
Ann. Inst. Statist. Math. 

Vol. 47, No. I, 1-20 (1995) 

WKAP ARCHIEF 

ON THE APPROXIMATION OF CONTINUOUS TIME 
THRESHOLD ARMA PROCESSES* 

P. J. BROCKWELL** AND O. STRAMER*** 

Statistics Department, Colorado State University, Fort Collins, CO 80521, U.S.A. 

(Received May 11, 1993; revised May 6, 1994) 

A b s t r a c t .  Threshold autoregressive (AR) and autoregressive moving aver- 
age (ARMA) processes with continuous time parameter have been discussed 
in several recent papers by Brockwell et al. (1991, Statist. Sinica, 1,401-410), 
Tong and Yeung (1991, Statist. Sinica, 1, 411~30), Brockwell and Hyndman 
(1992, International Journal Forecasting, 8, 157 173) and Brockwell (1994, 
J. Statist. Plann. Inference, 39, 291 304). A threshold ARMA process with 
boundary width 25 > 0 is easy to define in terms of the unique strong solution 
of a stochastic differential equation whose coefficients are piecewise linear and 
Lipschitz. The positive boundary-width is a convenient mathematical device 
to smooth out the coefficient changes at the boundary and hence to ensure 
the existence and uniqueness of the strong solution of the stochastic differ- 
ential equation from which the process is derived. In this paper we give a 
direct definition of a threshold ARMA processes with 5 -- 0 in the important 
case when only the autoregressive coefficients change with the level of the pro- 
cess. (This of course includes all threshold AR processes with constant scale 
parameter.) The idea is to express the distributions of the process in terms 
of the weak solution of a certain stochastic differential equation. It is shown 
that the joint distributions of this solution with 5 = 0 are the weak limits as 
5 $ 0 of the distributions of the solution with (~ > 0. The sense in which the 
approximating sequence of processes used by Brockwell and Hyndman (1992, 
International Journal Forecasting, 8, 157-173) converges to this weak solution 
is also investigated. Some numerical examples illustrate the value of the latter 
approximation in comparison with the more direct representation of the process 
obtained from the Cameron-Martin-Girsanov formula. It is used in particular 
to fit continuous-time threshold models to the sunspot and Canadian lynx se- 
ties. 
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1. Introduction 

The need for non-linear models in time series analysis has been appreciated for 
some time now. The classical Gaussian linear models are unable to reproduce some 
of the features frequently found in observed time series, e.g. time irreversibility, 
occasional bursts of outlying observations and deviations from Gaussian marginal 
distributions. In order to obtain more appropriate models for such data, various 
discrete-time non-linear models have been proposed. Among the more successful 
of these are the threshold models (Tong (1983, 1990)), bilinear models (Granger 
and Andersen (1978), Subba-Rao and Gabr (1984)) and random coefficient au- 
toregressive models (Nieholls and Quinn (1982)). Many tests are now available for 
determining the appropriateness or otherwise of a linear model (see in particular 
Subba-Rao and Gabr (1984), Tsay (1989), Petruceelli (1990) and Tong (1990)). 

Continuous-time (linear) ARMA models for time series have also been found 
valuable in applications, particularly in fitting models to irregularly spaced data 
(see Jones (1981), Jones and aekerson (1990)). The use of continuous-time ARMA 
processes permits modelling with a larger class of available spectral densities (and 
corresponding autocovarianee functions) than is attainable by continuous-time AR 
processes (see equations (2.8) and (2.7) below). 

Several recent papers (Brockwell et al. (1991), Tong and Yeung (1991), 
Brockwell and Hyndman (1992) and Brockwell (1994)) have investigated the use 
of continuous-time threshold models, which are especially convenient for modelling 
irregularly spaced data when linear models are not adequate. Inference for such 
models depends of course on knowledge of the properties of such processes, partic- 
ularly the finite dimensional distributions. In this paper our aim is to characterize 
the joint distributions of an important class of continuous-time threshold ARMA 
processes and to investigate the relationships between such processes and certain 
approximating sequences of processes which have been used in numerical studies 
of their behavior. 

The processes considered are defined by stochastic differential equations whose 
coefficients depend on the value of the process as specified at the beginning of Sec- 
tion 3. They are not the most general continuous-time threshold ARMA processes 
since we only allow the autoregressive coefficients and the drift term to change 
with the value of the process. Even with these constraints however we obtain a 
rich class of non-linear models which appear to provide substantial improvement 
over the standard linear models for some well-studied data sets. In Section 6 we 
provide numerical illustrations of the approximations used and fit continuous-time 
ARMA models to the sunspot series and the logged Canadian lynx series. 

2. Linear CARMA processes 

We define a CARMA(p, q) process (with 0 _< q < p) to be a stationary solution 
of the p-th order linear differential equation, 

(2.1) Y(V)(t) + alY(P-1)(t) + . . .  + avY(t) 

= ~[W(1)(t) + blW(2)(t) + . . .  + bqW(q+l)(t) + c], 
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where the superscript  (j) denotes j -fold differentiation with respect  to t, {W(t )}  is 
s tandard  Brownian motion and a l , . . . ,  ap, b l , . . . ,  bq, c and cr (the scale parameter) 
are constants.  We assume that  a > 0 and bq ¢ 0 and define bj := 0 for j > q. 
Since the derivatives W (j) (t), j > 0 do not exist in the usual sense, we interpret  
(2.1) as being equivalent to the observation and state equations, 

(2.2) Y( t )  = a b ' X ( t ) ,  t >_ O, 

and 

(2.3) d X ( t )  = A X ( t ) d t  + e(cdt + dW(t)) ,  

where 

A = 
Ii 1 0  i] [i] [1 0 1 . . .  bl 

. . . .  • . " , e =  , b =  " 

0 0 "" " bp-2 
- a p  - a p - 1  - a p - 2  al kbp-1 

and (2.3) is an Ito differential equation for the s ta te  vector X ( t ) .  (We assume also 
tha t  X ( 0 )  is independent  of {W(t)}.)  The state-vector  X ( t )  is in fact the vector 
of derivatives, 

(2.4) x ( t )  = 

X(t) 1 X(I:) (t)/' 
x(p-~) (t) J 

of the continuous-t ime AR(p) process to which {Y(t)} reduces when bj = O, j > 1. 
The process {Y(t) ,  t _> 0} is thus said to be a CARMA(p,  q) process with pa- 

rameters  ( a l , . . . , % , b l , . . . , b q ,  a ,c)  i fY( t )  = or[1 bl "" b; -1]X( t )  where { X ( t ) }  
is a s ta t ionary solution of (2.3). The solution of (2.3) can be wri t ten as 

/o /0 X ( t )  : eArN(O) -+- eA(t-U)edW(11~) -~- e eA(t-u)ed?~, 

which is s ta t ionary if and only if 

X(O) ~ N (ap lc[ l  O . . .  O]', f o ~ e A Y e e ' e A ' Y d y )  

and all the eigenvalues of A (i.e. the roots of z p + aiz  p-1 + . . .  + ap = 0) have 
negative real parts.  Under  these conditions the autocovariance function of the 
process X (t) is easily found to be 

E[X*(t  + h)X*(t)']  = e~hr ,  h _> 0, 
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where X * ( t )  is the mean-corrected state vector 

x ( t )  - e/a~ q 

x( )(t) I x*(t) = 1. , 

X(/~)(t) J 
and 

fO O0 ! I := eAY ee e A Ydy. 

The mean and autocovariance function of the CARMA(p, q) process {Y(t)} are 
therefore given by 

(2.5) E Y ( t )  = a ; l ~ c ,  

and 

(2.6) 

Its spectral density is 

Cov(Z(t  + h), Y(t)) = ~b'  eAhr~b. 

For the process to be m i n i m u m  phase  the roots of 1 + blz  + . . .  + bqz q = 0 must 
have negative real parts. (This corresponds to invertibil i ty  for discrete t ime ARMA 
processes.) 

Notice tha t  the mean-corrected states and observations X * ( t i )  and Y * ( t i )  = 
Y ( t i )  - aplCrc, at times ~1, t 2 , . . . ,  satisfy the discrete-time state and observation 
equations, 

X * ( t i + l )  = e A ( t ~ + z - t d x * ( t i )  + Z ( t i ) ,  i = 1, 2 , . . . ,  

Y * ( t i ) = c r [ 1  bl " "  bp]X*( t i ) ,  i = 1 , 2 , . . . ,  

where {Z(t~), i = 1, 2 , . . . }  is an independent sequence of Gaussian random vectors 
with mean, E[Z( t i ) ]  = 0 and covariance matrices, 

ti+l --ti ! 
E [ z ( t d z ( t ~ ) ' ]  = eA~ee e A ~dy. 

dO 

These equations are in precisely the form needed for application of the Kalman re- 
cursions (see e.g. Brockwell and Davis (1991), Chapter  12). From these recursions 
we can easily compute m i  = E ( Y ( t i )  I Y ( t j ) , j  < i), and vi = E ( ( Y ( t i )  - m i )  2 I 
Y ( t j ) , j  < i), i _> 2, and hence the likelihood, 

(2.s) IN ] L = (27C)-N/2(Vl ' ' '  VN) -1 /2  exp -- E ( Y ( t i )  - m i ) 2 / ( 2 v i )  , 
i = 1  

~2 I1 + i~bl + . . .  + (i~)qbql 2 
(2.7) fY(~)  = 2~ I(i~)P + ( i ~ ) p - l a l  + . . .  + a~l 2' - ~  < ~ < o~. 
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where ml = a~lcrc and vl = cr2btEb. 
A non-linear optimization algorithm can then be used in conjunction with the 

expression for L to find maximum likelihood estimates of the parameters. The 
calculations of e At and the integrals are most readily performed using the spectral 
representation of the matrix A. (The eigenvectors of A can easily be written down 
in terms of the eigenvalues and the coefficients, a1, • . . ,  ap.) This is the method 
used by Jones (1981) for maximum Gaussian likelihood fitting of CAR processes 
with possibly irregularly spaced data and by Jones and Ackerson (1990) in their 
analysis of longitudinal data using CARMA processes. 

3. Threshold ARMA models with b and cT constant 

To develop a continuous time analogue of the discrete-time self-exciting au- 
toregressive moving average (SETARMA) process of Tong (1983) we would like to 
allow the parameters a~ , . . . ,  ap, b l , . . . ,  bq, c and a, of the process {Y(t)} in the 
defining equations (2.2) and (2.3) to depend on Y( t ) ,  taking fixed values in each of 
the 1 regions ri-1 _< Yt < ri, i = 1 , . . . , l  where - o c  = r0 < rl < " "  < rz = oc. If, 
instead of allowing the discontinuities in parameter values implicit in this defini- 
tion, we 'smooth' the transitions at the boundaries by interpolating the parameter 
values linearly in each of the regions ri - 5 <_ Y( t )  <<_ ri + 5, i = 1 , . . . , I  - 1, 
where 5 > 0 and 5 is small compared with min(ri - ri-1), then the coefficients of 
the resulting stochastic differential equation (2.3) satisfy conditions sufficient to 
guarantee the existence of a unique strong solution of the Ito differential equation 
(2.3). 

In this paper we shall assume that  only the autoregressive coefficients a1 , . . . ,  
ap and c change with the value of Y( t ) .  This restriction is satisfied of course by all 
threshold autoregressive models with constant a. We shall also restrict attention 
to the case of a single threshold, since the extension to more than one is quite 
straightforward. 

Thus we define the CTARMA(p, q) process with threshold at r, boundary- 
width 25 > 0 and constant b l , . . .  ,bq, cr exactly as in (2.2) and (2.3), except that  
we allow the parameters a~ , . . . ,  ap and c to depend on Y( t )  = crb'X(t)  in such a 
way that  

(3.1) -(J) c (J), , i = X , . . . , p ;  c(Y(t) )= 

where J = 1 or 2 according as Y( t )  < r - 5  or Y( t )  > r+5. For r - 5  < Y( t )  < r+5,  
we define the coefficients ai(Y( t ) )  and c(Y( t ) )  by linear interpolation. Thus Y( t )  is 
a linear combination of the components of a p-dimensional diffusion process { X (t)} 
whose drift and diffusion parameters are determined by (3.1). If X(0) = x, then 
{X(f)} is the unique strong solution of (2.3) subject to this initial condition. (We 
shall not require {X(t)} to be stationary as in Section 2.) 

If we allow 5 to be zero, a diffÉculty arises from the breakdown of the Lipschitz 
condition needed in the standard construction of the strong solution of the Ito 
equation (2.3). In order to specify uniquely what we mean by a continuous time 
threshold ARMA (CTARMA) process in this case, one possibility is to consider 
the well-defined strong solution of the Ito equation (2.3) with 5 > 0, i.e. with 
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parameter values as described above, and consider its behaviour as (5 ~ 0. Under 
our assumption that the only parameters depending on Y(t)  are a l , . . . ,  ap and c, 
we shall see (in Section 5) that these processes converge weakly as 5 ~ 0 to the 
weak solution of the corresponding Ito equation with 5 = 0. The remainder of 
this section is devoted to the characterization (via the Cameron-Martin-Girsanov 
formula) of the unique (in law) weak solution of the stochastic differential equation 
(2.3) with arbitrary 5 _> 0 and X(0)  = x. We shall in fact obtain an explicit rep- 
resentation of its joint distributions in terms of a functional of standard Brownian 
motion. 

(An alternative way to approach the definition of a continuous time analogue 
of the SETARMA process with 5 = 0 is to specify the state vector X( t )  as a 
p-variate diffusion process with appropriately defined boundary behaviour. In 
general there is no unique way in which to do this (see for example Brockwell and 
Hyndman (1992) and Brockwell et al. (1991) where two different such definitions 
of a CTAR(1) process are given). We shall reserve the term modified CTAR(1) 
for the process defined in the latter paper.) 

Assume now that the coemcients a l (Y ( t ) ) , . . . ,  %(g(t))  and c(Y(t)) are de- 
fined as in (3.1) with 5 _> 0, while b and a are both constant. In this case the 
CTARMA process {Y(t)} can be written (cf. (2.2) and (2.3)) as 

(3.2) Y(t)  = ab 'X( t ) ,  

where the components X1, X 2 , . . . ,  Xp of the state vector X (t) satisfy 

dX~ = X2(t)dt, 

dX2 = Xa(t)dt ,  

(a.3) : 
dXp_l = Xp(t)dt, 

dXp = [-ap(Y(t) )X~ (t) . . . . .  a~ (Y(t) )Xp(t) + c(Y(t) )]dt + dW(t).  

Our aim in this section is to show, with X(O) = x = [xl x2 "" Xp]', that (3.3) 
has a unique (in law) weak solution {X(t)}  and to determine the distribution of 
X (t) for any given X (0) = x. These distributions determine in particular the joint 
distribution of the values of the process {Y(t)} at times t l , . . . ,  tN given X(0).  

Assuming that X(O) = x, we can write X( t )  in terms of {Xp(s), 0 < s < t} 

using the relations, Xp_l(t)  = Xp-1 + fo Xp(s)ds , . . .  ,Xl( t )  = xl + fo X2(s)ds. 
The resulting functional relationship will be denoted by 

(3.4) X( t )  = F(Xp,  t). 

Substituting from (3.4) into the last equation in (3.3), we see that it can be written 
in the form, 

(3.5) dXp = D(Xp, t)dt + dW(t), 

where D(Xp, t), like F(Xp,  t), depends on {Xp(s), 0 < s < t}. 
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Now let B be standard Brownian motion (with B(0) = Xp) defined on the 
probability space (C[0, oc), B[0, oc), P~p) and let 5ct = a{B(s) ,  s _< t} V Af, where 
Af is the sigma algebra of P~ -null sets of B[0, ec). The equations 

(3.6) 

dZ1 = Z2dt, 

dZ2 = Z3dt, 

dZp_ l = Zpdt, 

dZp = riB(t), 

with Z(0) = x = [xl x2 . . .  xp]', clearly have the unique strong solution, Z(t) = 
F(B,  t), where F is defined as in (3.4). Let D be the functional appearing in (3.5) 
and suppose t h a t / )  is the Ito integral defined by / ) (0 )  = Xp and 

(3.7) dB(t) = -D(B ,  t)dt + dB(t) = -D(Zp, t)dt + dZp(t). 

If we define the new m e a s u r e / 5  on (C[0, ec), B[0, ec)) satisfying 

(3.8) dPxp = M(B, t)dP~, 

where 

/0' ] (3.9) M(B, t )  = exp - D2(B, s)ds + D(B, s)dB(s) , 

then by the Cameron-Martin-Girsanov formula (see e.g. Oksendal (1989), p. 105), 
/) is s tandard Brownian motion u n d e r / 5 .  Hence from (3.7) we see that  (B, / ) )  

is a weak solution of (3.5) [on (C[0, ec), B[0, oc),/Sx. , {St})] with initial condition 

Xp(O) = Xp. Hence (Z( t ) , / ) ( t ) )  is a weak solution (on the same probability space) 
of the equations (3.3) with initial condition X(0) = x. Moreover, by Proposi- 
tion 5.3.10 of Karatzas and Shreve (1991) and by theorem 10.2.2 of Stroock and 
Varadhan (1979) the weak solution is unique in law. The characteristic function 
¢(0 I x) of X(t)  given X(0) = x is therefore given by 

(3.1o) Cx(t) (0 I x) =/)~p [exp(iO'Z(t))] 

= E~p [exp(iO'Z(t))M(B, t)] 

= Ex~ [exp(iO'F(B, t))M(B, t)], 

where /)x~ and Exp denote expectation relative to /Sp and Pxp respectively, F 
is defined as in (3.4) and M as in (3.9). The importance of equation (3.10) is 
that  it gives the conditional characteristic function of the state-vector X(t )  (and 
in particular of the CTARMA process, Y(t) = ~b'X(t))  given X(0)  --= x, as an 
expectation of a functional of the standard Brownian motion {B(t)} starting at 
Xp. 
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The preceding construction of the weak solution {X(t)}  of (2.3) with coef- 
ficients as in (3.1) is valid both when 5 > 0 and when 5 = 0. I f ~  > 0 then 
the solution coincides in law with the unique strong solution {X(~)(t)}. In ei- 
ther case equation (3.10) determines the transition function of the Markov process 
{X (t)}. (The Markov property follows from Theorem 4.20 of Karatzas and Shreve 
(1991).) In the same way the moments of the transition function can be expressed 
as expected values of functionals of standard Brownian motion. 

In Section 5 we shall show that X (~) converges weakly as 5 ~ 0 to X (°), 
the weak solution when 5 = 0. First however we consider a useful sequence of 

approximating processes, X (e), which converge weakly to X (~) as n --* 0% for 
each fixed 5 > 0. 

4. A simple approximating sequence of processes 

For the numerical study of continuous time threshold AR models, Brockwell 
and Hyndman (1992) used an approximating sequence of processes {y(5)(t)}. The 
analogous approximating sequence for the threshold ARMA process defined in 
Section 3 is as follows: 

(4.1) Yn(6)(t) = o ' [ 1  bl 52 "..  bq]X(6)(t), 

where 

(4.2) X(6)(t + n -1)  = [I + n - l A ( Y ( 6 ) ( t ) ) ] X ( 6 ) ( t )  ÷ ?~-lb(]/-(5) (t)) 

+ 

and A(Y(t)) is defined as in (2.3) with a l , . . . ,  %, and c dependent on Y(t) as in 

(3.1). It is assumed also that the initial state X(5)(0) has the same distribution 
as X (6) (0) and is independent of the binary iid sequence {Z(t), t = 1/n, 2 /n , . . . }  
with P[Z(t) = 1] = P[Z(t) -- -1] = 1/2. An adaptation of the argument in 
Theorem 1 of Gikhman and Skorokhod ((1969), p. 460) shows that for 5 > 0, the 

finite-dimensionM distributions of the process {X (~) (t), t > 0} (with sample paths 
linear between t = j / n  and t = (j + 1)/n, j = O, 1, 2,. . .)  converge to those of 

a s  

The process {X(~)(t),t = 0,1/n,  2 /n , . . . }  defined by ( 4 . 2 ) i s  clearly 
Markovian. The conditional expectations, 

t )  = I = 

satisfy the backward Kolmogorov equations, 

(4.3) 
1 m~(x, t + n -1) = ~m~(x + n- l (A(y)~ + c(y)e) + n-1/2•(y)e, t) 

1 
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with the initial condition, 

(4.4) 0) = y, 

where 
y :-~ o 'b /x .  

These equations clearly determine the moments ran(x, t) uniquely. The higher 
order moments, 

m~)(x,t) -- E([Y~(~)(t)]J I X(n~)(O) = x), 

satisfy the same equation (4.3), and the slightly modified initial condition (4.4) 
with the right-hand side replaced by yJ. 

Let us denote by {X(~)(t)} the solution of (4.2) with {Z(t) } given and X (0) = 

x. Note that {X(~)(t)} is well-defined both for 5 > 0 and 5 = 0. 

PROPOSITION 4.1. Let A (1) and A (2) denote the matrices obtained when the 
values a~ 1) and a~ 2) respectively are substituted into the matrix A of (2.3). Then 
provided n is large enough for (I + n-~ A (1)) and (I + n - l  A (2)) to be non-singular, 

the finite-dimensional distributions of {X(~)(t)} converge weakly to those of 

{X(°)(t)} as 5 ~ 0 for almost all initial states x (i.e. for all x outside a set 
of Lebesgue measure zero). 

PROOF. For all values of n sufficiently large, the recursions (4.2) with 5 = 0 
define a mapping, x ~ X(t ) ,  of R p onto R p which maps sets of positive Lebesgue 
measure into sets of positive Lebesgue measure. The inverse image, N of {x : 
crb~x = r} therefore has zero Lebesgue measure, and for each m ~ N and any finite 
set of times t l , . .  •, t,~ there exists 5(x, t l , . . . ,  t,~) such that  if 5 < 5(x, t~ , . . . ,  t,~), 
then with probability one, 

X(~)(ti) = X(°)(ti), i =  1 , . . . , m .  

This completes the proof. [] 

In the following section, we shall show that  the joint distributions of X (6), the 
unique strong solution of the equations (2.3) with X(0) = ~ and with a l , . . . ,  ap 
defined as in (3.1), converge weakly as 5 $ 0, to those of X (°), the unique (in law) 
weak solution of (2.3) constructed in Section 3. Moreover X (~) converges weakly 
a s 6 ~ 0 t o X  (°). 

5. Convergence as 5 j. 0 

In Section 3 we showed that  the characteristic function of any weak solution 
X( t )  of (2.3) with coefficients as defined in (3.1) and with X(0) = x is given by 
(3.10). The dependence of (3.10) on 6 was not made explicit, however it is clear 
from the definitions of the functionals M and F that  M depends on 5 while F 
does not. For clarity we shall write M (~) for M in this section. As was also pointed 
out in Section 3, the result (3.10) is valid for all 5 > 0. 
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The aim of this section is to examine the relation between the processes 
{X(6)(t)} with 5 > 0 (which are defined as strong solutions) and the process 
{X(°)(t)} (which is defined in law only). Before proving the main result of this 
section we need a preliminary lemma concerning the process {F(B ,  t)} which ap- 
pears in the key representation (3.10). 

LEMMA 5.1. If  {B(t)} is standard Brownian motion, then the process 
{ F ( B , t ) }  defined as in (3.4) (with deterministic initial state x) is a Gaussian 
diffusion process. The covariance matrix V(t) of F ( B ,  t) (strictly positive definite 
for t > O) can be written as 

V( t )  = eH~ee e ~ Ydy, 

where [110'''i] 0 1 . . .  

H =  " " ".. and e =  

0 0 . . .  
0 0 . . .  

I f  O < c < T and b E R p, then 

i1 
min b 'V ( s )b - -  b'V(e)b. 

e < s < T  

PROOF. Observe that F(B ,  t) satisfies the stochastic differential equation 
(2.3) with c = al . . . . .  ap = 0. Since H is the value of the coefficient matrix 
A when al . . . . .  ap = 0, it suffices, by Proposition 6.2 of Ichihara and Kunita 
(1974), to check that 

rank(ee l, H e e l , . . . ,  H p - 1  e e  l) = p. 

This elementary calculation completes the proof. [] 

We now turn to the main result of this section. 

THEOREM 5.1. In the notation of (3.10), as 5 ~ 0, 

(5.1) Exp[exp(iO'F(B,t))M(5)(B,t)] ~ Exp[exp(iff F(B, t ) )M(°) (B , t ) ] .  

PROOF. By Scheff@'s theorem and Example 21.21 of Billingsley ((1986), 
p. 289), it suffices to show that M (5) (B, t) converges in probability to M (°) (B, t) 
as 5 $ 0. To establish this we shall show (see (3.9)) that  for each fixed t, 
fo D(5)(B,s) 2ds and f~ D(5)(B,s)dB(s)  converge in probability as 5 --~ 0 to the 
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corresponding integrals with 6 -- 0. (We use the notation D (5) to display the 
dependence on 5 of the functional D introduced in (3.5)). 

For the first of these we apply the Cauchy-Schwarz inequality twice to obtain 

the inequalities, 

• (L{s ~ [0, t]: I~b'F(B, 8) - ~1 < 6}) / 

× [ E : , ( L { s  ~ [O,t] : D~b'F(B, ~ ) -  ~I < 6})~] ~/~, 

where L denotes Lebesgue measure. From the definitions of D (6) and F, the first 
factor on the right of the last inequality is clearly bounded above by an expression 

of the form 

t Ex, max K(1 + IIF(B,s)II 2) , 
O<s<t 

where K depends only on the AR coefficients a} j) in (3.1). Note also, from 
Karatzas and Shreve ((1991), p. 306), that 

Exp ( m a x  IIF(B,s)II2~ <_ C(1+ [Ixll2m) exp(ct) for m _> 1, 
\O<s<t / 

where C is a positive constant. Hence 

ID(e)(B, s) 2 - D( ° ) (B ,  s)212 < Dr, (5.3) t Ex, 0ms<% 

where D is a positive constant. The final factor in the last inequality of (5.2) is 
bounded above by 

[tE~p(L{s e [0,t] : l a b ' F ( B , s )  - rl < 6})] 1/2, 
and application of Fubini's theorem followed by Lemma 5.1 shows that  for any 
¢ > 0 ,  

Ex,  (L{s  e [0, t]: ]crb'F(B, s) - r I < 6}) = P[I~rb'F(B, s) - r I < 6]ds 

[ < e + 26127ra2bIV~b]-lds. 
E 
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Since the last line converges to e as ~ $ 0 and since e is arbitrary, we conclude that  

~o ~ P[t~D'F(B, s) - rl < ~]d8 -~ 0 as ~ -~ O, 

From (5.2) and (5.3), we conclude that  for each fixed t, 

Exp D( ~l(B,8)2ds-  D( °)(B,8)2d8 -~ 0 as 5 --~ 0. 

Finally we observe, from the fundamental property of the Ito integral, that  

(5.4) 
2 

= Exp [Lt ID(5)(B,s) - D(°)(B,s)I2ds] . 

The proof that  the right-hand side of (5.4) converges to zero as 5 --~ 0 uses inequal- 
ities exactly analogous to those in (5.2) with D replacing D 2 throughout. This 

completes the proof that  for each fixed t, fo D(~)(B,s) 2ds and fo D(~)(B,s)dB(s) 
converge in probability as 5 --* 0 to the corresponding integrals with 5 = 0, and 
hence the result (5.1). [] 

Remark 5.1. The argument which gave us the representation (3.10) immedi- 
ately provides a similar expression for the finite-dimensional distributions of X (6). 
The weak convergence of these as 5 ~ 0 is proved in the same way as Theorem 5.1. 
The following still stronger result is also true. (It can also be proved with the aid 
of Theorem 2.4.2 of Kushner (1984).) 

THEOREM 5.2. X (~) converges weakly as 5 ~ 0 to X (°). 

PROOF. Since the finite-dimensional distributions of the processes X (~) con- 
verge as 5 ~ 0 to the finite-dimensional distributions of the process X (°), it is 
enough to prove that  X (~) is tight. This follows directly from problems 2.4.11 and 
5.3.15 of Karatzas and Shreve (1991). [] 

6. Examples 

The representation (3.10) determines the transition function of the state pro- 
cess X(t) both for 5 > 0 and 5 -- 0. In the same way the moments of the transition 
function can be expressed as expected values of functionals of standard Brownian 
motion. For example, the conditional mean of X(t) given X(0) = x is 

(6.1) E[(X(t) )  I X(O) = x] = E x ~ [ ( F ( B , t ) ) M ( B , t ) ] ,  r = 1 , 2 , . . . .  

Analytical evaluation of the right hand-side appears to be extremely difficult. Even 
for the CTAR(1) process with cr constant and (see (3.1)) a~ 1) = a~ 2) = 6 = 0, i.e. 
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for Brownian motion with two-valued state-dependent drift, the results of Karatzas 
and Shreve (1991), Proposition 6.5.1, demonstrate the complexity of the transition 
probabilities. 

Equation (6.1) does however suggest the possibility of simulating B and es- 
timating the expectation on the right by averaging the observed values of the 
functional over a large number of independent realizations. In the following ex- 
ample we compare this approach with the approximation used by Brockwell and 
Hyndman (1992). For the latter we solved the equations (4.3) and (4.4) with 
n = 10 and for the former we carried out the simulation with r = 9000 replicates. 

Example 6.1. 
(3.3)) by, 

where 

and 

Consider the CTAR(1) process Y(t) defined (cf. (3.2) and 

Y(t) = ~X(t), 

dX(t) = -a(X( t ) )X( t )d t  + dW(t) 

j" al if y < 0 
a(y)  / a2 if y >_ 0. 

In this case we have F(X(t))  = X(t) and D(X,t )  = -a(X(t ) ) .  The conditional 
expectation re(x, t) of X(t)  given X(0) = x is 

[ (/0 1 a2(B(s))B2(s)d s (6.2) m(x, t )  = Ex B( t )exp  - 2  

+ f[  a(B(s))B(s)dB(s)) 1 • 

For the case al = 0.5 and a2 = 1, the function re(x, 1) = E[X(1) I X(0) = 
x] = Ex [F(B, 1)M(B, 1)] was estimated using the sample mean of 9000 simulated 
realizations of F (B ,  1)M(B, 1). In Fig. 1 the resulting estimates, with x ranging 
from - 5  to +5, are shown together with the approximation of Brockwell and 
Hyndman computed from (4.3) and (4.4) with n = 10. The agreement between the 
two methods is extremely good for initial levels x close to the threshold. However 
as x moves further away from the threshold, the increasing conditional variance of 
F(B, 1)M(B, 1) (reflected by the sample variances in Table 1) causes the accuracy 
of the simulation method to deteriorate. 

Example 6.2. In this example we shall examine in more detail the form taken 
by the conditional expectation of a CTAR(2) process conditional on the initial 
value of the state vector. Let Y(t) be the process defined (cf. (3.2) and (3.3)) by, 

Y(t) =  xl(t) 
where the components X1, X2, of the state vector X( t )  satisfy 

d X  1 = X 2 ( t ) d t  , 

d X  2 = [ - a  2 ( g ( t ) ) 2  l ( t )  - a l ( Y ( t ) ) x  2(t) -}- c ( r ( t ) ) ] d ~  ~- d W ( ~ ) .  
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o 

g 

[ [ 7  BH :n=lO ] 
: = 

I I I I I 
-4 -2 0 2 4 

x 

Fig. 1. The one-step predictors for Example 6.1. 

Table I. The sample variance of 9000 simulated values of F(B, 1)M(B, 1) in Example 6. 

Initial Variance of 

level F(B, 1)M(B, 1) 

-4 .0 16.5 

-3.5 7.24 

-3.0 2.99 

-2.5 1.26 

-2.0 0.54 

-1.5 0.36 

-1.0 0.36 

-0.5 0.40 

0.0 0.41 

0.5 0.41 

1.0 0.43 

1.5 0.59 

2.0 1.15 

2.5 2.86 

3.0 8.32 

3.5 24.5 

4.0 59.9 

A s s u m e  now t h a t  X ( 0 )  = x = [Xl, x2]Q I n  th is  case we have 

F ( B , t ) =  Xl + B(s)as, B(t  , 



where 
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( /o ) D(B, t )  = -a2(Y( t ) )  Xl + B(s)ds - a l (Y( t ) )B( t )  + c(Y(t)),  

[1/o  /o ] M ( B ,  t) = exp - D 2(B, s)ds + D(B,  s)dB(s) , 

{ a l  if y < 0, 

a l ( y ) =  a~ if y>_0,  

{ a ~  i f y  < 0, 

a 2 ( y ) =  a2 2 if y_>0,  

c (y )=  ~Cl  if y < 0 ,  

L c2 if y > 0. 

15 

The  condit ional  mean  of X ( t )  given X(0 )  -- ~ is 

(6.3) E[X( t )  I X(O ) = x] = Ex2[F(B, t )M(B, t ) ] ,  

and the  condit ional  mean  re(x,  t) of Y(t )  given X(0 )  = x is therefore 

[(/o ) 1 (6.4) m ( x , t )  = (7 Ex~[FI(B, t )M(B, t )]  = aE~2 Xl + B(s)ds M ( B , t )  . 

For the  CTAR(2)  process of this Example  wi th  a I = 1, a l  2 = 0.5, a 1 = 0.5, a~ = 1, 
cl = 0.5, c2 = 1, cr = 1 and x2 = 0, numerical  results similar to those in Example  
6.1 were obtained.  They  are shown below in Fig. 2 and Table 2. 

o (~ 

g 

I I-'1 BH ::n:10 ] j 

] I I I I 
-4 -2 {] 2 4 

x 

Fig. 2. The one-step predictors for Example 6.2. 



16 

Table 2. 

P. J. B R O C K W E L L  AND O. S T R A M E R  

The sample variance of 9000 simulated values of F1 (B, 1)M(B,  1) in Example 6.2. 

Initial Variance of 

level FI(B, I)M(B, 1) 

-4 .0  38.43 

-3 .5  20.18 

-3 .0  9.98 

-2 .5  4.67 

- 2 . 0  1.89 

-1 .5  0.71 

- 1 . 0  0.25 

-0 .5  0.16 

0.0 0.56 

0.5 0.51 

1.0 0.37 

1.5 0.46 

2.0 1.15 

2.5 3.77 

3.0 11.70 

3.5 38.18 

4.0 130.27 

Example 6.3. Brockwell and Hyndman (1992) fitted a continuous-time 
threshold AR(2) model to the annual sunspot numbers, 1770-1869, by maximiz- 
ing the Gaussian likelihood conditional on the initial state X (0) = (101, 0)'. The 
conditional Gaussian likelihood (GL) was computed by assuming the transition 
probabilities of the state vector for a time-interval of one year to be Gaussian with 
transition mean and covariance matrices equal to those of the approximating pro- 
cess defined in Section 5 with n = 10. The fitted model has a boundary at r = 10.0 
and a value of - 2  ln(GL) equal to 796.6, as compared with the maximum-likelihood 
linear CAR(2) model, 

X(2)(t) + 0.495X(1)(t) + 0.433X(t) = 24.TW(1)(t) + 21.0, 

for which - 2  ln(GL) = 813.1. If the maximization is Constrained to the class of 
CTAR(2) models with constant a, we obtain the fitted model, 

X(2)(t) + 7.39X(1)(t) + 0.43X(t) = 33.8W(1)@) -}-30.3, 

X(2)(t) + 0 . 7 5 X ( 1 ) ( t )  + 0 . 4 6 X ( t )  = 3 3 . 8 W ( 1 ) ( t )  + 21.3,  

x(t) < io, 

X(f) > I0, 

for which - 2  ln(GL) = 800.9. In order to check the use of the approximating 
process with n = 10 in computing GL for this model, a comparison was made of 
the mean and variance of X(1) given X(0) = (x, 0)' for values of z between 0 
and 100. Figures 3 and 4 show the comparisons between the approximations with 
n = 10 and corresponding values obtained by simulation of the approximating 
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I I I I I I 
0 20 40 60 80 100 

x 

Fig. 3. The mean of X(1) conditional on X(0)  = (x, 0)', 0 < x < 100, for Example 
6.3. The continuous curve is based on the approximating process of Section 4 with 
n = 10 and the points marked by triangles are obtained by simulation with n = 100 and 
Gaussian noise. 

xZ 

a: 

g 

I I I I 1 1 
0 20 40 60 80 1 0 0  

Fig. 4. The standard deviation of X(1) conditional on X(0)  = (x,0) ' ,  0 < x < 100, for 
Example 6.3. The continuous curve is based on the approximating process of Section 4 
with n = 10 and the points marked by triangles are obtained by simulation with n = 100 
and Gaussian noise. 

p r o c e s s  w i t h  n = 100 a n d  w i t h  G a u s s i a n  i n s t e a d  o f  b i n a r y  n o i s e  p r o c e s s  Z(t). 
E a c h  of  t h e  p l o t t e d  p o i n t s  for  t h e  s i m u l a t i o n  is b a s e d  o n  i n d e p e n d e n t  s a m p l e s  o f  

s ize  100,000.  S u c h  a s i m u l a t i o n  is m u c h  s l o w e r  t h a n  d i r e c t  c o m p u t a t i o n  u s i n g  t h e  

a p p r o x i m a t i n g  p r o c e s s  w i t h  n = 10, b u t  t h e  g r a p h s  i n d i c a t e  t h a t  b o t h  m e t h o d s  
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give very similar results. 

Example 6.4. To illustrate the use of the non-linear threshold ARMA process 
with one threshold we consider the logged (to base 10) Canadian lynx series, 1821- 
1920. By maximizing GL (the Gaussian likelihood conditional on the initial state 
vector) as described in Brockwell (1994), the following CTARMA(2, 1) model was 
fitted to the data. 

X(2)(t) + 0.458XO)(t) + 0.349X(t) 

= 0.207[W(1)(t) - 0.688W(2)(t) + 5.348], X(t) < 3.242, 

X (2) (t) + 0.003X (1) (t) + 0.407X(t) 

= 0.223[W(1)(t) - 0.388W(2)(t) + 5.206], X(t) > 3.242, 

with - 2  ln(GL) = -26.37. The observed root mean square error of the one-step 
predictors of the 14 values for the years 1921-1934 is 0.104, comparing favourably 
with the values 0.120, 0.116 and 0.115 obtained using the threshold model of Tong 
(1983), the random coefficient autoregressive model of Nicholls and Quinn (1982) 
and the bilinear model of Subba-Rao and Gabr (1984) respectively. 

If we constrain the maximization to the class of CTARMA(2, 1) models with 
constant values of the moving average coefficient and the parameter a, we obtain 
the model, 

X (2) (t) + 0 .553X (1) (t) + 0 .344X(t)  
= 0.195[W(1)(t) - 0.575W(2)(t) + 5.574], 

x (2 ) ( t )  + o .oosx(1)  ( t ) +  0 .402x( t )  

= 0 .195[W0)(t )  - 0.575W(2)(t) + 5.8771, 

X(t) < 3.092, 

X(t) > 3.092, 

for which the value of - 2  ln(GL) is -25.40 and the observed root mean square one- 
step error for the years 1921-1934 is 0.105. Thus the constrained model achieves a 
value of - 2  ln(GL) close to that of the unconstrained model and gives a root mean 
square error for the years 1921-1934 which, although not quite as good as the 
unconstrained model, is still better than the competing non-linear models referred 
to in the preceding paragraph. 

7. Conclusions 

We have used the Cameron-Martin-Girsanov formula to investigate the rela- 
tion between the joint distributions of the well-defined strong solutions of (2.3) 
with coefficients as in (3.1) and 6 > 0 and those of the weak solution, which 
is defined also when 6 = 0. The representation (3.10) also suggests an obvious 
simulation technique for computing moments of the transition distribution of the 
solution both for 6 > 0 and 6 = 0. Numerical examples suggest good agree- 
ment between the results from this technique and those from the approximation 
of Brockwell and Hyndman (1992), provided the initial state X(0)  is close to the 
threshold. However the performance of the Cameron-Martin-Girsanov simulation 
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method deteriorates as X(0) moves away from the threshold since the functionals 
of Brownian motion required in the simulation have large variance. The approx- 
imation technique of Brockwell and Hyndman (1992) was used to fit non-linear 
continuous time threshold models to the sunspot and logged Canadian lynx trap- 
pings. For a more detailed discussion of the model-fitting procedure see Brockwell 
and Hyndman (1992) and Brockwell (1994). 
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