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Abstract. We consider Jaeckel's (1971, Ann. Math. Statist., 42, 1540-1552)
proposal for choosing the trimming proportion of the trimmed mean in the more
general context of choosing a trimming proportion for a trimmed L-estimator
of location. We obtain higher order expansions which enable us to evaluate the
effect of the estimated trimming proportion on the adaptive estimator. We find
that L-estimators with smooth weight functions are to be preferred to those
with discontinuous weight functions (such as the trimmed mean) because the
effect of the estimated trimming proportion on the estimator is of order n™!
rather than n~3/%. In particular, we find that valid inferences can be based
on a particular “smooth” trimmed mean with its asymptotic standard error
and the Student ¢ distribution with degrees of freedom given by the Tukey and
McLaughlin (1963, Sankhya Ser. A, 25, 331-352) proposal.
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1. Introduction

Let X1, Xs,...,X, be a sample of independent and identically distributed
random variables with commeon distribution function F' and let X,; < X, <
.+« < X,,n denote the order statistics of this sample. The a-trimmed mean is the
mean of the observations which remain after excluding [na] observations in each
tail and is given by

n—[na]

1
My(o) = —F—— Xniy, 0< 1/2.
(@) n — 2[na] ._[nza]ﬂ o<l

For accounts of the history and properties of this popular estimator of location,
see Tukey and McLaughlin (1963), Bickel (1965), Huber (1972), Stigler (1973) and
Bickel and Lehmann (1975). Provided F~'(a) and F~1(1 — «) are unique,

(1.1) n /2 { M (a) — M(c)} 2 N(0,V (),

737



738 JANA JURECKOVA ET AL.

where

1 F_l(l—a)
Mla) =
(@)= 15 /F ey VE@) e

F~l(1-0)
Via) = (1—}2—&)—{ [ - m@rarg

Fl{e)

+a[FHa) = M(a)> + o[F71(1 - a) — M(a)]2}.

The asymptotic variance V() is readily estimated by the Winsorised variance

1 1 n—[na]
Vala) = m{; 2 P M

+ a[Xn,[na]—i-l - Mn(a)]2 + a[Xn,n—[na] - Mn(a)]2}

Tukey and McLaughlin (1963) suggested that inference for the trimmed mean be
based on treating n'/2{ M, (a)—M(a)}/Vn(a)'/? as having Student’s ¢ distribution
with n — 2[na] — 1 degrees of freedom. In practice, in order to use the a-trimmed
mean, we need to specify the proportion « of extreme observations to be trimmed
in each tail. A simple approach is to use a deterministic rule such as o = 0.1. While
this rule seems to work well on real data (see Stigler (1977), Spjotvoll and Aastreit
(1980), Hill and Dixon (1982) and Rocke et al. (1982)), it is clearly rather arbitrary
and can be improved on in particular problems. Jaeckel (1971) proposed that we
use the value & which minimises the estimated asymptotic variance V,,(«) of the
trimmed mean over some fixed interval [a1,1 — as] where 0 < a1 < ap < 1/2. He
showed that this adaptive procedure is asymptotically as good as using the value
ag of a which minimises the asymptotic variance V(«) on [, as] in the sense
that M, (&) — My (ap) = 0p(n1/2). Under further conditions on F, Hall (1981)
showed that

6 —ap| =0,(n" V%) and | Mu(&) — My(ag)| = Op(n=%4).
P P

Inference for adaptive procedures, including the adaptive trimmed mean, tends
to be problematic in small and moderate samples. One reason for this is that in
using n~1/2V,,(&)'/? as the standard error of M,(&) (as is suggested by (1.1)),
we ignore the variability in &. Since there seems to be no reasonable basis for
trying to condition on &, it seems desirable to investigate two other possibilities:
either explicitly including the variability in & in the standard error of M, (&) or
attempting to decrease the effect of the variability in & in the standard error of
M, (&) sufficiently so that the variability in & could be ignored in standard error
calculations.
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We investigate the effect of the variability in & on M, (&) by obtaining an
expansion of the form

(1.2) My(&) — M(ap) = Mu(ao) — M () + (& — ag)a(F, — F, F, )

+ smaller order terms,

for a specified function a(F,, — F, F,ap). The second term is typically of order
n~1/20,(]& — ag|) so the rate of convergence of & to a determines the impact of
the variability in & on M, (&). This observation and Hall’s (1981) results raise a
number of questions. Why is & such a poor estimator of ag? Are there alternative
data-driven ways of choosing an « which result in better rates of convergence than
Jaeckel’s proposal? What is the loss of asymptotic efficiency of such methods?
How should the standard error be calculated? Finally, are there other trimmed
location estimators for which Jaeckel’s prescription works better? The purpose of
this paper is to answer these basic questions.

The rate of convergence of a random variable &g, which minimises a random
function S, (@), to g, which minimises S(a), depends on the smoothness of S, (a).
Hall’s result is a direct consequence of the fact that neither V,,(a) nor its influence
function are differentiable. See Hampel et al. (1986) for a detailed treatment of
influence functions. This suggests that rather than minimising V,(«) to estimate
a, we should minimise S, («) where S, () is a smooth function. The results of
Section 3 show that

My (bs) = My(as) = M(65) = M(as) + Op(n™"/?)|as — 5|
+ Op(”_l/z(&s —ag)) + Op(n_l)-

This representation clarifies several issues. Firstly, if F' is symmetric M(dg) —
M(ag) = 0. Otherwise M(bs) — M(as) = Op(|& — ap|) which is either of order
n~1/4 or of order n=1/2. In the former case the distribution of M, (ds) — M(as)
is determined by that of (&s — cg) while in the latter case it is determined by
that of My,(&s) — M,(as) and &g — ag. Adaption as it is usually understood is
not possible in either case unless we make the somewhat unsatisfactory claim that
we are estimating the random variable M (&g) rather than the functional M{ag).
(Incidentally, while in general we can define the trimmed mean so that we trim
[na] observations in the lower tail and n — [n] observations in the upper tail, we
have M(é&s) — M{ag) = 0 if and only if F' is symmetric and § = 1 — «a so we
consider symmetric trimming only.) In the symmetric case, we have

My (as) — Mu(as) = Op(n™Y?)|as — ag| + 0,(n"?(as — as)) + Op(n71)

which contains Hall’s result and confirms that the rate of convergence depends on
that of &g — ag and may be improved by choosing édg differently.

The loss of efficiency due to minimising some Sy, () rather than V,,(a) can be
evaluated by comparing V(ag) to V(ag); V() is typically nearly constant over
most of its domain (see, for example, Fig. 1) so, if S,(a) is close to V, (), the loss
of asymptotic efficiency is generally small.
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Fig. 1. Asymptotic variance of STM from several distributions.

There are two difficulties in trying to use (1.2) to obtain an expansion for the
asymptotic variance of the adaptive trimmed mean M, (&). Firstly, the second
term in the variance expansion requires (at least) the next term in (1.2) but this
seems difficult to obtain without smoothness conditions which the trimmed mean
fails to satisfy. Secondly, the non-differentiability of V,,(«) makes it difficult to
obtain a suitable expansion for & — ag. Moreover, even if we could obtain the
requisite terms, we find that the function a(F,, — F, F, o) depends on the sparsity
function 1/f(F~*(q)), so calculating the standard error would involve estimating
the sparsity function. While a number of estimators of this quantity are available
(see e.g., Siddiqui (1960) and Welsh (1988)), it is an estimation problem that
we prefer to avoid whenever possible since convergence is inherently slower than
n~12. We concentrate on trying to find a simple n~/2 consistent method of
estimating the trimming proportion which might justify neglecting the variability
in & in making inferences with respect to the adaptive trimmed mean.

The results of Sections 3 and 4 together show that if 7),(«) is a trimmed L-
estimator with a smooth weight function such that the empirical estimator of its
asymptotic variance is smooth, then Jaeckel’s proposal will lead to an asymptoti-
cally efficient estimator with a faster rate of convergence. Of course, the asymptotic
efficiency is over a slightly different family of estimators, but if T, () is suitably
close to M,,(«), the asymptotic efficiencies of the estimators may be similar; see
Table 1. The contribution of the variability in &g to the asymptotic variance of
T.(a) is of order n=2 and can be ignored. These are arguments in addition to
those given by Stigler (1973) for using L-estimators with smooth weight functions
in general, and smoothly trimmed means in particular. This paper can be viewed
as considering two approaches to improving the rate of convergence of estimators
with estimated trimming proportions.

1) Use the trimmed mean but choose & in some other (asymptotically less
efficient) way so that we achieve the n~! rate, or

2) Use an alternative estimator (such as a smoothly trimmed mean) for which
(asymptotically efficient) adaption at the n ! rate is possible.
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In either case, we believe that it is unnecessary to incorporate the variability in
the trimming proportion into the standard error of the adaptive estimator. The
simulation study in Section 5 shows that in terms of inference the second approach
is to be preferred because the estimated asymptotic variance of the smoothly
trimmed mean better reflects the variability of the adaptive estimator.

2. Notation and conditions

Let . u
Ha(u)z/ ho(t)dt, O<u<l, 0<a<1/2,
0

be a fixed, bounded, signed measure on (0,1) with a smooth weight function h,,
such that H,(1) = 1. Then for any distribution function G define an L-functional
T(a) = % ydHa(G(y)), where G~1(t) = inf{s : G(s) > t}. Let

Fr(y) —n‘lzIX <y), yER,
Jj=1

denote the empirical distribution function of X1, ..., X,, and then let
(o]
Tn() :/ ydH ,(F, ‘1Zh i/1) X s

This class of L-estimators includes the trimmed mean M, («) for which h,(u) =
IHa<u<1-0a)/(1-2a) but also allows us to consider estimators with smooth
weight functions such as Stigler’s (1973) smoothly trimmed mean for which

4(u — a/2)

a2 — 3a)

41— a/2 —u)
a(2 - 3a)

ho(u) = Ha/2<u<a)+ Ho<u<l—a)

2
a(2 — 3a)
Il-a<u<l-—a/2).

In fact, Stigler’s piecewise linear weight function is not smooth enough to achieve
the best possible rate for Jaeckel’s proposal. Thus we also propose to consider the
very smooth

1

(2.1) holu) = =2

K((u—a)/o)l(la-c<u<a+o)

+Il{la+o<u<l-—a—o)
+K((1-a—-uw)/o)I{l—a—c<u<l—-a+o)],

where K(z) = 12($2° — 2234+ 2+ £)I(—1 < 2 < 1) + I(z > 1), which enjoys the
property of Tukey’s blwelght of having second order contact at the terminals. We
will refer to the L-estimator with weight function defined by (2.1) as the smoothly
trimmed mean.
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Let S(a) be any criterion function which we minimise over some set to choose
an &. It is convenient and simple to choose a1, 03] for 0 < a1 < a2 < 1/2.
There is some interest in allowing a; = 0 but this can only be done at the expense
of moment conditions (which are undesirable from a robustness viewpoint) and a
considerable increase in complexity so we will not pursue this in the present paper.
If the minimum is not unique let ag denote the smallest minimising value of a so
that

ar<a<az

aS:inf{uE[al,aZ]:S(u): inf S(a)}.

Let S, () be an estimator of S(a) and let &g denote the smallest minimising value
of Sp(e) so that

&Szinf{ue[al,az]:Sn(u)z inf Sn(a)}.

ar<a<lag

We will require that @; < ag < as and that S{a) has two derivatives in a neigh-
bourhood of ag (which we denote N(ag)) with S” continuous and non-zero at
ag.

Our results are based on an asymptotic representation for T, («) which holds
uniformly in o over oy, ag]. For the trimmed mean and estimators such as Stigler’s
smoothly trimmed mean, we will impose the following conditions on F' and h:

M1) hy(u) =0foru <aoru>1—a,0<a<1/2 hy(u) is bounded for
0<wu<1and o; < o< ag, has at most a finite number of jump discontinuities

at o = 59 < s1{a) < -+ < sc{a) < 1—a = scq1, where s;(a) has a bounded
derivative for a1 < a < an, 7 =1,2,...,c. Moreover, h,(u) satisfies the Lipschitz
condition

sup  |ha(t +u) — ha(t)] < Klul for all ¢ +u and ¢t in (s;(c), s541(c)),

a;<aLas

and %ga(‘—") exists and is continuous for s;j(a) < u < s;jy1(e), @ € N(as) and
j=0,1,...,cand

M2) F is continuous and has a positive derivative f in a neighbourhood of
each jump point of ke (u) such that f is continuous at each jump point of hq (u).
Note that if k., has no jump points, then a central limit theorem holds for arbitrary
F. Indeed, this was the basis for Stigler’s (1973) proposal. If h,, is smooth enough,
we can obtain more information about the higher order terms in the expansion.
We will do this for h, satisfying the following conditions:

T1) ho(u) =0foru < aoru>1—a, 0 < a<1/2 he(u) is bounded for
0<u<1land a; << ay, h,(u) and 2’%% |a=as are bounded for 0 <u <1
and continuous a.e. with respect to Lebesgue measure and F~1.

The condition T1 does not hold for either the trimmed mean My (a) or for
Stigler’s (1973) smoothly trimmed mean but it does hold for (2.1) because

1
1 -2«

h.,(u) = [0 'K ((u—a)/o)[(a—c<u<a+o)

—o'K'(1—a-uw)/o)Il—a—c<u<l—-a+o),
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where K'(z) = (2% — 222+ 1)I(-1 < 2 < 1), and
O, (u) L apen
% :1—201[0 K'(l—a—-u)/o)ll-a—-c<u<l—-a+o0)
—0?2K"(u—a)/o)[{a—0 <u<a+o)
+ﬁt%yb*KWu—®wﬂm—aﬁuSa+ﬂ

oK' (1-a-uw/o)[1-a-o<u<l-a+o)),

where K" (z) = 13(2% —2)I(-1 <2 <1).
It follows from Theorem 3.2 that provided F is symmetric, for any dg — ag =
op(1) such that oy < ag < ag,

n?(Ty(as) — T(as)) 2 N(0,0(as, F)),

where 0% (o, F) = [7° [% {F(y A 2) — F(y)F(2)}ha(F(y))ha(F(2))dydz. This
suggests that whether the family of estimators of interest is the trimmed mean
M., (o) or a more general L-estimator T, («), we can choose a trimming proportion
« by minimising the empirical estimator

b= [ [ (Bl D) = Fa) Fulha(Fa0) e Fo )i

of 6%(a, F). That is, we can take S(a) = ¢%(a, F). To guarantee that the mini-
mum of o2 () is a n'/2-consistent estimator of the minimum of o2(c, F), we re-
quire smoothness conditions on the weight function h,. In particular, we require
T1 given above and

T2) h has two derivatives with respect to « in a neighbourhood of ag €

(O[l,OKQ) a( )

is continuous at ag for each 0 < u < 1, and for K < oo,

Oha(u)
da

0?he (u)

o2

<K

sup sup
0<u<1 OtEN(as)

<K and sup  sup
0<u<1 aeN(ag)

and m'ai(%m is non-zero at ag.

Note that conditions T1 and T2 imply that hq(e) = ho(l — a) = b, (a) =
hy,(1 — ) = 0 so from Liebnitz’ formula we have that

&’_ngl:/_Z/_Z{F(y/\z)—F(y)F(Z)}

and
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= [ [ rwra - Fype)
(Zratr)

4 99haF(Y)) Oha(F(2))

ha(F(2)) Oa 0o

da?

¥ ha(F(y»%@}dydz.

8%02(a,F)
o

Hence T2 ensures that is continuous at «ag.

3. Representation for L-estimators

The following theorem provides a representation for L-estimators (including
the trimmed mean) with estimated trimming proportions. The proof is based on
an argument used in Jureckova (1986).

THEOREM 3.1. Suppose thai conditions M1-M2 hold, a; < ag < as and
ag —ag =op(1). Then
Tn(bs) — Ta(as) = T(as) — T(as) + (&s — as)a(Fn — F, f,as)
+op(n™?(4s — ag)) + Op(n™1),

where

{Fuly) — F(y)}———dy
F=1(s;(a)) da

ha(si01(e)  95141()
FF(5711(a))) e
AEW(F (5542(0)) = 571(0))
ha(s5(a)  5;(a)

- oD ) P sy - s}

PrOOF. We will first prove that

c Fl(sj01(a))
a(Fy = F, f,0) = Z{ / O ")

J=0

_+..

1) s [T0)~T@)+ [ (Fals) = FO)Ia(F))ds] = Opn )
Write
T,(0) ~T(@) + [ {Fuls) = F)lha(F )y
-/ Z Wi, () {Fn(y) — F )}y,
with

{Ha(G(y)) - Ha(F(y))}
Wa,r(y) = { {G(y) = F(y)}
0

— ha(F(y)) if G(y) # F(y)

otherwise.
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There exists —oc < @ < b < oo such that for sup ¢ |G(y) — F(y)| < a1, we have
We,r(y) = ha(G(y)) = ha(F(y)) =0 for y <aory >band any a1 < a < as.
That is, for n large enough, the range of integration can be restricted to [a,b].
Without loss of generality, suppose that h, has a single jump discontinuity at «.
Since a < F~Y(a) < b, for n sufficiently large,

| / " W () (Faly) - F(y)}dy

b
< / Wr, 2 (1) {Fa(y) — F(y)}ldy

{ F~Ya)-n~1/? FYa)4+n"1/2 b
L L )
a F~1{a)-n—1/2 F-1(a)+n—1/2

A Wr,,F(y){Fn(y) — F(y)}dy.

Now with K a generic positive constant,

F‘l(oz)—n"l/2
sup / W, £ (u){Fa(y) — F(y)}dy

a1<aLas

F~Ya)-n"1/2
< |
a

ar<a<laz

I(Fu(y) > F(y))

Faly)-F()
. /O |ho(F(y) + 1) — ho(F(y))|du

0

+IF ) < F) | ha(F) + 1) — ho(F(y))|du]| dy
Fn(y)~F(y)
A OO Fu(y)—F(y)
< sup K I(F,(y) > F(y))/ udu
ar<a<as a 0
0
T+ I(Fa(y) < F@W)) / () dy
Fn(y)—F(y)
< Ksup |Fo(y) - F(y)? sup |[F7(a)—n""2-q
Yy aj<a<as
= Oy(n7").
Similarly,
b
s [ Wr, £ () {Fny) — F(5)}dy = Op(n ™).
arSafas J F~Ha)+n—1/2

Also, Wg () is bounded so

F-l(a)+n—1/2
sup / Wi, (0){Fa() — F(0)}|dy

arL<afag JF-1(a)-n—1/2

< Kn~'/? Sup |Fn(y) = F(y)l = Op(nh),
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and hence (3.1) holds.
Now write

T.(bs) ag) — T(a5)+T(a5)
/ (Foly) — F@)}has (F0))  has (F@))}dy + 0p(n~)

“H(sj41(as))
= Fouly) — F(y)Yhao (F(y))d
Z{ I oy )= P o (PG

“I(sjq1(as))
- / {Fu(y) = F(y) Yhas (F(y))dy} + Op(n™")
F=1(s;(as))

= (45 — as)a(F, — F, f,&) + Op(n™")
= (&S - a5>a(Fn —F,f,OéS)
+ (OAKS - aS){a(Fn - Fa fv&) - a(Fn - F?faas)} + Op(n’—l)a

where |ag — &| < |as — Gg|, and the result obtains. O

Under additional smoothness conditions on h,, we can obtain more precise
information about the higher order terms in the expansion.

THEOREM 3.2. Suppose that condition T1 holds, a1 < ag < oy and &g —
as = 0p(1). Then

Th(bs) — To(as) = T(as) —
(a5 —as / {Faly) — Py)y Zes 20
+ OP{n 1/2(045 - O‘S) }+ Op(” 1)-

Ohas (F(y))

d
Jag Y

PROOF. As in the proof of Theorem 3.1, write
@)+ [ Fu) ~ )} ha(Pw)dy
+y / (Bl - F)PR (P )y
[ W ) En) - F)Y

where now

{Hoc(F(y)) B Ha(G(y>)}
{G(y) - F(y)}?
We,r(y) = _ ha(F(y)
{G(y) — F(y)}

- —h’ o(F(y) if Gly) # F(y)

otherwise.
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Then, by the dominated convergence theorem,

sup
ar<alas

To(0) - T(@)+ [ " (Fuly) - F@)}ha(F())dy

% /_Z{F”(y) — F(y)Y*ho (F(y))dy| = op(n~

Now arguing as in the proof of Theorem 3.1,
T ( T (as) T(ag) T(Ots)
/ (F(0) = F0) Hhas (F0) ~ hos (F) Yy

1 / (Fuly) = F)Y{s, (F()) — K, (F(3))}dy + op(n

Ohas(Fy)) ,
8a5 y

as—as/ [Faly) - Fy)} et ZW)

+Op{n (aS —ag) }+0p(”_1)-

Table 1. Asymptotic efficiency of the smooth trimmed mean.

Standard Normal
a=005 a=01 a=02 a=04
oc=0 0.973 0.949 0.880 0.727
o=10.01 0.974 0.943 0.874 0.722
oc=0.05 0.976 0.945 0.876 0.726

Student on 12 degrees of freedom
a=005 =01 =02 a=04
c=0 0.995 0.995 0.949 0.803
o =001 0.995 0.988 0.942 0.797
c=0.05 099 0.989 0.944 0.801

Student on 3 degrees of freedom
a=005 a=01 a=02 a=04
=0 0.848 0.941 0.996 0.915
o =0.01 0.849 0.932 0.987 0.909
o=0.05 0.842 0.930 0.988 0.912

Student on 1 degree of freedom
a=00 a=01 a=02 a=04
=0 0.226 0.428 0.704 0.883
o =0.01 0.226 0.418 0.696 0.876
o =0.05 0.202 0.408 0.691 0.877

747
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As noted in Section 2, it follows from Theorems 3.1 and 3.2 that provided F'
is symmetric, for any &g — ag = 0p(1) such that a; < as < ag, nY/2(T, (Gg) —
T(as)) 2 N(0,0%(as)), where 02(a) = [, [ {F(yA =)~ F(y)F(2)}ha(F(y))
ho(F(2))dydz. For h, given by (2.1), we can use this result to calculate the
asymptotic efficiency of the smooth trimmed mean for different values of (o).
The results of calculations at selected underlying distributions (corresponding to
those used in the simulation study in Section 5) are given in Table 1. The efficiency
of the smooth trimmed mean (with small &) is similar to that of the trimmed mean.

4, Choosing the trimming proportions

First consider the general structure described in Section 2 in which S(a) is
any criterion function which we can minimise to choose an o = ag. Let S,(a) be
an estimator of S(a) and let &g denote the smallest minimising value of S, (). A
standard argument (see Lemma 3 of Jaeckel (1971) or Theorem 1 of Hall (1981))
can be used to show that ds — ag = 0,(1). If a1 < ag < ag, Sp(a) has two
derivatives in a neighbourhood of ag, supyen(ag) |Sn (@) — S”(a)| = op(1) and
S" is c/02ntinuous and non-zero at ag, then for any &g which satisfies S, (&g) =
op(n™/%),

Splas)

(4.1) 48 T AT TG (ag)

+ Op(ds — Ots).

When S is smooth, as the next result establishes, &g — ag = op(n”l/ 2). Further,
if the functional S(a) is the asymptotic variance of a smooth L-estimator (e.g.
of the estimator defined in (2.1)), we may still approximate the right-hand side
of (4.1) by a functional of an empirical process and thus eventually obtain the
(non-normal) limiting distribution of &g — as. More precisely, in such a case we
have

THEOREM 4.1. Suppose that T1-T2 hold. Then with S(a) = o*(a, F) and
Sp(a) = 0?(a, F)

na —
Gg —ag = fin(@05) + op(n 1/2),

B S”(as)
where
Fl1-a) pF'(1-o)
m)= [ [ WD) - A 2)a)
+{Fn(y) — F(y)}La(y, 2)
+ {Fn(2) — F(2)} La(2,y) }dydz,
with
Taln2) = Z2ED (7)) 4 ha(r) P 2D

and



ADAPTIVE CHOICE OF TRIMMING PROPORTIONS 749

Lo(y,2) ={F(yA2) = F(y)F(2)}

{2elE, (e + e 2ol

() {Q_’%@ha(p(z)) + ha(F(y))ahaéz (2)) } .

Clearly, Gs — as = Op(n1/?),

PROOF. That sup,en(ag) [Sn(@) — S”(a)] = 0,(1) under T1-T2 follows
from the dominated convergence theorem. Write S),(ag) — S'(ag) — nnlas) =

Ek_l Qr(as) where

Q@) = [[1Faly 1 2) = Fulo) () HUa F(0), Ful2) = Ua(Fl0), F(2)
AFuly) - Fly >}U<1><F<y>,F<z>>
— {Fu2) - F(z)}U<2><F< ), F(2))}dydz,
0) = [[{Faur2) - Faw)Fala) - Flun2) + FOF (@)}
Fuly) - F(y)}U<1>< (9), F(2))dydz,
//{F yA2) = Fu@Fa(a) ~ Flun9) + F@)F()
Fu(2) - F(2)}US (F(y), F(2))dyd=

and

—— [[(B) = F)}Fu(e) - FGUalFl0), F(2))dydz,

where Uy (u,v) = %a(—li)—ha(v) + ha(u)gha;‘csﬂ, Uél)(u,v) and US? (u,v) denote the
derivatives of U, (u,v) with respect to u and v respectively and all the integrals
are taken over the range (F~'(a), F~1(1 — @)). As in the proof of Theorem
3.1, for n large enough, the range of integration can be restricted to [a, b], where
—o0 < g <b<oo.

Now write

Ua(G(y), G(2)) = UalF(y), F(2)) — {G(y) = Fy)}UL (F(y), F(2))
—{G(2) ~ F(2)}UP (F(y), F())

= Vo, r(y)ha(F(2)) + %‘%QDWG,F@)

16w - P LW b 66) - ha(FeN)

= Vo,r(ha(F(y) + L2l )

+ 166 - PN 2oL D i @) - ha(F )

Wea,r(y)
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with
{ha(G(y)) — ha(F(y)}/{G(y) — F(y)}
We,r(y) = —ho(F(y)) if G(y) # F(y)
0 otherwise,
and
.. [Pl LTI j160) - )
o el T) i Gly) # F)
‘ 0 otherwise.
Then
1Q1()] < Op(n~Y?2) / / {[VF r(y)ha(F(z ))I-l—'?—}—b—o%g(—y)—)WFnF(z)

+ ‘W{hﬂ(ﬁ‘n(zn - ha(F(z))}{

Vi o (P | 5 W, ()

+|3h( OhalF(E) () ha(ny»}]}dydz
:Op(n—1/2)a

by the dominated convergence theorem. Slmllarly SUDy, <a<an @k = op(n=1/2),
k = 2,3. The fourth term is of order n~! in probability and the result obtains. O

There exists a Brownian bridge B,, dependent on Xj,..., X, such that

1—F_i(oc) 1-F~Ye)
N (a) = Zn_l/z/ / Iy < 7]

F=1(a) F-1(o)
ABa(F(1)(Ja(y, 2) + La(y, 2)) + Ba(F(2))La(2,y) }dydz
+ op(n“l/z).

This implies that dg — a = Op(n~'/2). Hence, the order of variability in &g is
considerably smaller in the smoothly trimmed case and we have a sufficient reason
to ignore it.

5. Simulation

In this section we report the results of a small simulation experiment de-
signed to evaluate the finite sample performance of several versions of the adaptive
trimmed mean. As we emphasized above, an important aspect of performance will
be our ability to make credible inferences and construct valid confidence intervals
without specifically including the variability in é&g.
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5.1 Monte-Carlo swindle

Since all of the estimators under consideration are translation equivariant
and their associated variance estimators are scale equivariant we may exploit the
Monte-Carlo swindle of Relles (1970) and Gross (1973) for error distributions from
the normal/independent family (see Efron and Olshen (1978) for a nice character-
ization of this family).

In the location setting we may draw y; = z;/v;, i = 1,...,n, where z; are
independent standard normal random variables and the v; are independent draws
from another distribution. Here v; ~ /X2 /v so the y;’s have a Student’s ¢ distri-
bution on v degrees of freedom. Conditional on the v;’s an efficient estimator of
location may be constructed as fi = (37, vZ)"1 3"  v2y;. Then, g ~ N(0,02)
where 02 = (5_7 ; v?)™}, and for any other scale equivariant estimator of location
T,, and associated estimator of scale s,

P[T, > ksy)| =Pl > ksp —Tn + ] =1 — ®((ksn — T, — 1)/ 0w)
and by symmetry,
P[T,, > ksy) = ®((=ksp + T, — 1)/ 0y).

Averaging these two probabilities over the number of Monte-Carlo replications,
say R, of the experiment for several values of k yields estimates pr(k;) for ¢ =
1,...,K. Finally, regressing logit(pr(k;)) on k, we may interpolate to find k*
such that pr(k*) = .025. For the adaptive estimators where trimming is random
it is natural to adopt the Tukey and McLaughlin’s (1963) suggestion to use ¢
on n — 2[nég| — 1 critical values. Since &g is location and scale invariant, we
may incorporate the t critical value into the definition of s, above and estimate
a multiplicative factor, say A*, required to inflate (or deflate) the nominal Tukey-
McLaughlin critical values to achieve correct size. These adjustment factors are
reported in Table 3 below. Expected confidence interval lengths (ECIL’s) may
also be estimated. Again following Gross (1977), ECIL = 2k*E(s,/&0)E(60)
since s,/60 and 63 = Y v?(y; — [1)? are conditionally independent. Averaging
Sn/60 over Monte-Carlo replications and noting that 42 is conditionally x2_,
Eéq = \/2/n—1T'(n/2)/T((n — 1)/2) yields an estimate of expected confidence
interval length. Again, the Tukey-McLaughlin critical values may be incorporated
into s, and the same argument used to compute “swindled” ECIL’s based on the
estimated inflation factors A*. Thus we simply compute

ECIL = 2X*E(k(&)sn) = 2X*E(k(6:5)8n/50) E(60),

where k() denotes the nominal (level .025) critical value for the ¢t on n—2[na]—1
degrees of freedom.

5.2 Monte-Carlo design

We consider 9 Monte-Carlo configurations: three sample sizes, n = 25, 50, 100,
and three distribution functions, all Student’s ¢ on 1, 3, and 12 degrees of freedom.
The number of Monte-Carlo replications, R, is 1000 for each configuration.
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Four estimators are considered: two fixed-o trimmed means with o = .1 and
a = .25, and two adaptive trimmed means. In the tables JATM (o) will refer to a
slightly modified version of the Jaeckel adaptive trimmed mean implemented in the
Princeton Robustness Study (Andrews et al. (1972)) with & chosen to minimise
Vo{a) over [ag,a3]. The lower bound oy is chosen to be .06 in all cases, and
we consider two choices of ag: .25 and .44. Similarly, SATM (a2) will refer to
the smooth trimmed mean based on the weight function h,(u) as in (2.1) with
o = 0.01 and with & chosen to minimize

sn(a) = / (Fu(y A 2) = Fo(y)Fn(2) ha(Fn(y) ha (Fn(2))dFn (y)dFn(2)

over [ag,as]. Some experimentation with choosing & as for the SATM, but then
using the classical trimmed mean with trimming proportion &, indicated that the
location estimators were essentially identical. Several modifications of the Andrews
et al. (1972) version of the Jaeckel adaptive trimmed mean were required—notably
their centering by the Winsorized mean (!) was altered to accord with V() in
(1.1). The smoothed estimates based on the weight function (2.1) were computed
by explicitly computing integrals defining 77, (a) and s2(c) over the piecewise con-
stant segments of F,,. (Fortran source for both estimators is available on request.)
Both estimators evaluate an estimate of the asymptotic variance on a grid and
choose Gg as the minimizer on the grid. The grid is 50 equally spaced values
between o and as.

The choice of the upper bound as for the o grid is a rather delicate issue. This
is largely a consequence of the fact that in all the symmetric situations we have
considered the asymptotic variance o2(a) is quite flat as a function of a. This
is illustrated for several familiar distributions in Fig. 1. Moreover, as oo — 1/2
the “effective sample size” n, = n — 2[na] tends to zero. This has two effects:
there is a perceptible downward bias in s2 for large values of o when we normalize
by na, and secondly, the variability of s2(a) increases with a. The former effect
may be treated by normalizing by n, — 1 rather than n,; this treatment already
appears in the code of Andrews et al. (1972). The latter problem is more difficult
to treat, but it is clear that it contributes significantly to the tendency of both
adaptive procedures to overestimate o, and when this occurs it appears to produce
an underestimation of 0%(ag). The latter phenomenon is reflected in rather large
correction factors for the critical values when as = .40 and n is moderate, say
less than 100. Substantially better performance is achieved by restricting o to the
range [0, .25] at least over the range of conditions investigated in our experiment.
Since even in relatively extreme situations like the Cauchy, the optimal trimming
proportion is only about one-third, the restriction of é&g to values below this level
is less severe than might, at first, be thought.

5.3 Results

In Table 2 we report the raw mean-squared errors of the four estimators in the
9 experimental configurations. A table of “swindled mses”, mean square errors of
(T, — i) is essentially identical and therefore has been omitted. As noted above,
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Table 2.. Mean-squared error performance.

Student on 1 degrees of freedom
TM(.1) TM(.25) SATM(.25) SATM(.44) JATM(.25) JATM(.44)

n =25 0.4193  0.1388 0.1499 0.1188 0.1555 0.1190
n =50 0.1122  0.0549 0.0572 0.0487 0.0598 0.0486
n =100 0.0506 0.0272 0.0280 0.0249 0.0284 0.0247

Student on 3 degrees of freedom
TM(.1) TM(.25) SATM(.25) SATM(.44) JATM(.25) JATM(.44)

n =25 0.0713  0.0645 0.0653 0.0706 0.0662 0.0713
n =50 0.0339  0.0310 0.0321 0.0321 0.0321 0.0327
n =100 0.0160 0.0154 0.0156 0.0165 0.0155 0.0168

Student on 12 degrees of freedom
TM(1) TM(.25) SATM(25) SATM(.44) JATM(.25) JATM(.44)

n =25 0.0419  0.0454 0.0445 0.0487 0.0444 0.0503
n=>50  0.0237 0.0249 0.0242 0.0266 0.0242 0.0272
n =100 0.0117 0.0130 0.0120 0.0133 0.0119 0.0136

two versions of both adaptive estimators are reported in the table, one with the
upper bound az = .25, and the other with as = .44.

Perhaps the most striking feature of Table 2 is the excellent performance of
the 25% fixed trimmed mean. Clearly 10% trimming is insufficient to cope with
the (admittedly somewhat extreme) Cauchy situation, but 25% trimming sacrifices
very little in the (near Gaussian) ¢ on 12 situation. The mse performance of the
adaptive trimmed means is quite good. In the three Cauchy situations the. SATM
(.44) and JATM (.44) are slightly better than the 25% fixed trimmed mean—one
might expect this since the optimal o for the Cauchy is about .37. In the ¢ on
3 situation 25% trimming is nearly optimal, so the excellent performance of 25%
fixed trimming is not surprising. Here the SATM’s sacrifice little to 25% fixed
trimming and perform somewhat better than the Jaeckel estimators. In the ¢ on
12 case, 10% trimming is excellent, but again the smoothly adaptive trimming is
essentially as good with similar performance from the adaptive Jaeckel’s.

In Table 3 we report estimated correction factors for the Tukey-McLaughlin
critical values for a two-sided 5% test based on the test statistic Tp,/s,. Thus,
an entry of one indicates no adjustment is necessary to achieve correct nominal
size. An entry less than one indicates that the Tukey-McLaughlin critical values
are conservative, leading us to reject less often than indicated by the nominal size
of the test. For Cauchy observations the Tukey-McLaughlin critical values for
fixed trimming are quite conservative, as they are for adaptive estimators when
ay = .25. However when ay is allowed to be as large as .44, we begin to see
the tendency for the adaptive procedures to overestimate the optimal o and the
underestimation of 0?(«g) for large « is reflected in the large estimated correction
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Table 3. Tukey-McLaughlin correction factors.

Student on 1 degrees of freedom
TM(.1) TM(.25) SATM(.25) SATM(.44) JATM(.25) JATM(.44)

n=25 08192 0.8930 0.9345 1.0096 0.9965 1.4194
n=50 0.8843 0.8668 0.9182 1.0707 0.9607 1.2550
n =100 0.9018 0.9522 0.9487 1.0866 0.9828 1.1827

Student on 3 degrees of freedom
TM(.1) TM(.25) SATM(.25) SATM(.44) JATM(.25) JATM(.44)

n=25 0.8954 0.9722 1.0389 1.0861 1.0993 1.4408
n=>50 0.9826  0.9427 1.0246 1.1551 1.0597 1.3274
n=100 0.9789 0.9831 1.0179 1.1512 1.0447 1.2582

Student on 12 degrees of freedom
TM(.1) TM(.25) SATM(.25) SATM(.44) JATM(.25) JATM(.44)

n=25 09180 0.9838 1.0598 1.1928 1.1140 1.5558
n=2>50 0988  0.9589 1.0398 1.1849 1.0765 1.3600
n =100 09772 0.9868 1.0137 1.1386 1.0389 1.2326

Table 4. Estimated (expected, size-adjusted) confidence interval lengths.

Student on 1 degrees of freedom
TM(.1) TM(.25) SATM(.25) SATM(.44) JATM(.25) JATM(.44)

n=25 20501 1.3486 1.3778 1.4861 1.3868 1.7366
n=>50 11563 0.8633 0.8745 0.8903 0.8878 0.9387
n =100 0.7993  0.6060 0.6120 0.6111 0.6166 0.6221

Student on 3 degrees of freedom
TM(.1) TM(.25) SATM(.25) SATM(.44) JATM(.25) JATM(.44)

n=25 1.0272  1.0462 1.0056 1.1228 1.0177 1.3144
n=>50 0.6957 0.6937 0.6883 0.7419 0.6906 0.7793
n =100 0.4902 0.4798 0.4832 0.5131 0.4846 0.5291

Student on 12 degrees of freedom
TM(.1) TM(.25) SATM(.25) SATM(.44) JATM(.25) JATM(.44)

n =25 0.8671 0.9496 0.8858 1.0603 0.8874 1.2312
n=250 05950 0.6376 0.6081 0.6758 0.6081 0.7174
n =100 04143  0.4382 0.4209 0.4567 0.4205 0.4714

factors for the adaptive methods when as = .44. When &g is constrained to be
less than 25%, the correction factors are more reasonable, enough so that were
we to use the Tukey-McLaughlin critical values we would not be far off. The
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SATM correction factors are consistently nearer one than those for the JATM’s
confirming our expectation that the smoothed estimate of the variability of the
trimmed mean is more reliable than the classical Winsorized variance estimate.

In Table 4 we report expected confidence interval lengths for the experiment.
Here the performance of the adaptive trimmed means is quite good for ay = .25,
but significantly worse for ap = .44. The smoothing, it will be noted, yields
somewhat more reliable estimates of variability and slightly better expected confi-
dence interval lengths than the Jaeckel version of the adaptive trimmed mean, as
suggested by the preceding theory.
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