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A b s t r a c t .  We consider Jaeckel's (1971, Ann. Math. Statist., 42, 1540-1552) 
proposal for choosing the trimming proportion of the trimmed mean in the more 
general context of choosing a trimming proportion for a trimmed L-estimator 
of location. We obtain higher order expansions which enable us to evaluate the 
effect of the estimated trimming proportion on the adaptive estimator. We find 
that L-estimators with smooth weight functions are to be preferred to those 
with discontinuous weight functions (such as the trimmed mean) because the 
effect of the estimated trimming proportion on the estimator is of order n -1 
rather than n -3/4. In particular, we find that valid inferences can be based 
on a particular "smooth" trimmed mean with its asymptotic standard error 
and the Student t distribution with degrees of freedom given by the Tukey and 
McLaughlin (1963, Sankhy5 Ser. A, 25, 331-352) proposal. 
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1. Introduction 

Let  X 1 , X 2 , . . .  , X  n be a sample of independent  and identically d is t r ibuted 
random variables with common distr ibut ion function F and let X~t _< Xn2 < 
• • • _< Xn~ denote  the order  statistics of this sample. The  a - t r immed  mean is the 
mean  of the observations which remain after excluding [na] observations in each 
tail and is given by 

~ - [ ~ ]  
- i 

Z x i, 0 < a < 1 / 2 .  
n -  2[ha] 

i=[na]+l 

For accounts of the history and propert ies  of this popular  es t imator  of location, 
see Tukey and McLaughlin (1963), Biekel (1965), Huber  (1972), Stigler (1973) and 
Bickel and Lehmann  (1975). Provided F -1 (a)  and F -1 (1 -c~)  are unique, 

(i.1) - M(oO} R N(O, V(oO), 
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where 

1 f F-l(1-a) 
M(a) - 1 Z 2a J~'--l(o~) ydF(y) and 

1 / f  F-1(1-~) 
V((~) -- (1 ~-2~1~) 2 ( g F - l ( ~ )  [Y -- M(a)]2dF(y) 

+ c t [ F - l ( o l )  - -  M(oz) ]  2 ~- o r [ F - l ( 1  - oz) - M(a)]2} .  

The asymptotic variance V(c~) is readily estimated by the Winsorised variance 

1 

- (1 - 2 )2 

1 ~-[n~] 

i = [ n a ] + l  

+ a[X<  l+l - M n ( a ) l  2 + a[Xn,n-En  1 - 

Tukey and McLaughlin (1963) suggested that inference for the trimmed mean be 
based on treating n 1/2 { M~ (a) - M(a) } /V~ (a)1/2 as having Student's t distribution 
with n - 2[na] - 1 degrees of freedom. In practice, in order to use the a-trimmed 
mean, we need to specify the proportion a of extreme observations to be trimmed 
in each tail. A simple approach is to use a deterministic rule such as a = 0.1. While 
this rule seems to work well on real data (see Stigler (1977), Spjotvoll and Aastreit 
(1980), Hill and Dixon (1982) and Rocke et al. (1982)), it is clearly rather arbitrary 
and can be improved on in particular problems. Jaeckel (1971) proposed that we 
use the value & which minimises the estimated asymptotic variance V~(a) of the 
trimmed mean over some fixed interval [al, 1 - a2] where 0 < OL 1 < OL2 < 1/2. He 
showed that this adaptive procedure is asymptotically as good as using the value 
a0 of a which minimises the asymptotic variance V(a)  on [al, a2] in the sense 
that M~(&) - M~(a0) = op(n-1/2). Under further conditions on F,  Hall (1981) 
showed that 

I & - -  ~ 0 1  -~  Op(n-1/4) and IMp(&) - M~(ao)l = Op(n-3/4). 

Inference for adaptive procedures, including the adaptive trimmed mean, tends 
to be problematic in small and moderate samples. One reason for this is that in 
using n-1/2V~(&) 1/2 as the standard error of M~(&) (as is suggested by (i.i)), 
we ignore the variability in &. Since there seems to be no reasonable basis for 
trying to condition on &, it seems desirable to investigate two other possibilities: 
either explicitly including the variability in & in the standard error of Mn(&) or 
attempting to decrease the effect of the variability in & in the standard error of 
Mn(&) sufficiently so that the variability in c% could be ignored in standard error 
calculations. 
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We investigate the effect of the variability in a on M~(a) by obtaining an 
expansion of the form 

(1.2) Mn(a) - M(ao) = M~(ao) - M(ao) + (a - ao)a(Fn - F, F, ao) 

+ smaller order terms, 

for a specified function a(F~ - F, F, a0). The second term is typically of order 
n - 1 / 2 O p ( l a -  a01) so  the rate of convergence of a to a0 determines the impact of 
the variability in a on M~(a). This observation and Hall's (1981) results raise a 
number of questions. Why is a such a poor estimator of a0? Are there alternative 
data-driven ways of choosing an a which result in better rates of convergence than 
Jaeckel's proposal? What  is the loss of asymptotic efficiency of such methods? 
How should the standard error be calculated? Finally, are there other trimmed 
location estimators for which Jaeckel's prescription works better? The purpose of 
this paper is to answer these basic questions. 

The rate of convergence of a random variable as ,  which minimises a random 
function S~ (a), to a s ,  which minimises S(a),  depends on the smoothness of S~ (a). 
Hall's result is a direct consequence of the fact that  neither V~(a) nor its influence 
function are differentiable. See Hampel et al. (1986) for a detailed treatment of 
influence functions. This suggests that  rather than minimising V~(a) to estimate 
a, we should minimise Sn(a) where S~(a) is a smooth function. The results of 
Section 3 show that  

- M (as) = M ( a s )  - M ( a s )  + O p ( n - 1 / 2 ) l a s  - a s l  

+ - a s ) )  + 

This representation clarifies several issues. Firstly, if F is symmetric M ( a s )  - 
M ( a s )  : 0. Otherwise M ( a s )  - M ( a s )  = Op( I& - a01) which is either of order 
n -1/4 or  of order n -1/2. In the former case the distribution of Mn(as)  - M ( a s )  
is determined by that  of (as  - a s )  while in the latter case it is determined by 
that  of Mn(as)  - M~(as)  and a s  - as .  Adaption as it is usually understood is 
not possible in either case unless we make the somewhat unsatisfactory claim that  
we are estimating the random variable M ( a s )  rather than the functional M(as ) .  
(Incidentally, while in general we can define the trimmed mean so that  we trim 
[na] observations in the lower tail and n - [n/~] observations in the upper tail, we 
have M ( a s )  - M ( a s )  : 0 if and only if F is symmetric and ~ : 1 - a so we 
consider symmetric trimming only.) In the symmetric case, we have 

- Mn(as)  = Op(n-1/2) l&s - a s l  + o p ( n - 1 / 2 ( a s  - a s ) )  + O,(n 

which contains Hall's result and confirms that  the rate of convergence depends on 
that  of &s - a s  and may be improved by choosing &s differently. 

The loss of efficiency due to minimising some Sn(a) rather than Vn(a) can be 
evaluated by comparing V(a0) to V(as);  V(a) is typically nearly constant over 
most of its domain (see, for example, Fig. 1) so, if Sn(a) is close to Vn(a), the loss 
of asymptotic efficiency is generally small. 
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Fig. 1. 
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There are two difficulties in trying to use (1.2) to obtain an expansion for the 
asymptotic variance of the adaptive trimmed mean Mn(&). Firstly, the second 
term in the variance expansion requires (at least) the next term in (1.2) but this 
seems difficult to obtain without smoothness conditions which the trimmed mean 
fails to satisfy. Secondly, the non-differentiability of Vn(cJ makes it difficult to 
obtain a suitable expansion for & - a0. Moreover, even if we could obtain the 
requisite terms, we find that the function a(Fn - F, F, a0) depends on the sparsity 
function 1 / f ( F - l ( q ) ) ,  so calculating the standard error would involve estimating 
the sparsity function. While a number of estimators of this quantity are available 
(see e.g., Siddiqui (1960) and Welsh (1988)), it is an estimation problem that 
we prefer to avoid whenever possible since convergence is inherently slower than 
n -1/2. We concentrate on trying to find a simple n -1/2 consistent method of 
estimating the trimming proportion which might justify neglecting the variability 
in & in making inferences with respect to the adaptive trimmed mean. 

The results of Sections 3 and 4 together show that if Tn (a) is a trimmed L- 
estimator with a smooth weight function such that the empirical estimator of its 
asymptotic variance is smooth, then Jaeckel's proposal will lead to an asymptoti- 
cally efficient estimator with a faster rate of convergence. Of course, the asymptotic 
efficiency is over a slightly different family of estimators, but  if Tn(a) is suitably 
close to M~(a),  the asymptotic efficiencies of the estimators may be similar; see 
Table 1. The contribution of the variability in &s to the asymptotic variance of 
T~(a) is of order n -2 and can be ignored. These are arguments in addition to 
those given by Stigler (1973) for using L-estimators with smooth weight functions 
in general, and smoothly trimmed means in particular. This paper can be viewed 
as considering two approaches to improving the rate of convergence of estimators 
with estimated trimming proportions. 

1) Use the trimmed mean but choose & in some other (asymptotically less 
efficient) way so that we achieve the n - 1  rate, or 

2) Use an alternative estimator (such as a smoothly trimmed mean) for which 
(asymptotically efficient) adaption at the n 1 rate is possible. 
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In ei ther case, we believe tha t  it is unnecessary to incorporate  the variabili ty in 
the t r imming propor t ion  into the s tandard  error of the adapt ive est imator .  The  
simulation s tudy  in Section 5 shows tha t  in terms of inference the second approach 
is to  be preferred because the  es t imated asymptot ic  variance of the smoothly  
t r immed mean be t t e r  reflects the variabili ty of the adapt ive est imator .  

2. Notation and conditions 

Let  

Ha(u) = ha(t)dt,  0 < u < 1, 0 _< c~ < 1/2, 

be a fixed, bounded,  signed measure on (0, 1) with a smooth  weight funct ion ha 
such tha t  H a ( l )  = 1. Then  for any dis tr ibut ion function G define an L-funct ional  
T ( a )  = f ~ y d H a ( G ( y ) ) ,  where C - l ( t )  = inf{s : a( s )  k t}. Let 

Tb 

F , ( y )  = n -1 ± ( x j  < y), 

j = l  

y E R ,  

denote  the empirical dis tr ibut ion function of X 1 , . . . ,  X , ,  and then  let 

F T . ( a )  = ydHa(Fn(y) )  ~ n -1 h . ( i / n ) X ~ .  
oo i = l  

This  class of L-est imators  includes the t r immed mean M , ( a )  for which ha(u) = 
I ( a  < u < 1 - a ) / ( 1  - 2a)  but  also allows us to consider est imators  with smooth  
weight functions such as Stigler's (1973) smoothly  t r immed  mean for which 

> 23°>.° ha(u) - I(ol/2 < u < ol) + a (2  - < u < 1 - o~) 

4(1 - a / 2  - u) i . 1  + 

In fact, Stigler's piecewise linear weight funct ion is not  smooth  enough to achieve 
the best  possible ra te  for Jaeckel 's proposal. Thus  we also propose to consider the 
very  smooth  

(2.1) 
1 

ha(u) - (1 - 2 a ) [ K ( ( u  - a ) / a ) I ( a  - ~ < u < a + ~) 

+ I ( a + ~ r  < u < 1 - a - ~ r )  

+ K( (1  - a -  u ) / a ) I ( 1  - a -  a < u < 1 - a + a)], 

where K ( z )  = -1~-~z15"1 5 _ ~z2 3 + z +  s ) I ( - 1  < z < 1) + I ( z  > 1), which enjoys the 
p roper ty  of Tukey 's  biweight of having second order contact  at the terminals.  We 
will refer to the L-es t imator  with weight function defined by (2.1) as the smoothly  
t r immed mean. 
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Let S(a)  be any criterion function which we minimise over some set to choose 
an &. It  is convenient and simple to choose [ax,a2] for 0 < a l  < a2 < 1/2. 
There  is some interest in allowing a i  = 0 but  this can only be done at the expense 
of moment  conditions (which are undesirable from a robustness viewpoint)  and a 
considerable increase in complexi ty  so we will not  pursue this in the present paper.  
If the minimum is not unique let as  denote  the smallest minimising value of a so 

tha t  

a s =  inf { u  E [c~z,C~2] : S(u) = ~l<_~<_~2inf S ( a ) } .  

Let  Sn(a)  be an es t imator  of S ( a )  and let &s denote  the smallest minimising value 

of S~(a)  so tha t  

&s = inf { u e [al'c~2] : Sn(u) =e~<~<_a2inf S n ( a ) } .  

We will require tha t  c~1 < a s  < c~2 and tha t  S(c~) has two derivatives in a neigh- 
bourhood  of c~s (which we denote  N(c~s))  with S" continuous and non-zero at 

O~ S . 

Our results are based on an asymptot ic  representat ion for T~(c~) which holds 
uniformly in c~ over [al ,  a2]. For the t r immed mean and est imators  such as Stigler's 
smoothly  t r immed  mean, we will impose the following conditions on F and ha: 

M1) ha(u) = 0 for u < c~ or u > 1 - c~, 0 < c~ < 1/2, ha(u) is bounded  for 
0 < u < 1 and c~i < a < c~2, has at most a finite number  of jump discontinuities 
at a = So < s l ( a )  < . . .  < so(a) < 1 - a = so+l, where sj(~) has a bounded  
derivative for c~1 < c~ <_ a2, j = 1, 2 , . . . ,  c. Moreover, ha(u) satisfies the Lipschitz 

condit ion 

sup Ih,( t  + u) - h~(t)l <_ Klu  I for all t + u and t in (sj(ct), s j+t(a)) ,  
al<a<~2 

Ohm(u) and ~ exists and is continuous for sj(c~) < u < Sj+l(C~), c~ E N (c t s )  and 

j = 0 , 1 , . . . , c  and 
M2) F is continuous and has a positive derivative f in a neighbourhood of 

each jump point  of ha(u) such tha t  f is continuous at each jump  point  of hc~(U). 
Note tha t  if ha has no jump points, then  a central  limit t h e o r e m  holds for a rb i t ra ry  
F .  Indeed, this was the basis for Stigler's (1973) proposal.  If ha is smooth  enough, 
we can obtain more information about  the higher order  terms in the  expansion. 
We will do this for ha satisfying the following conditions: 

T1) ha(u) = 0 for u < c~ or u > 1 - a,  0 < c~ < 1/2, ha(u) is bounded  for 
Y U 

0 . . . .  < u < 1 and OL 1 < O~ < OZ2, h~s(?~ ) and TOh~( ) [~=~s are bounded  for 0 < u < 1 
and continuous a.e. with respect to Lebesgue measure and F - 1 .  

The  condit ion T1 does not  hold for ei ther the t r immed mean M~(a )  or for 
Stigler's (1973) smoothly  t r immed  mean but  it does hold for (2.1) because 

h~a(u) - 1 - 1 2 a  [o--1K'((u - a) /o ' ) I (a  - cr < u < a + o) 

- c r - l K ' ( ( 1  - a . -  u) /cr) I (1  - ~ - cr _< u _< 1 - a + or)], 
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where  / ( t ( z )  = 1-615t~z4 __ 2Z 2 _]_ 1 ) I ( - -1  < z < 1), and 

Oh;(~) 1 
- [(7-2K"((1 - a - u)/ (7)I(1  - a - (7 < u < 1 - c~ + (7) 

1 2c~ 

- ( 7 - ~ K " ( ( ~  - ~ ) / ( 7 ) ~ ( ~  - (7 _< ~, _< ~ + (7)] 

+ 
2 

[(7-~K'((~ - ~ ) / (7 ) I (~  - (7 < ~ < ~ + (7) 
(1 2a)  2 

- ( 7 - 1 K ' ( ( 1  - c t  - u)/(7)I(1 - a - (7 _< u _< 1 - c~ + ( 7 ) ] ,  

where K " ( z ) =  ~ ( z  3 -  z ) I ( - 1  < z < 1). 

It follows from Theorem 3.2 tha t  provided F is symmetric ,  for any &s - (~s = 
Op(1) such tha t  Ct I < O~ S < O~2, 

.:  /~(Tn(as) - T(~s) ) ~ N(O, (7~(&s, F ) ) ,  

where (72(a,F)  = f~_~ f ~ o o { F ( y  A z) - F ( y ) F ( z ) } h c ~ ( F ( y ) ) h a ( F ( z ) ) d y d z .  This 
suggests tha t  whether  the family of est imators  of interest is the t r immed  mean 
Mn( a )  or a more general L-es t imator  T , ( a ) ,  we can choose a t r imming propor t ion  
c~ by minimising the empirical es t imator  

FF (72(a, F~) = { F~(y  A z) - F n ( y ) F ~ ( z )  }ha(  F~(y)  )ha(F,~(z) )dydz  
o o  o o  

of (72(a, F) .  Tha t  is, we can take S ( a )  = (72(a, F) .  To guarantee  that the mini- 
mum of (7~(a) is a r t l /2-cons is ten t  es t imator  of the minimum of (72(a, F) ,  we re- 
quire smoothness conditions on the weight function ha. In part icular,  we require 
T1 given above and 

T2) ha has two derivatives with respect to a in a ne ighbourhood of a s  E 

02h~(~) is continuous at aS  for each 0 < u < 1, and for K < co, 

s u p  s u p  Oh~(~) 02h~(~) 
0<u<l  acN(c~s) ~ ~ K a nd  sup sup < K 0<u<l  dEN(as)  C9OZ2 - -  

and 02~2(a'F) oa2 is non-zero at a s .  
Note tha t  conditions T1 and T2 imply tha t  h a ( a )  = h~(1 - a)  = h'~(a) = 

h~(1 - c~) = 0 so from Liebnitz '  formula we have tha t  

and 

{ F ( y  A z) - F ( y ) F ( 4 }  

• f Oh~(F(y)) h a ( F @ ) )  [ 0o~ 
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02o.2(a,F) f z ¢  / j  
Oa 2 - {F(y A z) - F(y)F(z)} 

oo oo 

• { 02h~(F(Y))oa 2 h~(F(z)) + 20h~(F(y))Oa Oh~(F(Z))oa 

+ }d dz 
Hence T2 ensures that 0%2(~'F) is continuous at as ,  0c~ 2 

3. Representation for L-estimators 

The following theorem provides a representation for L-estimators (including 
the trimmed mean) with estimated trimming proportions. The proof is based on 
an argument used in JureSkov£ (1986). 

THEOREM 3.1. Suppose that conditions M1-M2 hold, al < (~s < a2 and 
&s - a s  = Op(1). Then 

Tn(&s) - Tn(as) : T(&S) - T(as )  + (&s - as)a(F~ - F, f,  as)  

+ o~(~-~/~(~ - as)) + o~(~-~), 

w h e r e  

j=O aF-l(sJ(~)) 

ha(sj+l(a)) Osj+l(c~) + 
f(F-~(~+~(a))) oa 
• {Fn(F-I(sj+I(OO)) -- 8j÷l(a)} 

h~(sj(a)) 08j(a) } 
-- f (F- l (s j ( (~)) )  Oa {Fn(F-X(sj(ce))) - sJ(°0} ' 

PaOOF. We will first prove that 

Tn(a) / j  F(y) }h,~( F(y) )dy (3.1) sup - T(a)  + {Fn(y) - 
a l  < a < a 2  c,o 

Write 

with 

F Tn(a) - T(c~) + {Fn(y) - F(y)}h,~(F(y))dy 
oo 

/J = - WF~,F(y){F~(y) -- F(y)}dy, 
oo 

{ {H~(G(y)) - Ha(F(y))}  
wc,~(v) : {c(v) - F(y)} 

0 

- h~(F(y)) 

: Op(n-1). 

if G(y) ~ F(y) 
otherwise. 
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There exists - o o  < a < b < oc such tha t  for supyeR ]G(y) - F(y)[ < c~1, we have 
WC,F(y)  = h~(G(y) )  = h~ (F(y ) )  -- 0 for y < a or y > b and any az _< c~ < a2. 
Tha t  is, for n large enough, the range of integration can be restricted to [a, b]. 
Without  loss of generality, suppose tha t  ha has a single jump discontinuity at a.  
Since a < F- l (c~)  < b, for n sufficiently large, 

/ i  W F ~ . F ( y ) { f n ( y )  -- F ( y ) } d y  

.b 

-</n ]WF~,F(y){Fn(y) - E(V)}ldy 

": -t- -I- J F -  I (°~) u-n-l~2 [.Ja Jl;.-I(o~)_n 1/2 

• ] W F n . F ( y ) { F n ( y  ) - F ( y ) } [ d y .  

Now with K a generic positive constant,  

F-l(c~)_n-1/2 f 
sup / ]W~,F(v){F~(y) - Y(y)}ldy 

al_<a<a2 ~a 
('F-l(a)--n-I/2 [ 

_< sup / _ I(F~(y) > F(y)) 
Ya 

f 
fn(y)-E(y) 

• ]h,~(F(y) + u) - h~(F(y ) ) [du  
JO 

F ] + I (F~(y )  < F(y ) )  Ih~(F(y)  + u) - h~ (F (y ) ) l du  dy 
JF~(v)-E(v) 

fE-1 (~) -~ -1 /2  [ )) fY~(y)-Y(v) 
< sup K I(F,~(y) > F ( y  udu 

a,<_a<_a2 .,a JO 

r ° ] + ±(F~(y) < F(y)) (-~)a~ dv 
aFn(y)--F(y) 

< K s u p  I F ~ ( y )  - F ( y ) I  2 sup I F - l ( a )  - n -U2 - c~ I 
y ~1_<~<a2 

= O ~ ( n - 1 ) .  

Similarly, 

sup f b _ = IWF,~,F(y){F~(Y) F(y)} IdY Op (?'b--l). 
OLI~OL~O~ 2 J F- l(oz)--n-1/2 

Also, WG,E(.) is bounded so 

F- l(o~)-]-n- i/2 
f 

sup [ ]WF~,F(N){Fn(y) -- F(y)}]dy 
c~1<_a<_a2 J F-1(~)--n- i/2 

<_ [(n -U2 sup ]Fn(y) -- F(N)] = Or(n-l), 
y 
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and hence (3.1) holds. 
Now write 

T ~ ( a s )  - T n ( a s )  - T ( a s )  + T ( a s )  

= - {F~(y) - F ( y ) } { h ~ s ( F ( y ) )  - h . z ( F ( y ) ) } d y  + Op(n  -1)  
o o  

= {F~(y) - F ( y ) } h a s  ( F ( y ) ) d y  
j=O JF-l(sJ(&s)) 

_ / F-l(8~+l("s)) } 
{F~(y) - F ( y ) } h ~ s ( F ( y ) ) d y  + Op(n -1)  

= (as  - a s ) a ( F ~  - El, f ,  (t) + Op(n -1)  

= (as  - a s ) a ( F n  - F, f ,  a s )  

+ ( a s  - a s ) { a ( F n  - F, f ,  (t) - a ( F .  - F, f ,  as )}  + Op(n-1),  

where las - &l <- las - as l ,  and the result obtains. [] 

Under additional smoothness conditions on ha, we can obtain more precise 
information about the higher order terms in the expansion. 

THEOREM 3.2. Suppose that condition T1 holds, a l  < a s  < a2 and a s  - 
a s  = Op(1). Then 

T ~ ( a s )  - T n ( ~ S )  -- T ( a s )  - T ( ~ s )  

F - (&s - a s )  {F.~(y) - F ( y ) } O h ~ s ( F ( Y ) ) d y  
Oas 

-~- O p { n - 1 / 2 ( a s  - as )  2} ~- Op(n-1). 

PROOF. As in the proof of Theorem 3.1, write 

F T~(a)  - T ( a )  + {F~(y) - F ( y ) } h ~ ( F ( y ) ) d y  
o o  

1 {Fn(y)  - F ( y ) } 2 h ~ ( F ( y ) ) d y  

/? = - WF~ ,F(y ) {Fn(y )  - F(y ) }2dY ,  
o o  

where now 

{ {H~(F(y)) - H~(a(y))}  
{a(y)  - F(y)}2 

w c , F ( y )  = h~(F(y)) 2 lh:(g(y)) 

0 

if G(y)  ~ F ( y )  

otherwise. 
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T h e n ,  b y  t h e  d o m i n a t e d  c o n v e r g e n c e  t h e o r e m ,  

s u p  T n ( a ) -  T ( a ) +  f ° C { F n ( y ) -  F(y)}ha(F(y))dy 
J - c ~  

F 1 {F~(y )  - f(y)}2h'~(F(y))dy 
+ 2  ~ 

= o p ( n - 1 ) .  

N o w  a r g u i n g  as  i n  t h e  p r o o f  o f  T h e o r e m  3.1,  

Tn(&S) - T~(as) - T(&s) - T(t~s) 

K = - { F ~ ( y )  - F ( y ) } { h ~ ( F ( ~ ) )  - h ~ ( F ( y ) ) } e y  
c ~  

i f  ~° F 2 2 j _  { F n ( y ) -  ( y ) }  { h a s ( F ( y ) ) - h ~ s ( F ( y ) ) } d y + o p ( n  -1) 
o o  

/? = - ( a s  - ~ s )  { F ~ ( y )  - F ( y ) }  Oh~(F(Y))dy 
oo O~S 

+ Op{rt-1/2(~ S -- Ozs) 2} ~- Op(?Z-1).  []  

Table 1. Asympto t ic  efficiency of the  smooth  t r immed  mean.  

S t anda rd  Normal  

----0.05 c ~ = 0 . 1  a----0.2 a----0.4 

= 0 0.973 0.949 0.880 0.727 

---- 0.01 0.974 0.943 0.874 0.722 

cr = 0.05 0.976 0.945 0.876 0.726 

S tuden t  on 12 degrees of freedom 

= 0 . 0 5  a = O . 1  a = 0 . 2  a = 0 . 4  

= 0 0.995 0.995 0.949 0.803 

= 0.01 0.995 0.988 0.942 0.797 

a = 0.05 0.996 0.989 0.944 0.801 

S tuden t  on 3 degrees of freedom 

a = 0 . 0 5  ~ = 0 . 1  a = 0 . 2  a = 0 . 4  

G = 0 0.848 0.941 0.996 0.915 

= 0.01 0.849 0.932 0.987 0.909 

= 0.05 0.842 0.930 0.988 0.912 

S tuden t  on 1 degree of freedom 

a = 0 . 0 5  a = O . 1  a = 0 . 2  a = 0 . 4  

= 0 0.226 0.428 0.704 0.883 

= 0.01 0.226 0.418 0.696 0.876 

= 0.05 0.202 0.408 0.691 0.877 
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As noted in Section 2, it follows from Theorems 3.1 and 3.2 that provided F 
is symmetric, for any &s - a s  = Op(1) such that a l  < a s  < a2, nl/2(T~(&s) - 

T(as))  D N(0, a2(as)), where a2(a) = f ~  f _ ~  {F(y  A z ) -  F(y)F(z)}h~(F(y)) .  
h~(F(z))dydz. For h~ given by (2.1), we can use this result to calculate the 
asymptotic efficiency of the smooth trimmed mean for different values of (a, a). 
The results of calculations at selected underlying distributions (corresponding to 
those used in the simulation study in Section 5) are given in Table 1. The efficiency 
of the smooth trimmed mean (with small a) is similar to that of the trimmed mean. 

4. Choosing the trimming proportions 

First consider the general structure described in Section 2 in which S(a)  is 
any criterion function which we can minimise to choose an a = as .  Let Sn(a) be 
an estimator of S(a) and let &s denote the smallest minimising value of S~(a). A 
standard argument (see Lemma 3 of Jaeckel (1971) or Theorem 1 of Hall (1981)) 
can be used to show that &s - as  = Op(1).  If a l  < as  < a2, S~(a) has two 
derivatives in a neighbourhood of a s ,  sup~N(~s ) [S~(a )  - S"(a)[ = Op(1) and 
S" is continuous and non-zero at a s ,  then for any &s which satisfies S'(&s) = 
op(n-1/2), 

s ; (as )  
(4.1) a s  - a s  - S"(as~ + op(&s - as). 

When S is smooth, as the next result establishes, &s - as  = Op(n-1/2). Further, 
if the functional S(a)  is the asymptotic variance of a smooth L-estimator (e.g. 
of the estimator defined in (2.1)), we may still approximate the right-hand side 
of (4.1) by a functional of an empirical process and thus eventually obtain the 
(non-normal) limiting distribution of &s - as .  More precisely, in such a case we 
have 

THEOREM 4.1. 

Sn(a)  = a2(a,  F~) 

where 

Suppose that T1-T2 hold. Then with S(a) -- a2(a,F)  and 

7]n(Ots) ~_ Op(Tt--1/2), 
as - as - S"(as) 

fF-l(1-~) fF-l(1-~) 
~n(~) = SF-I(~) S~-~(~) {{F~(yA z) - F(y A z ) } & ( y , z )  

+ {Fn(y) - F(~)}L~(y,  ~) 

+ {F~(z) - F(z)}L~(z ,  y)}dydz, 

with 

and 

J . ( y ,  z) - 
Oh~(F(y)) h~(F(z)) + h~(F(y)) Oh~(z))̂ .( F 

Oa 
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L~(y,z) = {F(y A z) - F(y)F(z)}  

[, oh'(r(y)) ha Oh~(F(z)) } 
[ o~ (F(z) )+h2(F(y) )  0~ 

- F(z) [ 0h~(F(y)) 0h.(F(~)) } 
[ Oa h~(F(z)) + h~(F(y)) Oa " 

Clearly, &s - as  = Op(n-1/2) • 

PROOF. Tha t  s u p ~ c N ( ~ s ) I S ~ ( a ) -  S"(c~)l = Op(1) under  T 1 - T 2  follows 
from the dominated  convergence theorem• Write  S~(as) - S'(c~s) - r/,~(as) = 

4 ~-~k=l Qk(as) where 

#1(a )  / / {F,~(y A z) - F.(y)F~(z)}{U~(F~(y), F.(z)) - U~(F(y), F(z)) 

• {Fn(y) - F ( y ) } U 2 ) ( F ( y ) ,  F(~))  

- {F~(z) - F(z)}U (2) (F(y), F(z))}dydz, 

/ /{F~(y A ~) - Fn(y)Fn(z)  - F(y A ~) + F ( y ) F ( z ) }  Q2(a) 

• {Fn (y) - F(y)}U (1) (F(y), F(z))dydz, 

/ / { F n ( y  A z) - F~(y)F,~(z) - F(y A z) + F(y)F(z)}  Q3(a) 
• {Fn(z) - F(z)}U(~2)(F(y),F(z))dydz 

and 

- [ [ { F n ( y )  - F(y)}{Fn(z) - F(z)}U~(F(y),  F(z))dydz, Q4(~) J y  

where U~(u, v) °h~(U) ha(v) + h~(u) ~ ,  U(1) (u, v) and U(2) (u, v) denote the 
- -  O c ~  

derivatives of Us(u, v) with respect to u and v respectively and all the integrals 
are taken  over the range ( F - I ( c ~ ) , F - I ( 1  - c~)). As in the proof  of Theorem 
3.1, for n large enough, the range of integrat ion can be restr icted to [a, b], where 
- ~ < a < b < c e .  

Now write 

u ~ ( v ( y ) ,  a ( z ) )  - u . ( r ( y ) ,  r ( z ) )  - {a (y )  - F ( y ) } U 2 ) ( F ( y ) ,  r ( z ) )  

- {a(z) - r(z)}U~(2)(F(y), F(z)) 

= VG,F(y)h~(F(z)) + Oh,(F(y))WG,F(Z) 
Oa 

+ {G(y) - F(y)} Oh~(F(y)) {h~(G(z)) - h~(F(z))} 
Oa 

= VG,F(~)h.(F(y)) + Oh~(F(z))WG,F(y) 
0 a  

Oh~(F(z)) {h~(G(y)) - h~(F(y))} 
+ {a (z )  - F(z )}  0~ 
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with 

{ {h,~(G(y)) - h,~(F(y))}/{G(y) - F(y)}  
WG,F(y) = -h~(F(y)) 

0 

and 

Oh~(G(y)) Oh~(F(y)) / { a ( y ) - F ( y ) }  
{ o~ o~ } 

VC,F(y) = Oh~(F(y)) 
Oc~ 

0 

if G(y) ~ F(y) 
otherwise, 

if G(y) ¢ F(y) 
otherwise. 

Then 

IQx(o~)l _< Op(n-l/2) IVF,.F(y)h,~(FCz))I + 

-= Op(n-1/2), 

Oh~(F(y)) 
0o~ WF~,F(z) 

Oh~ ( F(y) ) h,~ ( F(z) ) } + Oa {h,~(Fn(z)) - 

+ IVF.,F(z)h,~(F(Y))I Oh~(~__(Z))WF.,F(y) 

Oh~(F(z)) h,~(F(v))} }dydz + Oc~ [h~(F~(y)) - 

by the dominated convergence theorem. Similarly sup~l_<~_<~2 IQkl = op(n-1/2), 
k = 2, 3. The fourth term is of order n -1 in probability and the result obtains. [] 

There exists a Brownian bridge Bn dependent on X I , . . . ,  Xn such that  

~n(Of) 2n -1/2 = ±[v < z] 
JF-I(~) JF-l(o~) 

• {Bn(F(y)j(J.(y,  z) + f~(y,  z)) + B,~(F(z))L.(z, y)}dydz 
+ op(n-1/2). 

This implies that &s - a = Op(n-1/2) • Hence, the order of variability in &s is 
considerably smaller in the smoothly trimmed case and we have a sufficient reason 
to ignore it. 

5. Simulation 

In this section we report the results of a small simulation experiment de- 
signed to evaluate the finite sample performance of several versions of the adaptive 
trimmed mean. As we emphasized above, an important aspect of performance will 
be our ability to make credible inferences and construct valid confidence intervals 
without specifically including the variability in &s. 
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5.1 Monte-Carlo swindle 
Since all of the estimators under consideration are translation equivariant 

and their associated variance estimators are scale equivariant we may exploit the 
Monte-Carlo swindle of Relles (1970) and Gross (1973) for error distributions from 
the normal/independent family (see Efron and Olshen (1978) for a nice character- 
ization of this family). 

In the location setting we may draw Yi = zi/vi ,  i = 1, . . .  ,n, where zi are 
independent standard normal random variables and the v~ are independent draws 
from another distribution. Here vi ,,o X/~-,/u so the yi's have a Student's t distri- 
bution on u degrees of freedom. Conditional on the vi's an efficient estimator of 
location may be constructed as/2 (EL1 vD -1 E =I = n viYi. Then, /2 ~ N(0, av 2) 

n where ~rv2 = (~'-i-1 v2~-1, j , and for any other scale equivariant estimator of location 
Tn and associated estimator of scale sn, 

P[Tn > ks~] = P[/2 > ks~ - T~ +/2] = 1 - ¢((ks~ - T~ - / 2 ) / av )  

and by symmetry, 

P[T~ > ks~] - - -  q~((-ks~ + T~ - /2) /av) .  

Averaging these two probabilities over the number of Monte-Carlo replications, 
say R, of the experiment for several values of k yields estimates ~R(ki) for i = 
1 , . . . , K .  Finally, regressing logit(/SR(k~)) on k, we may interpolate to find k* 
such that ibR(k*) = .025. For the adaptive estimators where trimming is random 
it is natural to adopt the Tukey and McLaughlin's (1963) suggestion to use t 
on n - 2[n&z] - 1 critical values. Since &z is location and scale invariant, we 
may incorporate the t critical value into the definition of sn above and estimate 
a multiplicative factor, say ),*, required to inflate (or deflate) the nominal Tukey- 
McLaughlin critical values to achieve correct size. These adjustment factors are 
reported in Table 3 below. Expected confidence interval lengths (ECIL's) may 
also be estimated. Again following Gross (1977), ECIL = 2k*E(sn/~o)E(~o) 
since sn/gTo and ~02 }-] 2 = vi (Yi - / 2 )  2 are conditionally independent. Averaging 
s~/&o over Monte-Carlo replications and noting that ~02 is conditionally 2 Xn--1,  

E#o = V/2/n - lr(n/2)/r((n - 1)/2) yields an estimate of expected confidence 
interval length. Again, the Tukey-McLaughlin critical values may be incorporated 
into s~ and the same argument used to compute "swindled" ECIL's based on the 
estimated inflation factors ),*. Thus we simply compute 

ECIL = 2A*E(k(&)Sn) = 2A*E(k(&S)Sn/~ro)E(&o), 

where k(a) denotes the nominal (level .025) critical value for the t on n -  2[na] - 1 
degrees of freedom. 

5.2 Monte-Carlo design 
We consider 9 Monte-Carlo configurations: three sample sizes, n = 25, 50,100, 

and three distribution functions, all Student's t on 1, 3, and 12 degrees of freedom. 
The number of Monte-Carlo replications, R, is 1000 for each configuration. 
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Four estimators are considered: two fixed-a trimmed means with a = .  1 and 
a = .25, and two adaptive trimmed means. In the tables JATM(c~2) will refer to a 
slightly modified version of the Jaeckel adaptive trimmed mean implemented in the 
Princeton Robustness Study (Andrews et al. (1972)) with & chosen to minimise 
Vn(a) over [al, a2]. The lower bound a l  is chosen to be .06 in all cases, and 
we consider two choices of a 2 : . 2 5  and .44. Similarly, SATM(a2) will refer to 
the smooth trimmed mean based on the weight function ha(u) as in (2.1) with 

= 0.01 and with & chosen to minimize 

s~(c~) = / / ( F n ( y  A z) - Fn(y)F~(z))h~(Fn(y))h~(F~(z))dF~(y)dFr~(Z) 

over  [o~1, oz2]. Some experimentation with choosing & as for the SATM, but then 
using the classical trimmed mean with trimming proportion &, indicated that  the 
location estimators were essentially identical. Several modifications of the Andrews 
et al. (1972) version of the Jaeckel adaptive trimmed mean were required--notably 
their centering by the Winsorized mean (!) was altered to accord with V~(a) in 
(1.1). The smoothed estimates based on the weight function (2.1) were computed 
by explicitly computing integrals defining T~ (a) and S2n (a) over the piecewise con- 
stant segments of Fn. (Fortran source for both estimators is available on request.) 
Both estimators evaluate an estimate of the asymptotic variance on a grid and 
choose &s as the minimizer on the grid. The grid is 50 equally spaced values 
between a l  and c~2. 

The choice of the upper bound ct2 for the a grid is a rather delicate issue. This 
is largely a consequence of the fact that  in all the symmetric situations we have 
considered the asymptotic variance ~r2(a) is quite flat as a function of a. This 
is illustrated for several familiar distributions in Fig. 1. Moreover, as a --~ 1/2 
the "effective sample size" n~ = n - 2[na] tends to zero. This has two effects: 

2 for large values of a when we normalize there is a perceptible downward bias in s~ 
by n~, and secondly, the variability of s~(a) increases with a. The former effect 
may be treated by normalizing by n~ - 1 rather than n~; this treatment already 
appears in the code of Andrews et al. (1972). The latter problem is more difficult 
to treat, but it is clear that  it contributes significantly to the tendency of both 
adaptive procedures to overestimate a, and when this occurs it appears to produce 
an underestimation of a 2 (as). The latter phenomenon is reflected in rather large 
correction factors for the critical values when a2 = .40 and n is moderate, say 
less than 100. Substantially better performance is achieved by restricting a to the 
range [0, .25] at least over the range of conditions investigated in our experiment. 
Since even in relatively extreme situations like the Cauchy, the optimal trimming 
proportion is only about one-third, the restriction of &s to values below this level 
is less severe than might, at first, be thought. 

5.3 Results 
In Table 2 we report the raw mean-squared errors of the four estimators in the 

9 experimental configurations. A table of "swindled mses", mean square errors of 
(Tn - [~) is essentially identical and therefore has been omitted. As noted above, 
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Table 2.- Mean-squared error performance. 
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Student on 1 degrees of freedom 

TM(.1) TM(.25) SATM(.25) SATM(.44) JATM(.25) JATM(.44) 

n = 25 0 .4193 0 . 1 3 8 8  0.1499 0.1188 0.1555 0.1190 
n ---- 50 0 .1122 0 . 0 5 4 9  0.0572 0.0487 0.0598 0.0486 
n ---- 100 0.0506 0 . 0 2 7 2  0.0280 0.0249 0.0284 0.0247 

Student on 3 degrees of freedom 

TM(.1) TM(.25) SATM(.25) SATM(.44) JATM(.25) JATM(.44) 

n = 25 0 .0713 0 . 0 6 4 5  0.0653 0.0706 0.0662 0.0713 
n ---- 50 0 .0339 0 . 0 3 1 0  0.0321 0.0321 0.0321 0.0327 
n = 100 0.0160 0 . 0 1 5 4  0.0156 0.0165 0.0155 0.0168 

Student on 12 degrees of freedom 
TM(.1) TM(.25) SATM(.25) SATM(.44) JATM(.25) JATM(.44) 

n = 25 0 .0419 0 . 0 4 5 4  0.0445 0.0487 0.0444 0.0503 
n ---= 50 0 .0237 0 . 0 2 4 9  0.0242 0.0266 0.0242 0.0272 
n = 100 0.0117 0 . 0 1 3 0  0.0120 0.0133 0.0119 0.0136 

two versions of bo th  adaptive est imators are reported in the table, one with the 
upper  bound a2 -- .25, and the other  with a2 -- .44. 

Perhaps the most  striking feature of Table 2 is the excellent performance of 
the 25% fixed t r immed mean. Clearly 10% t r imming is insufficient to cope with 
the (admit tedly somewhat  extreme) Cauchy situation, but  25% t r imming sacrifices 
very little in the (near Gaussian) t on 12 situation. The mse performance of the 
adaptive t r immed means is quite good. In the three Cauchy situations the SATM 
(.44) and JATM (.44) are slightly bet ter  than  the 25% fixed t r immed m e a n - - o n e  
might expect this since the optimal a for the Cauchy is about  .37. In the t on 
3 si tuation 25% t r imming is nearly optimal, so the excellent performance of 25% 
fixed t r imming is not surprising. Here the SATM's  sacrifice little to 25% fixed 
t r imming and perform somewhat  bet ter  than  the Jaeckel estimators.  In the t on 
12 case, 10% t r imming is excellent, but  again the smoothly  adaptive t r imming is 
essentially as good with similar performance from the adaptive Jaeckel's. 

In Table 3 we report  est imated correction factors for the ~klkey-McLaughlin 
critical values for a two-sided 5% test based on the test statistic Tn/s~. Thus, 
an entry of one indicates no adjustment  is necessary to achieve correct nominal  
size. An entry less than  one indicates tha t  the Tukey-McLaughlin critical values 
are conservative, leading us to reject less often than  indicated by the nominal  size 
of the test. For Cauchy observations the Tukey-McLaughl in  critical values for 
fixed t r imming are quite conservative, as they are for adaptive est imators when 
a2 = .25. However when a2 is allowed to be as large as .44, we begin to see 

7 

the tendency for the adaptive procedures to overestimate the optimal a and the 
underest imat ion of cr 2 ( as )  for large a is reflected in the large est imated correction 
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Table 3. Tukey-McLaughl in  correction factors. 

S tuden t  on 1 degrees of freedom 

TM(.1)  TM(.25)  SATM(.25) SATM(.44) JATM(.25)  JATM(.44)  

n = 25 0.8192 0.8930 0.9345 1.0096 0.9965 1.4194 

n -- 50 0.8843 0.8668 0.9182 1.0707 0.9607 1.2550 

n = 100 0.9018 0.9522 0.9487 1.0866 0.9828 1.1827 

Student  on 3 degrees of freedom 

TM(.1)  TM(.25)  SATM(.25) SATM(.44) JATM(.25)  JATM(.44)  

n = 25 0.8954 0.9722 1.0389 1.0861 1.0993 1.4408 

n ---- 50 0.9826 0.9427 1.0246 1.1551 1.0597 1.3274 

n ---- 100 0.9789 0.9831 1.0179 1.1512 1.0447 1.2582 

Student  on 12 degrees of freedom 

TM(.1)  TM(.25) SATM(.25) SATM(.44) JATM(.25)  JATM(.44)  

n ---- 25 0.9180 0.9838 1.0598 1.1928 1.1140 1.5558 

n ---- 50 0.9886 0.9589 1.0398 1.1849 1.0765 1.3600 

n - -  100 0.9772 0.9868 1.0137 1.1386 1.0389 1.2326 

Table 4. Es t ima ted  (expected, size-adjusted) confidence interval  lengths.  

S tuden t  on 1 degrees of freedom 

TM(.1)  TM(.25)  SATM(.25) SATM(.44) JATM(.25)  JATM(.44)  

n = 25 2.0501 1.3486 1.3778 1.4861 1.3868 1.7366 

n -- 50 1.1563 0.8633 0.8745 0.8903 0.8878 0.9387 

n = 100 0.7993 0.6060 0.6120 0.6111 0.6166 0.6221 

S tuden t  on 3 degrees of freedom 

TM(.1)  TM(.25)  SATM(.25) SATM(.44) JATM(.25)  JATM(.44)  

n ---- 25 1.0272 1.0462 1.0056 1.1228 1.0177 1.3144 

n = 50 0.6957 0.6937 0.6883 0.7419 0.6906 0.7793 

n = 100 0.4902 0.4798 0.4832 0.5131 0.4846 0.5291 

S tuden t  on 12 degrees of freedom 

TM(.1)  TM(.25)  SATM(.25) SATM(.44) JATM(.25)  JATM(.44)  

n = 25 0.8671 0.9496 0.8858 1.0603 0.8874 1.2312 

n = 50 0.5950 0.6376 0.6081 0.6758 0.6081 0.7174 

n = 100 0.4143 0.4382 0.4209 0.4567 0.4205 0.4714 

f a c t o r s  for  t h e  a d a p t i v e  m e t h o d s  w h e n  a 2  = .44. W h e n  & s  is c o n s t r a i n e d  t o  b e  

l e s s  t h a n  2 5 % ,  t h e  c o r r e c t i o n  f a c t o r s  a r e  m o r e  r e a s o n a b l e ,  e n o u g h  so  t h a t  w e r e  

w e  t o  u s e  t h e  T u k e y - M c L a u g h l i n  c r i t i c a l  v a l u e s  w e  w o u l d  n o t  b e  f a r  off. T h e  
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SATM correction factors are consistently nearer one than those for the JATM's 
confirming our expectation that the smoothed estimate of the variability of the 
trimmed mean is more reliable than the classical Winsorized variance estimate. 

In Table 4 we report expected confidence interval lengths for the experiment. 
Here the performance of the adaptive trimmed means is quite good for a2 = .25, 
but significantly worse for a2 = .44. The smoothing, it will be noted, yields 
somewhat more reliable estimates of variability and slightly better expected confi- 
deuce interval lengths than the Jaeckel version of the adaptive trimmed mean, as 
suggested by the preceding theory. 
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