk) >_,~ g(X~), Xk). 

Unconditioning, 

max [c V X~ + X1, 

i 

E ( X j  V X; V c -  A j + I )  + Xi+l + c V X a 
j = l  

>_~tmax cVX~ + X 1 , E ( X j V X ~ V c - A j + i )  
j = l  

+Xi+I+cVX~ (i = 1 , . . . , k -  2), 
k--1 

~_,(Xj V X; V c -  Ay+l) + c V Xk + X~), 
j = l  

i 

E ( X j  V X; V c -  A j + I )  + Xi+l -~ c V X~ 
j = l  

(i = 1 , . . . , n -  1)] 

(i = k , . . . , n -  1)] . 
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Continuing this procedure for all values k = 1 , . . . ,  n leads to the desired conclu- 
sion. 

Remark  3.2. Systems 1 and 2 have been compared under FCFS discipline, 
but it is clear tha t  all results hold under any other discipline which is permit ted  
to choose a customer at a departure instant from the first server. 

Remark  3.3. In Theorem 3.3 we set Yn = X~ + c. In manufactur ing systems 
the c can be viewed as a set-up t ime for every job. 

4. Tandem queues with infinite buffer capacity and Poisson arrivals in light traffic 

In this section we compare systems 1 and 2 in which the buffer capacity be- 
tween the servers is infinite and customers arrive according to a Poisson process 
with rate A when traffic is light. By light traffic, we mean tha t  the service times, 
Xn and Yn, are scaled by a parameter  a > 0 to obtain a X n  and c~Yn, where 
it is assumed tha t  c~ --+ O, and hence E ( a X )  --+ 0 and E(c~Y) --+ 0 so tha t  P x  
(=  AE(c~X)) --+ 0 and p y  (= AE(aY))  --+ O. In the following, we use the notat ions 
P x  ~ 0 and p y  ---+ 0 to mean tha t  c~ --+ O. 

Let 

i = the s ta t ionary mean sojourn t ime of a customer sj 

at the j - t h  server in system i (j = 1, 2 and i = 1, 2), 

w i = the s ta t ionary mean sojourn time of a customer in system i 

(= s] + s~, i = 1,2). 

Then, our light traffic approximation leads to 

THEOREM 4.1. For any constant c( >_ 0), let Y be X *  + c or X * V  c assuming 
that E [ X  V c] > E[X] .  Then,  

7/) 1 - -  ~/3 2 z kOZ 2 -nt- O(o~ 3) as c~ ~ O, 

where k > 0 is some constant. 

PROOF OF THEOREM 4.1. 
(i) Case of Y = X * + c  
We begin to find w I in light traffic. It is well known tha t  sl can be wri t ten as 

: ~ AE[X 2] + E[X] + O(p~) 8~ 

as px 0 (see for example, Wolff (1989)). 

Wolff (1982) showed tha t  

(4.2) s~ = p x E [ ( Y  - X) +] + pyE[(Y~ - X) +] + E[Y] + O(p  2) 

as P x  ---+ 0 and py  --+ 0, 
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where X,  Y and Ye are mutual ly  independent,  p = (Px + py)/2,  and 
max(0, a). The distribution of r.v. Ye is given as 

/0 ~ 
1 5Z(y)dy Y ¢ ( x ) -  E[Y] 

The first two terms of right hand side in (4.2) become 

/7  E[(Y - X) +] = E[Y] - 2 ( x ) S ( x ) d x  

/o ~ ~ = E[X + c] - X(x)dx  - 2 ( x ) 2 ( z  - e)dx, 

/o ~ E[(Y~ - X)  +] = E[Yo] - 2(x)L(x)& 
1 

2E[Y l E[(X + c) ~] - - -  

E [ x l  f f  2 ( ~ ) d x  - - -  
< Y I  

fO C 1 (c - x )X(x )dx  
E[Y] 

1 / 7 I  ~ 
E[Y] X ( x ) f (  (y - c)dydx. 

a)  z 

Thus we can obtain that ,  for the case where X and Y are scaled by a parameter  
OZ, 

1 
w 1 = ~ 2  ~ < x  2] + ~E[x]  

+ ,Xa2E[X] { E[X + c] - foc f ( (x)dx  - f ° ° . 2 ( x ) 2 ( x  - c)dx} 

{~ Io ~ io ~ + ~ E [ ( x  + c) 2] - ( c -  x)2(x)dx - E[X] 2(x)& 

- f ~  f .~2(x)2(y-  ~)dvdx} + ~E[Y] + O(~a). 

(4.3) 

Similarly, for system 2 we have 

(4.4) w 2 = ~,~c~2E[(X + c) 2] + aE[Y] 

{ /o i ~ } + a~2(E[X] + c) E[X] - f i (x)dx  - X ( x ) 2 ( x  - c)dx 
.]C 

Subtract ing (4.4) from (4.3) yields 

(4.5) ~ - ~ -- ;w(o)~ ~ + o ( ~ ) ,  
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where 

g(~) = 2 x2(x )dx  - E[X] 2(x)dx  - E [ X ] F ( c )  + 2 2 ( . ) r ( x  + ~)dz 

/5 /5 + ~ 2 ( x  + c ) 2 ( . ) &  + c 2 ( x ) & ,  

and 

/5 F(~) = 2 ( v ) d >  

Then  g(O) = O, and 

~0 °° g'(c)  = 2 c 2 ( ~ )  - < x ] 2 ( c )  + < x ] 2 ( c )  - 2 ( x  + c)2(x)dx 

- ~ 2(~)dX(x  + c) + 2(x)dx  - c2(c) 

/o ~ /5 = 2 ( ~  + c)X(x)ex + c x ( ~ ) e x ( x  + ~) 

> 0  for c_>O. 

Hence, g(c) > 0 for c > O. Set t ing k = )~g(c) the  proof  completes.  

(ii) Case of Y = X* V c 
In  the  same way of (i), we can find t ha t  

(4.6) w l  _ w~ = ~ g ( c ) ~  2 + o ( ~ 3 ) ,  

where 

Let  

We have 

fee x) g(~) = (E[X v c] - E [ X ] )  2 ( x ) 2 ( x ) d x  

- E[X] foCf((x)dx + foCXf~(x)dX + foCF(x)dx. 

/o c /o c /o c h(c) = -E[X] f((x)dx + xff(x)dx + F(x)dx. 

h'(c) = -E[X]X(c) + cX(c) + F(c) 

= f~(c) (c-o~oCf((x)dx) + X(c) ~°cf((x)dx 
> 0  for c > 0 .  

Because of h(0) = 0, this implies h(c) > 0 for c > 0 and hence k = ),g(c) > 0 fo~ 
c > 0 .  
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In the theorem, we assumed tha t  E[X V c] > E[X]. For E[X V c] : E[X], 
tha t  is, X'(c) : 1, it is clear tha t  W~ d Wn 2 for all n because of X* V c = X* (with 

probability 1) and X* d X.  The theorem suggests tha t  the optimal order for the 
model with zero buffer capacity is invariant for the case where the buffer capac- 
ity between the servers is infinite. In the following section, we will numerically 
examine this under mild traffic as well as light traffic for other interarrival t ime 
distributions. 

5. Numerical examples 

In this section, we consider two server t andem queues in which the buffer 
capacity between the servers is infinite and the interarrival times, An, a r e  i.i.d. 
r.v.'s. The purpose is to show tha t  the optimal order of servers obtained in the 
preceding section is invariant even under mild traffic for s tandard  distributions 
of the An and Xn such as deterministic, Erlang, uniform and hyperexponential  
(balanced means). 

It is impossible to calculate Awi (the mean queue length in system i) exactly 
even for the case where both distributions A (a generic interarrival time) and X are 
of phase-type such as Erlang and hyperexponential,  because the service times at 
server 2 are included in constant  c. Alternatively, simulation experiments are used 
to obtain estimates for the s ta t ionary mean sojourn t ime of a customer in system 
i. Some results for Y = X* + c and Y = X* V c are shown in Tables 1 and 2, 
respectively. The D, Ek, U(a, b) and H(p) used to describe the d.f.'s for both  
A and X indicate, respectively, deterministic distribution, k-Erlang distribution, 
uniform distribution on (a, b) and hyperexponential  distr ibution whose form is 
given as 

p(1 - e -2p"x) + (1 - p)(1 - e-2(1-P)"X), 

where 1 /#  is the mean of the distribution. Models parameters are shown in each 
table. Individual figures for w i in the tables are obtained from 100 estimates, 
each of which is an average of 103 customers aRer skipping the first 102 customers 
when the simulation starts  with system empty. Each 95% confidence interval is 
computed using the central limit theorem. 

The results suggest tha t  the optimal order for two servers obtained the pre- 
ceding section can be extended to other systems with infinite buffer capacity and 
at least a s tandard  interarrival t ime distribution under mild traffic as well as light 
traffic. 

Concluding Remarks. This paper has mainly examined an optimal order for 
servers 1 and 2 in t andem where server 1 has a general service t ime distr ibution 
and server 2 has either its shifted or t runcated  distribution. For such a case, we 
have shown tha t  for both  systems with zero and infinite buffer capacities, the so- 
journ t ime is minimized in some sense at least for s tandard  distributions of the 
interarrival t imes and the service times at server 1 if server 2 is first. Our indepen- 
dence assumption permits tha t  the service times of both  servers are overlapping 
(depending on the service t ime distribution at server 1), and hence this result can 
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Table 1. 

(1) c = 0.1 

Mean  sojourn t imes in sys tem i (i = 1, 2) for Y = X* + c. 

d.f. of A A d.f. of X Px  PY wl W2 

D 1.00 U(0.2,0.4) 0.301 0.401 0.702 4- 0.000 0.702 4- 0.000 

1.00 E5 0.302 0.403 0.706 ± 0.001 0.705 4-0.001 

1.00 M 0.303 0.402 0.763 4- 0.004 0.753 4- 0.004 

1.00 H(0.1)  0.293 0.398 1.24 4- 0.03 1.21 ::k 0.03 

E5 1.01 U(0.2,0.4) 0.301 0.401 0.709 4- 0.001 0.708 4- 0.001 

1.00 E5 0.302 0.402 0.725 4- 0.001 0.720 4- 0.001 

1.01 M 0.303 0.400 0.8114- 0.004 0.796 ::k 0.004 

1.00 H(0.1) 0.294 0.399 1.31 4- 0.03 1.26 :i= 0.03 

M 1.01 U(0.2,0.4) 0.301 0.401 0.839 ± 0.003 0 . 8 3 7 i 0 . 0 0 3  

1.01 E5 0.302 0.402 0.878 ± 0.004 0 . 8 6 9 i  0.004 

1.01 M 0.302 0.402 1.04 4- 0.01 1.01=k 0.01 

1.01 H(0.1)  0.294 0.395 1.56 4- 0.05 1.49 ~= 0.04 

H(0.1)  0.996 U(0.2,0.4) 0.301 0.401 1.03 4- 0.01 1.03 i 0 . 0 1  

0.986 E5 0.303 0.401 1.11 4- 0.01 1.09 =k 0.01 

0.992 M 0.301 0.402 1.39 4- 0.02 1.35 4- 0.02 

0.980 H(0.1)  0.295 0.394 2.23 4- 0.07 2.09 4- 0.06 

Remark.  a 4- b shows t h a t  [a - b, a + b] is a 95% confidence interval. 

(2) c = 0.3 

d.f. of A A d.f. of X Px  PY w l  w2 

D 1.00 U(0.2,0.4) 0.301 0.601 0.902 4- 0.000 0.902 4- 0.000 

1.00 E5 0.302 0.603 0.911 4- 0.001 0.906 4- 0.001 

1.00 M 0.303 0.602 1.02 4- 0.01 0 . 9 7 7 i  0.004 

1.00 H(0.1)  0.293 0.598 1.72 ::k 0.05 1.56 :£ 0.04 

E5 1.00 U(0.2,0.4) 0.301 0.601 0.946 4- 0.001 0.943 4- 0.001 

1.00 E5 0.302 0.602 0.976 4- 0.002 0.958 ::k 0.002 

1.00 M 0.303 0.600 1.12 4- 0.01 1.06 4- 0.01 

1.00 H(0.1)  0.294 0.599 1.84 4- 0.05 1.64 4- 0.04 

M 1.01 U(0.2,0.4) 0.301 0.601 1.35 4- 0.01 1.35 4- 0.01 

1.01 E5 0.302 0.602 1.38 4- 0.01 1.36 4- 0.01 

1.01 M 0.302 0.602 1.59 4- 0.02 1.52 i 0.02 

1.01 H(0.1)  0.294 0.595 2.34 4- 0.07 2.09 i 0.06 

H(0.1)  0.996 U(0.2,0.4) 0.301 0.601 2.42 4- 0.06 2.41::k 0.06 

0.986 E5 0.303 0.601 2.50 4- 0.07 2.48 4- 0.07 

0.992 M 0.301 0.602 2.78 -t- 0.07 2.69 4- 0.07 

0.980 H(0.1)  0.295 0.594 3.95 + 0.15 3.53 4- 0.13 
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(3) c = 0.1 

Table 1. (continued).  

d.f. of A A d.f. of X P x  PY w I w 2 

D 1.00 U(0.4,0.6) 0.501 0.601 1 .104.0 .00 1.10 4.0.00 

1.00 E5 0.503 0.605 1.15 4.0.00 1.14 4-0.00 

1.00 M 0.505 0.603 1.58 4"0.02 1.53 4-0.01 

1.00 H(0.1)  0.488 0.597 3.73 4" 0.15 3.54 4" 0.15 

E5 1.01 U(0.4,0.6) 0.501 0.601 1.15 4. 0.00 1.14 4- 0.00 

1.01 E5 0.504 0.604 1.25-4- 0.00 1.23 4- 0.00 

1.01 M 0.504 0.601 1.714. 0.02 1.66 4- 0.02 

1.01 H(0.1) 0.490 0.598 3.92 4. 0.14 3.69 4- 0.13 

M 1.01 U(0.4,0.6) 0.501 0.601 1.55 4- 0.01 1.55 -4- 0.01 

1.01 E5 0.504 0.603 1.73 4. 0.02 1.71 4- 0.02 

1.01 M 0.504 0.603 2.36 4. 0.04 2.30 4. 0.03 

1.01 H(0.1)  0.490 0.591 4.56 4. 0.21 4.29 4- 0.19 

H(0.1)  0.996 U(0.4,0.6) 0.501 0.601 2 . 6 2 ± 0 . 0 6  2.62 4- 0.06 

0.986 E5 0.505 0.602 3 . 0 0 ± 0 . 0 8  2 . 9 6 ± 0 . 0 8  

0.992 M 0.502 0.603 4.01 4- 0.11 3 . 9 1 ± 0 . 1 0  

0.980 H(0.1)  0.492 0.591 6.94 ± 0.32 6.49 ± 0.29 

Table 2. 

(1) c = 0.1 

Mean  sojourn t imes in sys tem i (i = 1, 2) for Y = X* V c. 

d.f. of A A d.f. of X f ix  PY w l  w2 

D 1.00 U(0.0,0.6) 0.303 0.311 0 . 6 1 4 ±  0.001 0.614 4. 0.001 

1.00 E5 0.302 0.303 0.605 ± 0.001 0.605 4. 0.001 

1.00 M 0.303 0.316 0.663 4. 0.004 0.662 4. 0.004 

1.00 H(0.1)  0.293 0.321 1.09 4- 0.03 1.08 4. 0.03 

E5 1.01 U(0.0,0.6) 0.302 0.312 0.632 4. 0.002 0.631 4- 0.002 

1.01 E5 0.302 0.303 0.617 4- 0.001 0.617 4- 0.001 

1.01 M 0.303 0.315 0.700 ± 0.004 0.697 ± 0.004 

1.01 H(0.1)  0.294 0.321 1.16 ± 0.03 1.14 ± 0.03 

M 1.01 U(0.0,0.6) 0.304 0.311 0.760 ± 0.003 0.757 ± 0.003 

1.01 E5 0.302 0.302 0.722 4- 0.003 0.722 4- 0.003 

1.01 M 0.302 0.316 0 . 8 7 6 ± 0 . 0 0 7  0.869 4- 0.007 

1.01 H(0.1)  0.294 0.317 1.36 4- 0.04 1.33 4- 0.04 

H(0.1)  0.996 U(0.0,0.6) 0.303 0.311 0 . 9 1 4 ± 0 . 0 0 6  0.907 4. 0.006 

0.986 E5 0.303 0.302 0.852 ± 0.004 0.850 4. 0.004 

0.992 M 0.301 0.316 1.12 -4- 0.01 1.11 ± 0.01 

0.980 H(0.1) 0.295 0.317 1.87 -t- 0.06 1.82 ± 0.05 
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Table 2. (continued). 

(2) c = 0 . 3  

d.f. of A A d.f. of X Px  PY w 1 w 2 

D 1.00 U(0.2,0.4) 0.301 0.325 0.6274- 0.000 

1.00 E5 0.302 0.354 0.656 4- 0.001 

1.00 M 0.303 0.411 0.763 ± 0.004 

1.00 H(0.1) 0.293 0.446 1.30 4- 0.03 

0.627 4- 0.000 

0.656 4- 0.001 

0.750 4- 0.003 

1.23 4- 0.03 

E5 1.01 U(0.2,0.4) 0.301 0.326 0.630 4- 0.000 

1.01 E5 0.302 0.354 0.669 4- 0.001 

1.01 M 0.303 0.410 0.808 4- 0.004 

1.01 H(0.1) 0.294 0.446 1.38 4- 0.03 

0.629 4- 0.000 

0.665 4- 0.001 

0.785 4- 0.004 

1.29 4- 0.03 

M 1.01 U(0.2,0.4) 0.301 0.326 0.713 4- 0.002 0.711 4- 0.002 

1.01 E5 0.302 0.353 0.788 ::k 0.003 0.779 4- 0.003 

1.01 M 0.302 0.411 1.02 4- 0.01 0.985 4- 0.007 

1.01 H(0.1) 0.294 0.442 1.66 4- 0.05 1.54 4- 0.04 

H(0.1) 0.996 U(0.2,0.4) 0.301 0.326 0.813 :t:0.004 0 .809±0.004  

0.986 E5 0.303 0.353 0.946 4- 0.006 0.928 4- 0.005 

0.992 M 0.301 0.411 1.37 4- 0.02 1.30 4- 0.02 

0.980 H(0.1) 0.295 0.442 2.44 4- 0.08 2.21 4- 0.07 

(3) c = 0 . 1  

d.f. of A A d.f. of X Px  PY w l  w 2 

D 1.00 U(0.0,1.2) 0.607 0.609 1.36 4-0.00 1.36 4-0.00 

1.00 E5 0.603 0.606 1.29 =i= 0.00 1.29 =k 0.00 

1.00 M 0.606 0.611 2.03 :k0.03 2.02 4- 0.02 

1.00 H(0.1) 0.587 0.609 5.49 ± 0.27 5.45 4- 0.29 

E5 1.007 U(0.0,1.2) 0.604 0.611 1.54 4- 0.01 1.54 4-0.01 

1.007 E5 0.605 0.605 1.43 4- 0.01 1.43 4- 0.01 

1.009 M 0.605 0.608 2.18 4- 0.03 2.18 4- 0.03 

1.009 H(0.1) 0.589 0.609 5.69 4- 0.23 5.58 4- 0.23 

M 1.01 U(0.0,1.2) 0.608 0.610 2.23 4- 0.03 2.23 4- 0.03 

1.01 E5 0.605 0.604 2.02 4- 0.02 2.02 4- 0.02 

1.01 M 0.605 0.611 3.02 4- 0.05 2.99 4- 0.05 

1.01 H(0.1) 0.588 0.601 6.48 ±0 .35  6.37 4- 0.37 

H(O.I) 0.996 U(0.0,1.2) 0.605 0.609 4.00 4- 0.12 4.00 4- 0.11 

0.986 E5 0.606 0.603 3.70 4- 0.12 3.68 4-0.11 

0.992 M 0.602 0.611 5.29 ± 0.16 5.25 ± 0.15 

0.980 H(0.1) 0.591 0.601 9.57 :J: 0.49 9.37-t- 0.48 
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be viewed as a generalization of results by Tembe and Wolff (1974), Kawashima 
(1975) and Dattatreya (1978). From a practical viewpoint, we have other impor- 
tant problems, e.g., the problem of whether or not the optimal order for a two 
server system with zero buffer capacity can be extended to the.system with infi- 
nite or any finite buffer capacity. The reason is that selecting the optimal order for 
two server system with zero buffer capacity is easier than that for the system with 
infinite buffer capacity as shown in this paper, and perhaps that for the system 
with finite buffer capacity. More work needs to be done in this direction. 
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1. Proof of Lemma 3.1 

(a): Let 

Then we find that 

(A.1) 

Appendix 

a I = X V (Y  - c), 

& = Y v ( x  - ~). 

Z l ( X )  = X ( x ) Y ( x  + c), 

Z2(z) = Y ( x ) X ( ~  + c). 

From the definition of convex ordering, to prove (a) it is sufficient to show that 
for any constant a(> 0), 

L ~[22(x) - Z l ( x ) ] d x  >_ O. 

Since X <st Y, there exists a function e(x) satisfying 

]~(x) = )((x) + e(x) for all x _> 0. 

Using e(x) yields 

L ~ [ 2 2 -  21(x)]dx  = (x) 4x)dx  - 4 x  + ~)dx 

/7 C - 2 ( x  + ~)~(~) + 2(~)~(x + ~)& 

f a + c  ( ) d  /COX(  ) ( )d 
= £ X X - -  X - J c ' C  ~. X X 

, J a  , 2 a  

]7 + X(x  - ~)4x)dx 
+ c  

a + c  

= 4 x ) X ( x  + c)dx 
J a  

/7 + [)((x - c) - f f ( x  + c)]e(x)dx 
+ c  

> 0 .  
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(b): This immediately follows from (A.1) and the definition of reversed hazard 
rate order. 

2. Proof of Lemma 3.2 

(a): Let 

If c _> el, then  

If c < Cl, then  

Z 1 = max(X,  X* + c - C l )  , 

Z2 = max(X*,  X* + c - el, X - el).  

Z2 = max(X* + c - Cl, X - (21) ~ Z 1. 

Z2 = ma~(X*, X - c l ) ~ m a x ( X ,  X* - cl) _< Z1. 

Thus (a) follows. 
(b): Let 

Z 1 ~- (X* q-c1)V (Xq-cVX*)V ( X V c  3 -(22 q- cV X*),  

Z 2 = (X* @c1) V (cVX-.FX*)V ( X V c  3 - c  2 @ cV X*).  

Lett ing Z = c V X* and (24 = c3 - c2, we have 

Z 1 ~- (X* Jr- C1) V (X -F Z) V ((24 -}- Z), 
(a.2) 

z2 = (x*  + cl) v (c + x * )  v { x  + (c - c2) v x * }  v (~4 + z ) .  

Consider the following three cases. 

Case 1. Let c4 _> c. Prom (A.2), Z1 and Z2 become 

Zl = (x*  + (2~) v ( x  + z )  v (c4 + z ) ,  

2 2 = (X* 71- c1) V {X ~- (c - c2) V X*} V (c 4 ~- Z).  

Because of Z _> (c - c2) V X*, we have 

(A.3) Z1 k Z2- 

Case 2. Let 0 < C4 < C. Using c3 _> c in (A.2) gives 

z~ < (z* + ~1) v (~ + x*) v (x  + ~4 v x*) v (~ + z) ~ z~  

If c] ~_ c, then 

Z1 k (X* -]- c1) V (X -{- c4 V X*) V (c4 Jr- Z) = Z~. 
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IfO<cl <c, then 

z~ = (x *  + ~) v ( x  + ~,) v ( x  + x * )  v (~,~ + e) 

L ( x  + ~) v (x* + ~) v (x* + x )  v (~ + ~) 
4 (X* -~- c1) V (X ~- c) V (X* ~- c4) V (X* q- .,~7) V (c 4 q- c) ~-- Z,. 

If cl ~ 0, then 

Z1 : (X  -}.- Z)  V (c4 Jr- Z) 

,-~'d(x* ~ c V X )  V (c4-~ eVX)  : X:~. 

Thus we conclude that  for this case, 

(A.4) Z1 >st Z2. 

Case 3. Let 54 ~ 0. For this case, in a similar manner to Case 2 we can find 
that  Z1 _>st Z2, which completes the proof. 
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