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Abstrac t .  Let C(A) be the convex hull generated by a Poisson point process 
in an unbounded convex set A. A representation of A\C(A) as the union of 
curvilinear triangles with independent areas is established. In the case when 
A is a cone the properties of the representation are examined more completely. 
It is also indicated how to simulate C(A) directly without first simulating the 
process itself. 
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1. Preliminaries 

The paper aims to establish a number of properties of a homogeneous Poisson 
point process (in the sequel p.p.p.). Although the properties are elementary they 
do not seem to be known. At least they are not mentioned in Stoyan et al. (1987) 
or Daley and Vere-Jones (1988). 

The author's interest in this topic was stimulated by the remarkable paper 
of Oroeneboom (1988) who has made impressive progress in convex hulls theory. 
His arguments are based on the original idea of using a Poisson approximation to 
the binomial point process close to the boundary of the support of the underlying 
distribution. This idea allowed him to reduce the problems he was considering to 
an examination of the asymptotic properties of a p.p.p. Further arguments were 
concerned with the application of powerful techniques such as martingales, mixing 
stationary processes, etc. It turns out that  in many cases the above mentioned 
elementary properties of a p.p.p, provide easier arguments. 

Consider a p.p.p, restricted to an unbounded convex set in the plane. The 
convex hull of such a process is one of its most interesting characteristics, both 
from the view-point of stochastic geometry and from that  of statistics. 

Within the framework of the Oroeneboom approach we need to know how 
many vertices of the convex hull occur in any finite part  of the plane, how close 
to the restricting set boundary they lie, etc. 
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It turns out that the vertices generate a triangularization of the region comple- 
mentary to the convex hull within the restricting set. Under the triangularization 
the region is represented as a union of curvilinear triangles with independent areas, 
and the problem of counting vertices is reduced to a boundary problem for sums 
of i.i.d.r.v's (see Nagaev and Khamdamov (1991)). 

2. General case 

Consider a homogeneous p.p.p, in R 2 of intensity one; i.e. the Lebesgue mea- 
sure )~(.) is its intensity measure. Denote by C(A) the convex hull generated by 
the restriction of the process to the Borel set A. Let FB denote the boundary of 
the Borel set B. It is convenient to denote by l(w, w') and [l(w, w')] the rectilinear 
segment with endpoints w and w ~, and its length, respectively. 

Assume that A satisfies the following conditions: 
a) A is convex, unbounded, with A(A) = oc; 
b) the point (0, 0) lies on its boundary; 
c) each straight line Zc = ((x, y) : y = c) cuts off from A a region having 

finite area, i.e. Zc intersects FA at two points. 
Let w0 = (u0, v0) be the vertex of C(A) with minimum y-coordinate, having 

the line Zv0 as a line of support (see Fig. 1). This choice uniquely determines the 
labels of the other vertices Wy = (uj, vj), j . . . .  , -1 ,  0, 1 , . . . ,  by, say, numbering 
them in anticlockwise order. 

\ 
w~ 

3'-1 

W-2 C 

W-1 
I/)1 

"y- ~ wo ~o J r +  

Fig. 1. Nota t ion  and  schemat ic  representa t ions  for the  general case. 

Let, further, 00 be the region cut off from A by Zvo, where Z~ o cuts FA at 
V- and ~/+. Now we define a sequence of regions 0j, j = 4-1, i 2 , . . . .  Denote by 
Zj-I,j the straight line passing through wj-1 and wj. Suppose that  j = 1. The 
lines Zvo and Zoj  together with FA bound the region 01, which is a (curvilinear) 
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triangle with the vertices w0, 7+ and the point 71 where Z0,1 meets FA. Similarly, 
the region 0-1 is bounded by Zvo, Z-l,0 and FA. The corresponding vertices are 
w0, 7 -  and the point 7-1 in which Z-i,0 meets I~A . 

For j > 2 the region Oj is determined by the lines Zj-2,j-1 and Zj-I,j which 
are defined analogously to Z0,1 and Z0,-1 above, and FA, and has the vertices 
wj-1, 7j-1 and 7j. Similarly, for j < - 2  the region Oj is determined by Zj,j+I, 
Zj+I,j+2 and FA, and has the vertices wj+l, 7j+1 and 7j. 

It is easy to see that the regions Oj+l, j >_ 1, and also the regions 0 j - l ,  j _< -1 ,  
depend only on wj and on the slopes of the lines Zj_I,j and Zj,j+I. As for 01 and 
0-1, they depend on Wo and the slopes of Z01 and Z-l,0 respectively. However, 
certain functionals of Oj constitute sequences of i.i.d.r.v's, as we shall show below. 

Note that  the assumptions a) and c) above imply that the sequence of regions 
{Oj} is doubly infinite (since any finite number of the Oj cut off an area of A that 
has at most finite area and so leaves a part of A having infinite area and containing, 
therefore, at least one further point of the process). 

Let ~j = A(0j) be the area of the random set 0j and set 

(2.1) 

{ ifj = o 
= II(wj_x,wj)12lZ(Wj_l, j)1-2 i f j  _> 1 

II(wj,wj+l)]2ll("/j ,  Wj+l)[ -2 if j _< -1 .  

We can now state the main result of the paper. 

THEOREM 2.1. Under the conditions stated, the variables ~j, Uk for j ,k  = 
• . . ,  -1 ,  0, 1 , . . .  are jointly independent. Furthermore, 

P(~5  < x )  = 1 - e - x ,  x > 0, 

and 
P(~lk < x) = x, 0 < x < 1. 

PROOF. Let j = k = 0. It is easily seen from properties of the Poisson 
process that the joint density function of (u0, v0) = w0 has the form 

(2.2) po(u,v) = { oeXp(-A(O°(v)))dudv' otherwiseif ( u , v ) c  A 

where Oo(v) is the region cut off from A by the line Z~. (We allow here the usual 
duality in notation that  occurs in mathematical statistics.) Formula (2.2) implies 
that given v0 = v the variable u0 is uniformly distributed in (7- ,7+) ,  whence it 
follows that ~o is uniformly distributed on (0, 1). Since the function A(0o(V)) is 
increasing in v, the variable ~0 is exponentially distributed with parameter one. 
~0 and 70 are independent. 

Assume for definiteness that  the axes are chosen so that  uj < uj+l  a.s., j _> 0. 
Let j = k -- 1. Note that the conditional joint density function of wl = (Ul,Vl) 
given Wo may be written as follows, 

exp(-A(O1(x,y)))dxdy, i fx  > u0, y > Vo, (x,y) • A 
Pl(x,Y) = 0 otherwise. 
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Here 01(x, y) is the region bounded by the lines Z~o, ((u, v) : y-~o _ ~-~o) and 
y--vo X-uo 

FA. 
Choose w0 as origin of polar coordinates and l(wo, 7+) as a fixed direction. The 

area 01 (x, y) depends on w0 and the slope of the line Zm. The polar coordinates 
and ¢ of wl have the conditional joint distribution density function, given Wo, 

of the form 

f exp(-A(O;(~)))ud,d¢, if 0 < ¢ < 7c/2 
(2.3) p*(~, 

1 ~)  = I 0 otherwise, 

where 0~ (¢) is the representation of 01 (x, y) under the new parameterization. Prom 
(2.3) it immediately follows that the conditional distribution of I I(wo, wa)l 2 given 
w0 is uniform in (0, ]/(w0, 71)12). Hence, that ofr]l is (0, 1)-uniform. Since 7(0~(¢)) 
increases for every fixed w0 the area of 01 has the exponential distribution with 
parameter one. Moreover, @, %, ~1 and/~1 are jointly independent. 

In the case j = k > 1 the conditional joint distribution of wj given wj-2, wj-1 
has the density function 

(2.4) 

{ exp(-A(Oj(x , y)))dxdy, 
if (x, y) E A and x > uj-1, 

Uj--1 Uj--2 

0 otherwise, 

where 0j (X,  y) is the region bounded by the lines Zj-2,d-1, Zj-I,j, and I~A . 
Choosing wj-1 as origin of polar coordinates and l(wj-2, wj-1) as the fixed 

direction and repeating the above arguments we easily obtain from (2.4) that 
~j = A(Oj) and ~j do not depend on (~k, Yk), k -- 0, 1 , . . .  , j  - 1 and have the joint 
distribution 

x>0,  

Similar arguments can be applied for j < - 1  if we proceed clockwise, and the 
theorem is proved. 

Let A C and 0 C be closures of A and Oj respectively. Let further C O be the 

interior of C(A). Then (A\C °) = ~Jj 0 C and by Theorem 2.1 A(A\C °) = oc a.s. 

3. Properties of homogeneous p.p.p, in a cone 

Suppose that  A is a cone having the point (0, 0) as a vertex and rays li = (w : 
w = re(i)), i = 1, 2, as generators. Here the unit vectors e (i) = (cos¢i, sin¢i) are 
such that 0 < ¢1 < ¢2 < 71. 

In this particular case the properties of C(A) can be investigated more com- 
pletely. Here the Oj are ordinary triangles. Define 5j as the distance from the 
vertex wj to the ray ll i f j  _> 1, and to the ray 12, i f j  _< -1 .  I f j  = 0, then 50 and 
~ denote the distances from Wo to ll and 12 respectively. Note that 

(3.1) (~0 ~" ]Vo COS¢1 -- "/'tO sin411, 5~ = [Vo c o s ¢ 2  - uo sin ¢21. 
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Consider the variables 

[(~j/6j-1, i f j  _> 1, 
(3.2) Tj = I. S j /~ j+l ,  if j _< - 2  

and T_]  = 6_1/~10 . 
It easily seen that  

(3.3) - -  1 -  1/2 

In accordance with Theorem 2.1, ~-j, (j ¢ 0) are jointly independent  and identically 
distr ibuted.  Fur thermore 

1 1 3 5 
(3.4) E71 = 3 '  ET 2 = ~, E ( - l n T 1 )  = 2 '  Var(ln~-l) = 4 '  

The variable 5~ can be represented as 

(3.5) 

n 

5o H Tj, i fn>__l  
j= l  

6n = --1 

5'o jl-! ~-j, i / n _ < - 1  

whence in view of (3.4) we obtain 

(3.6) E6~ = { 3-nES°'-n ! if n > 1, ES~ = { 6-~E5~' if n _> 1, 
3 ESo, if n _ < - l ,  6-n(ES~o) 2, i f n _ < - l .  

Note tha t  Tj, j >__ 1, and ~-j, j _< - 1 ,  do not depend on 50 and 5~ respectively. 
From (3.4) and (3.5) it follows tha t  In 5~ is asymptot ical ly  normal as n -~ ec. 

Denote  by ut the number  of vertices which fall in the disk St having radius t and 
centre (0, 0). On the basis of the  above properties it can be proved that  

(3.7) E~t ~ ( 4 / 3 ) l n t  = c~(t), Var(~t) ~ ( 5 / 4 ) l n t  = fl2(t) 

and the variable (ut - o~(t))//3(t) is asymptot ical ly  normally dis t r ibuted N(0,  1) 
(see Groeneboom (1988), Nagaev and Khamdamov  (1991)). It is worth noting 
that  the total  number  of points falling in St has the expectat ion (¢2 - ¢1)t2/2. 

From (3.6) it follows that  5~ ~ 0 a.s. as n -~ ec, tha t  is the rays li, i = 1, 2, 
serve as asymptotes  for FC(A). The relations (3.6) and (3.7) show how rapidly 
FC(A) approaches FA. Another  way to describe the closeness of these lines is to 
es t imate  the difference between the lengths of the  parts  FC(A) and FA which are 
cut off by St. To do this we need additional rather  cumbersome notation. Pu t  

(3.s) d = 1 / s in  a + ctg a,  

where (~ = ¢2 - ¢1. 
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Further, put 

(3.9) 

j k--1 
7r 

II l , 

k = l  /=1 

--1 --1 
71" 

1 ' 

k = j  l=k  + l 

if j_> 1 

i f j  _< -1  

and 

(3.10) 

c¢ j - 1  

j = l  k = l  

- 1  --1 

or'= E ( d - t - p j - ~ ) ( 1 - ~ - j ) H  
j = - - o o  k = j + l  

Note that ~ and a ~ are conditionally independent, given 50 and @ Finally, let £t 
be the length of the part of FC(A) cut off by St.  

THEOREM 3.1. I f  0 < ¢1 < 7c/2 < ¢2 < 7r, then 2t - f-.t ~ ~ = 5oCt + 5~ocr ' 
a.s. where 50, 5~, cr and a'  are defined in (3.1) and (3.10). 

PROOF. Consider the triangles 0j constructed in the following way (see 
Fig. 2). 

w - 2  

W - I  C 

W0 

?J/1 

W2 

Fig. 2. No ta t i on  and  schemat ic  r ep re sen ta t ion  for the  special  case of a cone. 
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For j _> 1, 0j is formed by the line (Wj--1, Wj) and by the straight lines drawn 
through wj-1 and wj parallel to l~ and ll respectively. The length of the side of 
Oj lying on FC(A) will be denoted by cj, i.e. 

II(wj_I,Wj)I, i f j  _> 1 

Cj = II(wj,wj+I)I, i f j  _< -1.  

Further let aj and bj be the lengths of the sides of 0j which are parallel to ll and 
12 respectively. Put  

(3.11) ej = aj + bj - cj. 

Consider the straight lines passing through the vertices w_~ and w~ parallel to 
11 and 12 respectively. Let t~e (2) and t~eO) be the points at which those lines 
intersect 12 and 11 respectively. Denote by Imn the length the part of FC(A) between 
w_.~ and w~. It is obvious that 

n 

(3.12) tn @~lm--lmn= E ~j--(~n + 5 _ ~ ) / s i n a .  
j=-~ 

Let p~- be tangent of the angle between l(wj-1, wj) and the perpendicular to 11, if 
j k 1, and that between l(wj,wj+l) and the perpendicular to 12, i f j  ~ -1 .  It is 
easy to see that 

2 I / ~j =,~(Oj) = ~j-I(Pj -Pj-1)/2,  i f j  _> 1 
2 I ! ~j+I(Pj - Pj+I)/2, i f j  _< - 1  

= /(~! ~ 2 '  / = t g ( ~  - -  ¢ 1 ) ,  P 0  = tg(¢2 - y). while ~-1 ~ o) ~P-1 - P~o)/2, Po 
Therefore 

2 E ~ k S ~ _ 2 1 + t g  ~ - ¢ 1  , i f j > l  
! k = l  

(3 .13)  pj = _i  

2E~ksk-~ l+tg  ¢2---~ , i f j < - - l .  
k = j  

Combining (3.2), (3.5) and (3.13) we Obtain pj = p}. With the help of elementary 
arguments from (3.2), (3.8), (3.9), (3.11) and (3.13) we derive 

{ g j _ l ( 1 - T j ) ( d + p j - ~ ) ,  i f j > _ l  
(3.14) ej = 

5j+l(1 "rj)(d+pj ~ ) ,  i f j < - l .  

From (3.5) and (3.6) it follows that the series ~-~-j_>l 5j and Ej_<-I ~J converge 
almost surely. In view of (3.14) we have for some c > 0 

cvj_l, if j___ 1 

cvj+l, i f j _ < - l .  
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Thus the series }-~j#0 ~J converges almost surely. 
In view of (3.11) and (3.12) we obtain that  as n --4 oc, m --* ec 

tn + t ~  -- Imn --+ ~ a.s. 

and, therefore, the desired result follows. The theorem is proved. 

4. Some remarks on simulation of convex hulls 

The propert ies of homogeneous p.p.p, considered above provide a method  of 
directly simulating the convex hull wi thout  first simulating the process itself. Here 
we indicate how to realize such a procedure in the case when A is a cone. The 
general case can be t rea ted similarly. 

Let (~j, r/j), j = 0, 1, 2 , . . .  be i.i.d, random vectors with independent  compo- 
nents. Assume that  ~j and r/j have the s tandard  exponential  and (0, 1)-uniform 
distributions respectively. For the sake of simplicity assume that  ll coincides with 
the halfiine ((x, y ) :  x > 0, y = 0), i.e. ¢1 : 0 ,  OL ~-- ¢2. 

In order to simulate w0 = (u0, v0) we use the formulae 

(4.1) u0 = ~/f 2~0 (1 - 2r/0 s in2(a/2)) ,  v0 = r/0V/~00 s ina .  
v s i n  a 

Here we have taken into account tha t  r/0 d 1 -- r/0. Before construct ing the wj 
note tha t  in the case considered we have 7y = (xj ,  0), 5j = vj provided j _> 0 (see 
also (3.1)). The recurrence formula for the second coordinates follows immediately  
from (3.2) and (3.3), that  is 

(4.2) vj = (1 - v ~ ) V j _ l .  

As to the first coordinates it is easy to see that  

Xj = Xj-- 1 q- 2 ,~(~j ) /Vj - -  1 

where A(0j) is an area of the triangle Oj. In view of (1) we have 

(4.3) Xj = Xj-- 1 q- 2~ j /V j - -  1. 

Finally, 

whence 

= ( x 5  - u j ) / ( x j  -  j_l) = 1 - 

(4.4) uj = x j  ~ + u j_  1 (1 - V'~)" 

The formulae (4.1)-(4.4) determine an algorithm for simulating the sequence wj,  
j > 0, or, in other  words, the right wing of the boundary.  The algorithm for the  
left wing is similar. 
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