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A b s t r a c t .  Tukey (1965, Proc. Nat. Acad. Sci. U.S.A., 53, 127-134) intro- 
duced linear sensitivity as a measure of informativeness in a collection of order 
statistics. Here we study its general properties and discuss how it is related to 
the best linear unbiased estimator, Fisher information measure, and asymptotic 
relative efficiency. Also, we obtain explicit and asymptotic expressions for the 
linear sensitivity of a collection of consecutive order statistics from a location or 
from a scale family, and discuss its role in the comparison of L-estimators. We 
conclude our discussion with examples from uniform, exponential and normal 
populations. 
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1. Introduction 

Let  Y be a r a n d o m  variable (rv) wi th  cumula t ive  dis t r ibut ion funct ion (cdf) 
F(y; O) where 0 is a real valued pa ramete r .  Let  E ( Y )  = #(0) be  a differentiable 
funct ion of 0 wi th  derivat ive #'(0), and Var(Y)  = a2(0) be  positive. Tukey  (1965) 
defined leverage of Y as 5(Y; 0) = # ' (0) ,  and  linear sensitivity of Y as 

(1.1) $ (Y;  0) - {5(Y; 0)} 2 
~2(0 ) ' 

which is t aken  to be zero when ~2(0) is infinite. He used $ ( Y ;  0) as a p a r a m e t -  
ric measure  of informat iveness  in Y abou t  0. We formal ly  call it Tukey's linear 
sensitivity (TLS).  Clearly the  TLS is scale invariant  and is one of the  easiest mea-  
sures to compute .  Moreover,  for two es t imators  W1 and W2 with  the  same mean,  
S(W1; O)/S(W2; O) represents  the efficiency of W2 with  respect  to W1. 

Now suppose  Y is a k-dimensional  r a n d o m  vector  wi th  Y = (YI,- • -, Yk) t hav-  
ing mean  vector  E ( Y )  = # = (#1(0), . . . ,  #k(O))' and covariance ma t r ix  C ( Y )  = 
E whose elements  crij possibly depend on 0. Let  5~(0) --- #~(0), 1 < i < k and 
c = ( e l , . . .  ,ck) ~ where the  ci 's  m a y  depend on 0. T h e n  Tukey  defines leverage 

of c '  Y as 5(c' Y ;  O) k = }-~i=1 c~5~(0) = c ' h  where A = ( 5 1 , . . . , 5 k ) ' .  W i t h  this 
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convention, the TLS of the vector Y is defined to be S( Y; 0) = sup~{S(c' Y; 0)}. 
In other words, 

(1.2) S( Y; O) = sup{(c 'A)2/c 'Ec}.  
c 

Tukey studied some of the properties of S ( Y ;  0) when Y = (Yr:~,... ,  Yk:~)', 
1 < r < k _< n, where Y/:~ is the i-th order statistic from a random sample of 
size n from the absolutely continuous cdf F(y; 0). In that context S provides a 
meaningful measure of efficiency of unbiased L-estimators of location and scale 
parameters. Possibly because of its unusual place of appearance, Tukey's work 
went unnoticed even though the literature on linear estimation based on order 
statistics is quite huge (Balakrishnan and Cohen (1991), Chapter 4). 

In this paper, we explore general properties of the measure 8. We obtain below 
an explicit expression for S( Y; 0) as a function of A and E. In Section 2 we explore 
some desirable properties of S( Y; 0) and discuss how it is related to best linear 
unbiased estimator (BLUE) of 0, to the Fisher information measure (FIM) in Y, 
Z( Y; 0), and to the concept of asymptotic relative efficiency (ARE). In Section 3 
we observe some deficiencies of S. In Section 4, we obtain expressions for and 
approximations to $ ( Y ;  0), when Y is a vector of consecutive order statistics 
from a random sample, and 0 is either a location or a scale parameter. In both 
these cases, Var(0) = {S(Y;0)}  -1, where 0 is the BLUE of 0. Thus, for any 
L-statistic T that is unbiased for 0, 8(T; 0)/$( Y; O) represents the efficiency of 
T with respect to the BLUE. The last section is devoted to examples on TLS of 
order statistics. There we compute 8(  Y; 0) for uniform, exponential and normal 
populations and compare it with Z( Y; 0) whenever the latter is defined. 

The following lemma comes in handy in our exploration of the properties of 
TLS. 

LEMMA 1.1. When E is positive definite, S ( Y ;  O) = A ' E - 1 A  and the linear 
function of Y with maximum TLS is of the form d(0)A 'E  -1 Y,  where d(O) is a 
scalar function of O. 

PROOF. From a well-known result which is essentially a version of the 
Cauchy-Schwarz inequality (Rao (1973), p. 60), it follows that supc{((c'A)2 / 
c 'Ec)}  = A ' E - 1 A .  That result also identifies the vector c corresponding to 
the maximum value as being proportional to E -1A.  [] 

When E is just positive semidefinite, one can find a c for which d e c  is zero, 
and hence S( Y; 0) will be undefined. 

2. Some connections and desirable features of $ 

2.1 Relationship with the BLUE 
Suppose d(O) can be chosen such that a '  = d (0 )A 'E  -1 is free of 0. Then, 

clearly a ' Y  is the BLUE of a '#  since for any other linear unbiased estimator 
c' Y, c ' A  ---- a'Z~ and {(c 'z~)2/c '~c} < {(a'Z~)2/a'~a}. Further, S (a '  Y; 0) ---- 
$(  Y; 0). 
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In the usual linear model setting, let Y = AO + e, where e is a random vector 
with zero mean vector and C(e) = E is positive definite. Let 0 be the BLUE of 
0, where 0 is a linear function of components of 0. Then forT,  an unbiased linear 
estimator of 0, {$(0; O)/S(T; 0)} _< 1 and the ratio represents the efficiency of T 
with respect to t~. 

We will explore the special role of TLS in the linear estimation of location and 
scale parameters based on order statistics in Section 4. 

2.2 Relationship with the Fisher information measure (FIM) 
Let 27(T; 0) denote the FIM contained in a statistic T and #(0) be its mean. 

Whenever Z(T; 0) is positive and p'(0) exists, from Cram~r-Rao inequality it is 
known that Var(T) _> {(p'(O))2/Z(T; 0)}. Thus, as Tukey ((1965), p. 128) notes, 
if Z(T; 0) exists, it provides an upper bound for $(T; 0). The two measures 
coincide if, and only if (iff) equality is attained in the Cram4r-Rao inequality. 
From Wijsman (1973) (see also Lehmann (1983), p. 123) it then follows that  
27(T; 0) = S(T; 0) iff T has a one-parameter exponential family density. 

We have seen above that if there exists d(O) such that a '  = d (0 )A 'E  -1 is free 
of 0, $ ( Y ;  0) = $(T; O) where T is the BLUE of a '#.  Since 27(Y; 0) _> Z(T; 0) 
for any statistic T, we can then conclude that 27( Y; 0) provides an upper bound 
for S( Y; 0). The two coincide iff a / is free of 0 and T belongs to a one-parameter 
exponential family. This is the case, for example, when Y1,.-. ,Y~ themselves 
form a random sample from a one-parameter exponential family density f(y; O) = 
h(y) exp{r/(0)y - B(0)}. It is easy to see that, in this ease { r / ( 0 ) } - l A ' E  -1 = 

n (1 , . . . ,  1) can be chosen as a '  and T = Y~=I Yi. 

2.3 Connection with ARE 
Suppose T~ is a statistic based on a random sample of size n, which is asymp- 

totically normal with mean p~(0) and variance cr~(0). In the inference literature, 
the efficacy of T~ is defined to be en(O) = {(p'~(0))2/cr~(0)}, assuming #~(0) is 
differentiable (Pratt  and Gibbons (1981), p. 378). From (1.1), it is clear that e~(0) 
is S(T~; 0). The asymptotic efficacy of Tn is e(T) = limn--~oo(e,~(O)/n). The ARE 
of T~ relative to another sequence T~* is defined to be ARE = e(T)/e(T*). This 
means ARE = lim~-~oo{S(T~; O)/S(T~; 0)}. 

2.4 Desirable properties 
The TLS has some of the desirable properties expected of a measure of in- 

formation. It is nonnegative whenever it is defined, and for rv's X and Y, 
S(X,  Y; 0) = $(X;  0) + $(Y; 0) whenever X and Y are independent, or are just 
uncorrelated. The latter property is known as weak additivity. 

THEOREM 2.1. (Convexity) If F3(y;O) = eeFl(y;O) + (1 -c~)F2(y;O), 0 < 
c ~ < l ,  

(2.1) ,5'3(Y; O) _< c~SI(Y; O) + (1 - c~)S2(Y; 0), 

where Sj(Y;O) is the TLS of Y when its cdf is Fj(y;O), j = 1,2,3. Thus, $ is 
c o n v e x .  
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PROOF. Let #j denote the mean vector, A j, its derivative (with respect to 
0), and E j  be the covariance matrix of Y when F = Fj, j = 1,2,3. Now, for an 
arbitrary vector c, let c~Aj = Aj and c~Ejc = 7j. We will show that 

(2.2) 2 { ' \3 /73}  ~ (Oz/71))~2 ~- { (1 - -  O~)/72}/\ 2. 

Since A3 = etA l + ( 1 - a ) A 2 ,  A3 = aA1 +(1--c~)A2.  Further, on using the 
fact that E3 = aN1 + (1 - c~)E2 + a(1 - a ) (# l  - #2)(#1 - #2)', it follows that 
')/3 = OZ~l -t- (1 -- O~)~2 "~-Oz (1 -- O~) { C z (~1 -- ~t2)(~tl -- ~t2) zC }' Using these represent ations, 
it can be seen that (2.2) holds iff, {c'(#1 - #2)(#1 - #2)'c}[(a/71)),12 + {(1 - 
O~)/~/2},~ 2] -1- {(~2/71)1/2~1 -- (71/~/2)1/2)k2} 2 ~ 0. This is obviously true. In view 
of (1.2), we then can conclude that 8 is convex. 

Equality is achieved in (2.2) if A1 = A2 = 0, or if "~1 = /~2 and 71 = 72. 
As a consequence, we can conclude that equality holds in (2.1) if either the mean 
vectors are free of 0 or when F1 and F2 have common mean vectors and covariance 
matrices. [] 

Let Y'  = (Y{, Y~). From the definition, it is evident that $ (  Y; 0) > $(Y1;O) 
implying the monotonicity of S. What  about the increase in the amount of TLS? 
This question is answered by the following result. 

THEOREM 2.2. (Monotonicity) Let A~= (A~I,AS) and E - -  \1E21 E22 

where the partitions correspond to the partitioning of Y into Y1 and Y2. Suppose 
E is positive definite and let ~32.1 = E22 - E21E11E12. Then, 

(2.3) ,q( y ;  0) = $(Y1;O) + (A2 - Y]21~-2~111A 1)'Y~2.~ (z]I2 -- ~-]21~-]11~1). 

PROOF. This result follows from Lemma 1.1 and the discussion about the 
joint and conditional distributions associated with a multivariate normal random 
vector. (See, for example, Anderson (1984), p. 35.) [] 

Theorem 2.2 provides an explicit expression for the increase in TLS when 
additional observations are added to the data set. From the relation (2.3) it is 
evident that the increase can be zero only when A2 = E21E11A1. If E is free of 
O, this is possible iff E(Y2) - E21E{-1E(Y1) does not involve 0. This can happen 
when Y is multivariate normal, and in the context of order statistics also such a 
situation can arise. See Examples 1 and 2 in Section 5. 

3. Deficiencies of $ 

Ferentinos and Papaioannou (1981) provide an extensive list of desirable prop- 

erties expected of a measure of information. We now examine TLS and note that 
it has some deficiencies in the sense it fails to satisfy some of these properties. 

For a rv X, let J(X; 0) be a measure of information contained in X about 0. 
It has conditional inequality property if for any rv Y, J ( Y ;  0) >_ J ( Y  [ X; 0). This 
property does not hold for S. For example, let X be uniformly distributed over 
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(0, 2) and given X = x, let Y be normal with mean 0 and variance x, to be written 
N(O,x). Then E(Y) = E ( Y [ X )  = O, V a r ( Y ] X )  = X, and Var(Y) = E(Var(Y[ 
X)) + Var(E(Y I X)) = 1. Hence `9(Y; O) = 1 whereas `9(Y I x; o) = 1 / x  which 
can clearly exceed `9(Y; 0). 

The information measure J is strongly additive if J ( X ,  Y; 0) = J ( X ;  0) + 
J ( Y  [ X; 0), and is subadditive if J ( X ,  Y; 0) _< J ( X ;  0) + J ( Y ;  0). These prop- 
erties are not satisfied by ,9. In the above example, ,9(X, Y; 0) = ,9(Y; 0) while 
,9(X; 0) + 8(Y  ] X; 0) = ,9(Y ] X; 0). Hence the strong additivity property does 
not hold. 

To substantiate the other claim, take Y = (Y1, Y2)' and let 8i = `9(Yi; 0), 
i = 1, 2. Let p be the correlation between Y1 and Y2. Then, 

(3.1) `9(Y1, Y2; 0) -- tt~-'~ - 1 t  

= (1 - p2)- ,  {,91 + ,92 - 2p SV@~IS%}. 

This can exceed 81 +,92, for example when E(Y2) is free of 0, violating subadditivity 
property. 

Now, suppose ,91 = ,92 = ,9, say. Then, from (3.1), it follows that  ,9(Y1, Y2; 0) = 
2,9(1 + p ) - l ,  while ,9(Y1; 0) + ,9(Y2; 0) = 2,9. Thus, $(Y1,172; 0) _> (<) `9(Y1; 0) + 
`9(Y2; 0), according as p ___ (>) 0. As to be expected, equality is achieved here if 
/9=0 .  

Another desirable feature is the maximal information property which holds 
for J if J (  Y; 0) _> J ( T ;  0) for any statistic T based on Y. This is satisfied 
by ,9 in a restricted sense. If T is a linear function of the components of Y, 
then clearly ,9(T; 0) <_ ,9( Y; 0). However, when T is a nonlinear function, this 
inequality could be reversed. For example, when Y is N(0, 0), ,9(Y; 0) = 0 whereas 
,9(y2; 0) = (202) -1 is always positive. 

The information measure ,7 is invariant under sufficient transformations if 
J (  Y; 0) = J ( T (  Y); 0) iff T ( Y )  is a sufficient statistic. The TLS fails to satisfy 
this except when T is a linear function of components of Y. In general ,9(T; 0) 
could exceed or be less than $ ( Y ;  0). An extreme case where `9(T; 0) = 0 and 
`9( Y; 0) > 0 is also possible. Tukey ((1965), p. 128) provides such an example. 
Thus, based on previous results we conclude that  TLS does not satisfy the main 
properties of measures of information. Therefore TLS is not a good measure of 
information. However, while dealing with a single random variable, it provides a 
lower bound on FIM. 

4. Linear sensitivity of order statistics 

Tukey (1965) introduced the concept of linear sensitivity to describe the 
amount  of information contained in single or a block of consecutive order statis- 
tics. He described the information content of an order statistic Y/:~ in three ways: 
(a) S(Y/:~; 0), the linear sensitivity of Y/:~, (b) Sn(Y/:~; 0), the increase in linear 
sensitivity when Y/:~ is added on the right, given by $(  Y1; 0) - $ (  1"1"; 0), where 
171 = (YI:~,. . . ,  Y~:~)' and YI* = (YI:~,. . . ,  Y/-l:n)', (c) SL(Y/:~; 0), the increase 
in linear sensitivity when Y<n is added on the left, given by $(  II2; 0) - 8 (  Y=*; 0), 
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where Y2 = (Y/:~,..., gn:n) ! and Y~ = (Y~+I:~,..., Y~:~)'. A block of order 
statistics Y = (Yr:n, • • •, Yk:~) ~ can play the role of Y/:n in each of these situations. 

Suppose the parent distribution is absolutely continuous with probability den- 
sity function (pdf) f(y; O) where 0 is either a location or a scale parameter. We 
now obtain expressions for S(  Y; 0) when Y is a vector of selected order statistics, 
and note that, in both the cases, 

(4.1) Var(O) = {S( Y; 0)} -1, 

where 0 is the BLUE of 0 based on Y. In contrast, 27( Y; 0) is rather complicated 
to compute, even when it exists. When the components of Y form a block of 
consecutive order statistics, we also obtain asymptotic expressions for $(  Y; 0). 

4.1 Location family distributions 
Let f(y; 0) = g ( y - 0 )  and Z~:~ = Y~:n- 0 represent the order statistic from the 

standardized distribution with pdf g and cdf G. Then Y has the same distribution 
as Z + 01, where Z is the vector of standardized order statistics and 1 is the 
vector of l's. Let E(Z)  = a and C(Z) = E. Consequently, E ( Y )  = a + 01 and 
C ( Y )  = E. Hence, from Lemma 1.1, we have 

(4.2) $ ( Y ; 0 )  = 1 'E-11 .  

Lloyd (1952) has shown that the BLUE of 0 is 0 = 1']~ -1 Y / 1 ' E - 1 1  and Var(0) = 
(1']E-11) -1. Consequently, (4.1) holds. 

For n large, using the theory developed for optimal asymptotic estimation by 
order statistics, we can find an approximation to S ( Y ;  0) when Y = (Y~:~,..., 
Yk:~)', a vector of consecutive order statistics. Now assume (r/n) ~ Pl, (k/n) 
P2, 0 ~ Pl ~ P2 ~ 1. From (4.2), and (9.7.3a) of David ((1981), p. 278), it follows 
that 

(4.3) S ( Y ; 0 )  ~ n 
{ { g'(z) g2 (G--1 (pl)) ~2(G--l(p2)) } 

g(z) J 

where ~ stands for 'approximately equal'. Tukey ((1965), p. 132) has given ex- 
pressions comparable to (4.3) using a heuristic argument. 

If the pdf g is smooth around the extreme points of its support so that 
{g2(G-l(p))/p} approaches 0 as p approaches 0 or 1, we can obtain an approx- 
imation to S(Y;O)  using (4.3) when Y represents a singly Type II censored 
sample. For example, for the right censored sample with (k/n) ~ P2, the mid- 
dle term on the right side of (4.3) vanishes. In the uncensored case, one has 
S( Y; O) ~ n f_~{g~(z)/g(z)}2dG(z) = Z( Y; 0), the FIM contained in the entire 
sample. In the case of a single order statistic Yk:n, if (k/n) --~ p, 0 < p < 1, 
s(Yk: ; o) - 
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4.2 Scale family distributions 
The discussion here runs parallel to the location family case. With f(y; 8) = 

O-ig(y/O), 0 > 0, let Z~:~ = Y~:~/0 represent the order statistics from the stan- 
dardized distribution. We then have E ( Y )  = 0a and C ( Y )  = E = 02E0 where 
E0 = C(Z) .  Hence, we obtain 

(4.4) S( Y;  0) = a ' E - l a  -- (a 'Eola) /O 2. 

The BLUE of 0 is 0 = a ' E  -1 Y / a ' E - l a  and once again (4.1) holds. 
As before, an approximation to S( Y; 8) in (4.4) can be obtained when Y = 

(Y~:n,..., Yk:n)', a vector of consecutive order statistics. From (9.7.3c) of David 
((1981), p. 278), we obtain as (r/n) -* Pl, (k/n) ~ P2, 0 < Pl < P2 < 1, 

2  imls y0  //2{ } = 1 + G- l (u)  g ' (G-l(u))  
n 1 

{g(a-l(pl))a-l(pl) }2 
+ 

pl 

{g(a  -~ (p2))a -~ (p2)}2 + 
1 - p2 

Ifg  has smooth tails so that the last two terms above vanish as Pl --* 0 and P2 --* 1, 
we can conclude that, for the whole sample, 

F{ S ( Y ; 0 )  ---- n l + z g ' ( z ) ~  2 g(z) J de(z), 

which once again represents if( Y; 8). 

4.3 Remarks 
(1) Using the expressions and approximations for S( Y; 0), one can obtain 

similar results for SR( Y; 0) and SL( Y; 0). 
(2) From (4.2) and (4.4) it is clear that  to compute S( Y; 0) we need the 

elements of ]E -1. When aij is of the form aibj for i < j ,  all the entries of 5] -1 are 
zeros except for the ones on the main diagonal and the ones on the two adjacent 
off-diagonals. Further the nonzero entries are simple functions of the ai's and bj's 
(see Arnold et al. (1992), pp. 174 175, for an explicit form). This is the case with 
the families of distributions consisting of power function, Pareto and exponential 
distributions. Further, the (i, j ) - th  element of the asymptotic covariance matrix of 
selected order statistics is of the form a~bj (see, for example, Arnold et al. (1992), 
p. 226). Thus, it is easy to compute $(  Y; 8) for some distributions with a location 
or scale parameter, and it is easily approximated for all distributions from these 
families. 

(3) Mosteller (1946) showed that the joint asymptotic distribution of k se- 
lected central order statistics is multivariate normal under some mild conditions 
on the cdf F.  For the location and scale families, Ogawa (1951) used Mosteller's 
work to determine the optimal choices for order statistics so that one maximizes 
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:2(Y; 0). From his results (summarized in Ogawa (1962)) it is evident that un- 
der the assumption of asymptotic multivariate normality, maximizing/7( Y; 0) is 
equivalent to minimizing Vat(0) where 0 is the BLUE of 0. It then follows from 
(4.1) that, for both the location and scale family distributions, the choice would 
correspond to the maximum value of S( Y; 0). 

(4) For large samples, the right sides of (4.3) and (4.5) also provide close 
approximations to the FIM in Y. Recently, for general one-parameter family, 
Takahashi and Sugiura (1989) have investigated the rate of convergence of the 
sample FIM in Type II censored samples to the limiting Fisher information. 

5. Examples 

Throughout this section, Y represents the vector of consecutive order statistics 
given by (Y~:~,..., Yk:~)'. 

Example 1. (The Uniform Distribution) In the location family setting, let 
f(y;O) = 1, 0 - 0 . 5  _< y _< 0 + 0 . 5 .  Here a~ = i / ( n + l ) ,  and crij = i ( n -  
j + 1)/{(n + 1)2(n + 2)}, i < j ,  is of the form aibj. On using the expression 
for E -1 given in David ((1981), p. 172), we conclude that $ ( Y ;  0) = 1 'E-11  = 
(n + 1)(n + 2){r -1 + (n - k + 1) -1 } = S(Yr:n, Yk:n; 0). 

When 0 is the scale parameter, take f(y; O) = 1/0, 0 < y < O. In this case, 
ai = i / (n  + 1) as before, and cr~j = 02i(n - j + 1)/{(n + 1)2(n + 2)}, i < j .  From 
(4.4), on simplification, we obtain $(  Y; 0) = k(n + 2 ) / { ( n -  k + 1)02}. In this case 
S( Y; 0) = ,S(Yk:n; 0). Hence adding observations on the left does not increase the 
information about 0. In other words, SL(Yi:~; 0) = 0, justifying the remarks made 

at the end of Section 2. The BLUE of 0 is 0 = (n + 1)Yk:,~/k. 
Note that 27( Y; 0) does not exist in both these settings. 

Example 2. (The Exponential Distribution) (a) In the location family set- 
ting we let f(y; 0) = exp ( - (y  - 0)), y _> 0. Let us define 

i i 

(5.1) ai:n = E ( n  - j + 1) -1 and /~{:n = E (n - J + 1)-2. 
j=l j=l 

Since aij = a i i  =/~:~ for i _< j,  and thus is of the form aibj, E -1 can easily be 
computed. On simplification we obtain S( Y; 0) = (/~r:n) -1 = S(Yr:~; 0), the TLS 
of the sufficient statistic. This also means 8R(Yi:n; 0) = 0. 

(b) In the scale family setting, f(y; 0) = 0 -1 exp(-(y/O)),  y k O. In this case, 
ai:n'S are the same as in (5.1), but aij = 02/~:n for i _< j.  On using (4.4) we obtain 

+ - 

= S(Y :n; 0) + (k - r )0  - 2  

This means S R ( Y ;  0) increases linearly, whereas the growth of 35( Y; 0) is non- 
linear. Further, the linear function of the components of Y which contains all the 

k 
information in Y is (a~:~/~:~)Yr:, + }-2.j=~+l(n - j + 1)(Yj:~ - Yj-I:~). 
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One can also compute 2-( Y; 0). In fact, it is easily seen that  

(5.3) 2-( Y; 0) : 2-(Yr:n; O) + (k - r)O -2, 

where 2-(Y~:n; 0) is rather messy to compute. From Arnold et al. ((1992), p. 166) 
it follows that  

(5.4) 0) = { 
1 for r =  1 

1 + 2 n ( n -  1) Z ( n  + j ) - 3  for r = 2 
j=O 

-- 2) {Cgr--2:n--1 -[- ~r--2:n--1} l+n(n-r+l)(r - 1  2 

for r _> 3, 

where the a 's  and/3's  are given in (5.1). From (5.2)-(5.4), it is clear that  S ( Y ;  0) 
and 2-( Y; 0) coincide when r = 1, as they should be, since Yl:n belongs to the one- 
parameter exponential family; otherwise, the difference is nothing but S(Y~:~; 0) - 
Z(Y~:~; 0). 

Now let us see how close $(Y~:~; 0) and 2-(Y~:n; 0) are, when Y~:n is a central 
order statistic. From (5.1) and (5.2), on approximating the sums by integrals it 
can be shown that  

(5.5) s(Y :n; 0) 
n(1 - p ) { -  log(1 - p)}2 

02p 

where p -- r/n,  is away from either 0 or 1. Similarly, from (5.4) one obtains 
(Arnold et al. (1992), p. 166), 

2 n(1 - p ) { -  log(1 - p)}2  
(5.6) O) -- + O:p 

Thus, S(Yr,n; 0) and Z(Yr:n; 0) are indeed very close for large n. From (5.5) and 
(5.6) it is clear that both of them monotonically increase in (0,p0) and then de- 
crease, where P0, the unique solution of 21o + log(l - p) = 0 in (0, I), is approxi- 
mately 0.7968. Thus, we can conclude that, roughly speaking, for large samples, 
the TLS (or the FIM) of a single order statistic increases up to the 80th sample 
percentile and then decreases. This provides a specific illustration of the general 
statement made at the end of Section 4 (see Remark (3)). The TLS of the 80th 
percentile is about 0.65n times that of a single observation. 

For small samples the maximum TLS may not be at the 80th percentile; for 
example, $(Y5:5; O) > S(Y4:5; 0). 

Example 3. (The Normal Distribution) Suppose the population is N(#,  a2), 
so that  the location parameter is # and the scale parameter is a. Define 

(5.7)  /]1 = O / y ] - I ~ / / ] ,  /]2 = 1 ' E - 1 1 / / ]  a n d  /]3 = I ' E - l o L / p ,  

where /] = ( o / ~ - l o L ) ( l t ~ - l l )  - ( l ' E - l a )  2. Let 12 and ~ be the BLUE's of # 
and a based on order statistics, respectively. It is known from Lloyd (1952) that  
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TLS and FIM about # in Y = (Y~:n,..., Yk:~) from N(p, 1) population (n = 10). 

k s ( Y ; , )  z ( Y ; , )  ~ k s ( Y ; , )  

1 1 2.904 3.110 2 3 6.004 
2 2 4.662 4.763 2 4 7.006 
3 3 5.714 5.755 2 5 7.786 
4 4 6.332 6.345 2 6 8.399 
5 5 6.620 6.622 2 7 8.899 
1 2 4.856 4.969 2 8 9.282 
1 3 6.203 6.260 2 9 9.588 
1 4 7.206 7.238 3 4 6.709 
1 5 7.992 8.005 3 5 7.486 
1 6 8.612 8.617 3 6 8.105 
1 7 9.102 9.106 3 7 8.595 
1 8 9.492 9.495 3 8 8.985 
1 9 9.793 4 5 7.101 
1 10 10 10 4 6 7.716 

4 7 8.210 
5 6 7.231 

Var(/~) = ulcr 2, Var(ff) = ~2~r 2, and Cov(/2, if) = - ~ 3 ¢  2. For the normal  parent ,  
Table  10C.2 of Sarhan  and  Greenberg  (1962) enumera tes  these momen t s  for all 

censored samples  up to size 20. 

Wi th  0 = # and a = 1, S ( Y ; O )  = l ' E - 1 1  f rom (4.2), and  with  # = 0 and 
0 = ~, S ( Y ; O )  = (o?E-loO/O 2 f rom (4.4). One can use the  t abu l a t ed  values 
of a and E available in the  l i tera ture  (for example,  in Teichroew (1962), Table  
10B.1, Table  10B.3) to compute  S ( Y ;  0) in bo th  the  cases. Bu t  the  c o m p u t a t i o n  
of E -1 is ra ther  messy  here. However, note t ha t  S ( Y ;  0) = ~.  ~2 for the  locat ion 
p a r a m e t e r  and  $ ( Y ; O )  = L,. ~1/02 for the  scale pa ramete r ,  where the  ui 's  are 
given in (5.7). We have used these facts in the compu ta t i on  of S in the  two tables  

presented here. 

Table  1 exhibits  the  values of S (  Y;  #) for n = 10 and  for various choices of r 
and k, assuming cr = 1. Naga ra j a  (1983) has compu ted  27(Y~:~; #) and Mehro t r a  et 
al. (1979) have compu ted  27( Y;  #) for r = 1, k = 2(1)8. For the sake of compar ison,  
we also include these values in our table.  I t  shows tha t  S (  Y;  #) is p re t ty  close to 
27( Y;  #). Further ,  they  are equal when Y represents  the  entire sample.  This  also 
follows f rom the fact t ha t  Y then  belongs to an exponent ia l  family. The  central  
order s tat is t ics  contain more  informat ion  on # t h a n  the  ex t reme  ones. Jus t  the  
two middle  order s tat is t ics  account  for abou t  72% of the  TLS in the whole sample.  
This  is also the TLS  of the  sample  median.  

Table 2 exhibi ts  the  values of ~r2S( Y;  a)  for order s tat is t ics  f rom a r a n d o m  
sample  of size 10 f rom N(0 ,  a2) dis tr ibut ion.  Values of a2Z(  Y;  or) f rom Mehro t r a  
et aI. (1979) are also presented for the  purpose  of comparison.  (The  b lank  cells in 
tha t  column indicate t ha t  the  corresponding 27( Y; or) are unavailable.)  As to  be 



LINEAR SENSITIVITY OF O R D E R  STATISTICS 767 

Table 2. TLS and  FIM abou t  ~r in Y = (Yr:n , . . . ,  Yk:n) from N(0,  1) popula t ion  (n = 10). 

r k S ( Y ; a )  Z ( Y ; ~ )  r k S ( Y ; a )  

1 1 6.876 2 3 4.687 

1 2 7.305 8.572 2 4 4.961 

1 3 7.316 9.047 2 5 5.622 

1 4 7.585 9.604 2 6 6.674 

1 5 8.245 10.444 2 7 8.120 

1 6 9.301 11.622 2 8 9.932 

1 7 10.740 13.152 2 9 12.136 

1 8 12.550 15.041 3 4 2.744 

1 9 14.739 3 5 3.412 

1 10 17.361 20 3 6 4.473 

2 2 4.674 3 7 5.920 

3 3 2.460 3 8 7.740 

4 4 0.894 4 5 1.573 

5 5 0.100 4 6 2.643 

4 7 4.095 

5 6 1.182 

anticipated, extreme order statistics have more information on a than the central 
ones. Further, numerically, the TLS of the entire sample is about 87% of the FIM. 
This implies that  the BLUE of a is 87% efficient. 
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