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A b s t r a c t .  Suppose X and Y are independent and identically distributed, 
and independent of U which satisfies 0 < U < 1. Recent work has centered on 
finding the laws £ (X)  for which X -~ U(X + Y) where - denotes equality in 
law. We show that  this equation corresponds to a certain projective invariance 
property under random rotations. Implicitly or explicitly, it has been assumed 
that  the characteristic function of X has an expansion property near the origin. 
We show that  solutions may be admitted in the absence of this condition when 
- log U has a lattice law. A continuous version of the basic problem replaces 
sums with a L6vy process. Instead we consider self-similar processes, showing 
that  a solution exists only when U is constant, and then all processes of a given 
order are admitted. 
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1. Introduction 

Let {Xn : n >_ 1} be a sequence of independent  and identically d is t r ibuted  
(i.i.d.) r a n d o m  variables  (r .v. 's)  and  U be a r.v., independent  of the  X ' s ,  and whose 
law, £(U),  is suppor t ed  in [0, 1] and is not  degenera te  at  0 or 1. Pakes  (1992b) 
considers the  p rob lem of de te rmin ing  those non-tr ivial  laws £(X1)  which solve the  
"in law" mixed sum equat ion  

(1.1) X1 -t-.. .  + Xm TM U(X1 + "'" -~- Xm+n) 

where TM denotes  equal i ty in law, and  m,  n c N are fixed. A cont inuous version 
posi ts  a L~vy process (Z~- : T > 0), Z0 = 0, independent  of U and seeks solutions 
f o r / : ( Z 1 )  of 

(1.2) z~ ~- uz~+~ 

* This research was in part supported by NSERC grant A-8466. 

797 



798 ANTHONY G. PAKES 

for fixed positive u and v. These formulations cover several special cases in the lit- 
erature; see Pakes (1992a) for a review which should be supplemented by Shanbhag 
(1972), Chang (1989) and Alzaid and A1-Osh (1991). The latter is significant in 
being the first contribution following L4vy's complete solution, stable and semi- 
stable laws, when U is constant. But being unpublished, Shanbhag's work had 
little impact. Another early and independent contribution was posed as a problem 
by Cowan (1980). His challenge was to show that if V1, V2 and U are independent 
and uniform on [0, 1], then W = (V1V2) U is uniform on the same interval. This 
equality is an exponentiated version of (1.1) with m = n = 1. Note that neither 
Cowan or the respondents to his problem mention any sort of converse formulation. 
Pakes (1992a, 1992b) subsumes the later, and apparently independent, univariate 
results of Alamatsaz (1993). Generalizations of the multiplication operation in 
(1.1) and (1.2) give characterizations which admit lattice laws. See van Ham and 
Steutel (1993), and Pakes (1993), for this. 

Fix (5 > 0 and 0 # A C C. Let C((5, A) be the set of functions 05 which 
are defined and continuous on N, 105(t)l _< 1, and which have the local expansion 
05(t) = 1 + At~(l + o(I)) as ~ -+ 0+. Set C((5) = UA#OC((5, A)" If 05 E:C((5) 
is a characteristic function (CF) of a law £(X) then (5 < 2 and we shall write 

c((5). 
Pakes (1992b) proved that  if (1.1) has a solution £ ( X J  whose CF 05 E 0((5) 

then 

(1.3) E(Ug - 
m+n 

(= ~+v in the case of (1.2) and then 05 is the CF of Zl). Assume (1.3) holds. The 
CF version of (1.1) is 

(1.4) (¢(t)) = E[(¢(Ut)) 

and Pakes (1992b) shows this has at most one solution in C((5, A). Thus (1.1) 
admits at most a two-parameter family of laws in C((5), and any one of these laws 
determines that of U. It is in this sense that (1.1) can be said to characterize laws. 
Similar remarks apply to (1.2) which induces an obvious analogue (generalization 
even) of (1.4): 

(1.5) ( ¢ ( t ) p  = 

But note that there is an equivalence between (1.4) and (1.1), i.e., a CF solution 
of (1.4) induces a solution £(X1) of (1.1). On the other hand, a CF solution ¢ of 
(1.5) must be infinitely divisible (infdiv) for (1.2) to have meaning. This occurs 
for all known cases but, in principle, (1.5) could have a solution for irrational u or 
v which is not infdiv. 

Pakes (1992b) shows when (5 ___ 2 that (1.4) always has a solution in C((5), but 
only when m = 1 is it possible to guarantee it is a CF: more generally, (¢(t)) m is 
a CF. Such solutions are mixtures of stable laws, including stable laws themselves 
(and their reflections) and generalized Linnik laws (i.e., gamma scale mixtures of 
stable laws). Similar remarks apply to (1.5).: 
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We show in Section 3 tha t  membership of C(5) is, in a general sense necessary 
for a characterization result. We do this by extending a construction in Pakes 
(1992b) to show tha t  mixtures of semi-stable laws (SS-laws) are admissible when 
- l o g  U has a lattice law satisfying some mild constraints. This extension sug- 
gests tha t  w h e n / 2 ( - l o g  U) is non-lattice then  solutions must lie in C((5), but  this 
question remains open. 

Prel iminary material  on SS-laws is presented in the next section, together 
with a geometric invariance interpretat ion of (1.1) which seems to be new. This 
supplements the motivations described in Pakes (1992a). 

Historically, these mixture-type characterizations were first formulated in 
terms of (1.5), before the probabilistic representation in terms of a L6vy pro- 
cess via (1.2). See Pakes (1992a) for references for this. But  (1.2) is meaningful 
for other processes. We illustrate this in Section 4 where (Z~-) is a self-similar 
process. In this case (1.2) can be completely solved, but  only in a trivial way, 
and this precludes sufficient uniqueness to give meaningful characterizations. This 
suggests tha t  restriction to L4vy processes is necessary for a rich theory. 

2. Some preliminaries 

Say tha t  a CF cr corresponds to a SS-law if it does not vanish on the real line 
and satisfies the functional equation 

(2.1) cr(ct) = (a(t))  "y, 

where c and 7 are positive constants; see Kagan et al. (1973) or Ramachandran  
and Lau ((1991), p. 59). Non-trivial solutions exist iff 0 < c < 1 and then  7 = c 5 
for some 0 < (5 _< 2. Denote the class of all SS-laws corresponding to (5, c) by 
SS((5, c) and let SS((5) = U0<c<l SS((5, c). Usually c is allowed to be negative but  
our formulation imposes no essential restriction. Any SS-law is infdiv, and if 5 = 2 
then  it is a centered normal law. When 5 < 2, cr can be specified more closely in 
terms of its canonical representation, but  we do not need this here. See the above 
references but  note tha t  the centering te rm given therein can be present only when 
(5 = 1. The laws in SS((5) N C((5) comprise the strictly stable laws of index 5, given 
by 

(2.2) a(t)  = exp [ - ( a  + ib sgn(t))]tl ~1 

where a and b are constants satisfying: 
(i) If (5 ¢ 1 then a > 0 and Ib[ _< a I tan(~r(5/2)l; and 

(ii) If (5 = 1 then  a _> 0 and a + Ibl > 0. 
If u = c (a.s.) in (1.1) then  (1.3) becomes 

(2 .3 )  c6 - m 
m -k- n 

and (2.1) is just  the CF version of (1.1). Similar remarks apply to (1.2). The case 
m = n = 1, (5 = 2 and c = l / v / 2  provides a well known characterization of the 
normal law; see Kagan et al. ((1973), p. 448). 
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Still assuming rn = n = 1, (1.1) has an attractive geometric interpretation 
which extends in an obvious way. Regard X1 + X2 as the resultant length of the 
sum of collinear vectors with signed lengths X1 and X2, directed along the line 
having polar angle 0 where c = cos 0. Then c(X1 + X2) is the projection of this 
vector onto the horizontal axis and our problem seeks those laws for which this 
projection equals X1 in law. When 0 < 0 < 7r/4 then 6 > 2 and there are no non- 
trivial solutions. All centered normal laws appear for 0 = 7r/4, as do non-normal 
SS-laws when 7c/4 < 0 < %/2. Indeed 2 > 5 _> 1 when ~r/4 < 0 < ~r/3, and the 
stable laws corresponding to 0 = 7r/3 are all Cauchy laws. Finally, 1 > 5 > 0 when 
~r/3 < 0 < 7c/2, and this region admits all the one-sided stable laws. 

Thus the general problems (1.1) and (1.2) ask for laws which are projectively 
invariant under random rotations. 

3. Mixed semi-stable solutions 

Pakes (1992b) shows that (1.1) can be solved if a related one-sided law can be 
determined. Suppose (1.3) holds, 0 < 5 < 2 and there is a non-negative sequence 
(]7, : L, > 1) independent of U, with E(Y1) = 1, and 

(3.1) + . . .  + us(Y1 + . . .  + 

Then (1.1) has the solution 
X1 ~-- SYll/5 

where S is independent of Y1 and has the above strictly stable law; see (2.2). This 
is the only solution in C ( 5 , - a - i b ) .  The Laplace-Stieltjes transform (LST) version 
of (3.1) always has a positive and non-increasing solution A satisfying A(0) = 1, 
A'(0+) = -1 ,  and it is an LST when m = 1 (thus completely solving (1.1)). 
There is a version of this construction for (1.2) which requires the existence of a 
subordinator (Y~) with E(Y1) = 1 solving Y~ ~ U~Y~+,. 

The following theorem extends this construction. Let (S(~-) : ~- > 0) denote 
a SS(5, e)-process, i.e., a L~vy process where S(T) has the semi-stable CF (~r(t))~; 
see (2.1). Let N+ = {0, 1 , . . } .  

THEOREM 3.1. Let m, n E N be fixed and 0 < c < 1 satisfy (2.3) for some 
0 < 5 < 2. Suppose N is an N+-valued r.v. having a possibly defective law. Set 
V = e N in (3.1), suppose (1.3) is satisfied and that (Y,) exists as above with I71 
independent of S(T). Then (1.1) has the solution 

~ s(Y1)  X l  = 

PROOF. Write the CF of S(1) as or(t) = exp(-w(t)) .  
w(ct) = e~cz(t) which, when iterated, implies (a.s.) 

(3.2)  (ut) = u%(t )  

Then (2.1) becomes 

for U as specified above. 
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If I is the LST of Y1 then (3.1) is equivalent to 

(3.3) = 

which holds for 0 _> 0, and hence for 0 in the open right-hand complex plane. 
Since S(1) has a non-lattice law, I exp(-w(t)) l  < 1 for t # 0, whence N(w(t)) > 0. 
Hence, defining ~b(t) = A(a~(t)), the CF of S(Y1), we have from (3.2) and then (3.3) 
that 

= E { [ a ( u % ( t ) ) F  ÷ n  } = = 

This is the CF version of (1.1), and the proof is complete. 

Remarks. 1. When (S(T)) is a stable process then S(Y1) TM SY~/~ where S 
has the stable law defined by (2.2). 

2. The identity (3.2) holds for any U when S(1) is stable, but only for U as in 
the theorem for any other SS(6, e)-law. This suggests that £(X1) E d(6) whenever 
-log U has a non-lattice law. Indeed, this often is obvious just from (1.4) when 
U has a smooth density. 

3. If f is the probability generating function of N then (1.3) and (2.3) imply 
f ( ~ + ~ )  - ~ . In particular we must have E(N)  > 1 and P ( N  O) > O. 
Conversely, it is obvious now that appropriate choice of £(N)  will satisfy (1.3) 

fn and (2.3). For example, let P ( N  = O) - 2m+n - 1 - P ( N  = 2) giving, when 
m = n = 1, A(0) = 1 2 2 0 2 5(A(0)) + 5(A(X)) . This has a unique LST solution with 
M(0) = -1 .  If £ (N)  is defective then P(U = 0) > 0 and hence £(X1) has an atom 
at zero. See Pakes ((1992b), Lemma 2.2) and Section 4. 

4. Theorem 3.1 has a continuous version: If (Y~) is the above subordinator, 
independent of (S(T)), then Z~ = S(Y,)  is a L6vy process and £(Z1) solves (1.2). 

4. The self-similar case 

We consider (1.2) but assume now that (Z~) is a non-trivial stochastically 
continuous self-similar process with Z0 = 0. Self-similarity means an equivalence 
between spatial and temporal scaling. Specifically, there is a positive number H, 
which is unique, such that 

(4 .1)  (ZaT) ~- (aHZ~r) 

and we say (Zr) has order H. See Lamperti (1962), and Maejima (1989) for 
a survey. Self-similar processes are not in general infdiv and the CF version of 
(1.2) differs in form from (1.5). Imposing additional restrictions will bring our 
two interpretations of (1.2) closer. Thus if (Z~) also has independent increments 
then £ ( Z , )  is infdiv (in fact, of class L). If (Z,) is also a L~vy process then it 
is a stable process and it satisfies (1.2) only when U is a constant. Surprisingly, 
self-similarity alone implies this restriction. 

THEOREM 4.1. Suppose (Z~) is stochastically continuous, self-similar and 
Z 0 = 0 .  
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(i) Let H > 0 and U ~ H = (T4-~) -- c in (1.2). Then any self-similar process 
of order H solves (1.2). 

(ii) Suppose (Z . )  has order H and solves (1.2). Then U = c. 

and ~- -- u + v for one-dimensional distributions PROOF. (i) Take a = 
in (4.1). 

(ii) Choosing ~- = 1 in (4.1), and then a = u and a = u + v for the left and 
right hand sides of (1.2), reduces (1.2) to 

(4.2) Zz ~ ZlU/c. 

To "divide out" Z1 let ~ and ¢ be the CF's  of log IZll and log(U/c), respectively. 
Then (4.2) yields (( t)  = 4( t )¢ ( t )  and hence ¢(t)  - 1 in an open interval containing 
the origin but  no zeros of 4. It follows tha t  ¢( t)  - 1 and the assertion follows. 

Theorem 4.1 asserts tha t  no self-similar process has the above projective in- 
variance property for random rotations but  all have it for a correctly chosen fixed 
direction. 
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