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A b s t r a c t .  We study the class of renewal processes with Weibull lifetime dis- 
tribution from the point of view of the general theory of point processes. We 
investigate whether a Weibull renewal process can be expressed as a Cox pro- 
cess. It is shown that  a Weibull renewal process is a Cox process if and only if 
0 < a _< 1, where a denotes the shape parameter  of the Weibull distribution. 
The Cox character of the process is analyzed. It  is shown that  the directing 
measure of the process is continuous and singular. 
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1. Introduction 

The  mos t  i m p o r t a n t  point  process is the Poisson process, where events occur  
wi th  a cons tant  intensity. Next  are the  class of renewal processes and the  class of 
Cox processes. The  Cox or doubly stochastic Poisson processes are na tu ra l  gen- 
eral izations of the  Poisson process. A Cox process can be considered as a Poisson 
process wi th  a s tochast ic  intensi ty  (the intensi ty itself is a s tochast ic  process),  and 
it is called the  directing measure of the process. For proper t ies  of such processes 
see Grandel l  (1976) and K a r r  (1991). Al though much is known on the  proper t ies  
of Cox processes, there  are not so m a n y  examples  of known point  processes which 
are Cox processes. For theoret ical  as well as pract ical  purposes  it is of interest  to 
have examples  of t r ac tab le  point  processes which are Cox processes. The  renewal 
processes are also na tu ra l  general izat ions of the  Poisson process,  where the renewal 
charac ter  is preserved.  

If  we want  to have a point  process which similarly to the  Poisson process 
has the renewal charac te r  but  con t ra ry  to it has a s tochast ic  intensity, we m a y  
th ink  of the  intersect ion of the  classes of Cox processes and  renewal processes. I t  
is a t t r ac t ive  to use such processes instead of the Poisson process in appl icat ions  
where the  intensi ty  of the  process is random.  A classical charac ter iza t ion  of this 
class of processes is due to K i n g m a n  (1964). A new charac ter iza t ion  is given in 
Yannaros  (1989). However,  these character izat ions  are in general not  easy to check. 
For theoret ical  and pract ical  purposes,  it is, therefore,  useful to have examples  of 
such processes, part icularly,  examples  which are simple enough as to  be  possible 
to calculate explicit ly the interest ing functionals  of the  process. 
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The distribution function of a Weibull distribution on [0, oc) with parameters 
(~ > 0 (shape or form parameter) and/3 > 0 (scale parameter) is given by 

f(t) = 1 - exp(-(t//3) ~) = 1 - exp(-At~), t > 0, 

where ), = 1//3 ~. The family can be generalized by introducing a third location 
parameter, but we do not consider this case here. 

The Weibull distribution is the most widely used lifetime distribution. It 
is used as a model for lifetimes of many types of manufactured items, such as 
vacuum tubes, ball bearings and electrical insulation. It is also used in biomedical 
applications, for example, as the distribution for times to occurrence (diagnosis) 
of tumors in human populations or in laboratory animals (see Pike (1966) and 
Peto and Lee (1973)). Further, the Weibull distribution is a suitable model for 
extreme value data, such as the strength of certain materials. Recently, empirical 
studies have shown that  the Weibull distribution is superior to the classical stable 
distributions, inclusive the normal distribution, for fitting empirical economic data 
(see Mittnik and Rachev (1990)) and the references therein). 

Apart from the simplicity and the ease with which the parameter estimates and 
the estimated distribution function can be constructed, the wide applicability of 
the Weibull distribution depends on several attractive features which it possesses, 
and in the following we mention some of the most important. 

(i) A main reason for its popularity is that  it has a great variety of shapes. 
This makes it extremely flexible in fitting data, and it has been found to provide 
a good description of many kinds of data. 

(ii) As t ~ oo, the hazard rate of the distribution increases to infinity if c~ > 1, 
decreases to zero if c~ < 1 and is constant for a = 1. Among all usual lifetime 
distributions no other distribution has this property. This property makes the 
Weibull distribution suitable in applications where a decreasing hazard tendency 
distribution or an increasing hazard tendency distribution is required. 

(iii) It contains the exponential distribution as a special case, when c~ = 1. 
Further, it has the following strong relation to the exponential distribution: if X 
has a Weibull distribution, then X ~ is exponentially distributed. So, by appro- 
priate changing of the scale we get the exponential distribution from the Weibull 
and vice versa. 

(iv) The Weibull distribution is one of the three possible types of minimum 
stable distributions. Let X, X1 ,X2 , . . . ,  be iid random variables with common 
distribution function F. If for each n there exist constants as > 0 and bn such 
that  

a ~ n ~ n { X 1 , . . . , X ~ } + b ~ d  x ,  

then the distribution of X is called minimum stable. It can be shown that  there 
exist three types of such distributions. For a discussion of the derivation of these 
distributions and of their properties see Gumbel (1958) or Leadbetter et al. (1983). 
Necessary and sufficient conditions for convergence of minima to each of the three 
types of distributions are due to Gnedenko (1943). 

If the Xi have a Weibull distribution with shape parameter a, it is easily 
shown that 

n 1/a min{X1, . . . ,  Xn} £ X. 
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This stability property is an expression of a deeper limiting property. If F(0)  = 0 
and F(t )  behaves as ct ~ for some positive c and c~, as t --* 0 from above, then 
n 1/~ m i n n { X 1 , . . . ,  Xn} converges in distr ibution to the Weibull distr ibution with 
shape parameter  c~. This characteristic property makes the Weibull distr ibution a 
natural  model for extreme value data.  

If the lifetime distribution is Weibull, the process of the successive times of 
renewals consti tutes a renewal process which we call a Weibull renewal process. So, 
if the lifetime of a certain type of items has a Weibull distribution and each item 
is replaced at the t ime of failure by an item of the same type, the replacements 
follow a Weibull renewal process. For example, consider a unit  (system) consisting 
of a large number of components (parts) having the same lifetime distribution. 
If the unit  fails with the first component failure, i.e., its lifetime is the minimum 
of the lifetimes of the components,  then the Weibull distr ibution being stable for 
the minimum scheme is a suitable model for the lifetime of the unit. If any t ime 
the unit  fails it is replaced by a unit  of the same type, then  the Weibull renewal 
process is an appropriate model for the successive failure times. 

We will s tudy the Weibull renewal process from the point of view of the general 
theory of point processes. In Section 2, it is shown tha t  the Weibull renewal process 
is a Cox process if and only if 0 < c~ _< 1. The Cox character of the process is 
analyzed and its directing measure is described. 

The results have implications on the properties of the Weibull distr ibution 
and its use as a lifetime distr ibution in the applications. In the case 0 < c~ _< 1, 
the Weibull renewal process gives us an example of a simple point process which 
is useful in the applications when we want to go beyond the Poisson process by 
considering a point process with the renewal character, and which has a random 
intensity. It is also useful in theoretical contexts as an example of a nice and simple 
point process which is a Cox process, and which is simple enough as to calculate 
the interesting functionals of the process. 

2. Weibull renewal processes 

In this section we investigate whether the Weibull renewal process can be a 
Cox process. For tha t  we need two preliminary results, which have their own 
interest. 

The first of these results is a variation of a result of O. Thorin given in Grandell 
(1991) (it is referred as a personal communication),  which says tha t  a s ta t ionary 
renewal process with interarrival distr ibution function (d.f.) F on [0, ec) satisfying 

L 
~ 

(2.1) F( t )  -- 1 - ¢- t xdV(x ) ,  

where V is a proper d.f. satisfying V(0) = 0, is a Cox process. The result appears 
as Theorem 38, and is proved under the requirement tha t  f ~ ( 1 / x ) d V ( x )  < oc. It 
turns out tha t  this condition is equivalent to the finiteness of the mean # of F .  In 
fact, we get from (2.1) 

L = ( 1 / x ) d V ( x ) .  
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By Bernstein's Theorem (see Feller (1971), p. 439), a d.f. F satisfies (2.1), if 
and only if its tail  is completely monotone (for the definition of this notion see 
Feller (1971)), or if it has a completely monotone density. Denoting by c the total  
mass of V we obtain c = 1 - F(0).  Thus, F(0)  = 0 if and only if V is proper. If 
V is defective, then F has an a tom at zero with mass F({0}) = 1 - c. Renewal 
processes having such interarrival distributions are natural  models in applications 
with multiple occurrences. 

For our purposes, we need Thorin 's  result for ordinary renewal processes, 
which is more delicate than  the s ta t ionary case. For the sake of completeness, we 
will prove it in the general case, where the measure V can be defective, and the 
mean of F infinite. The result is of its own interest since it proves tha t  a wide 
class of ordinary renewal processes are Cox processes. 

LEMMA 2.1. An ordinary renewal process with interarrival d.f. F satisfying 
(2.1) is a Cox process. 

PROOF. As in Grandell (1991) we will use a technique based on Stieltjes 
transforms, and we give the definition of this notion first. A function f : (0, ec) 
[0, oc) is called a Stieltjes transform, if 

/o ~ dA(x), s > O, 
1 

f ( s )  = a + s + x 

for some constant  a > 0, and some positive measure A on [0, ec). The pair (a, A) 
is uniquely determined by f ,  and we have a = l i m ~  f (s) .  For properties of 
Stieltjes transforms see Berg and Forst (1975). 

Let f ( s ) =  f o  e-tSdF(t) be the Laplace t ransform of F .  By (2.1), 

/0 /0 /0 f (s)  = (1 - c) + e-t~dF(t) = (1 - c) + xe-t(~+X)dtdV(x). 
+ + 

It follows tha t  

(2.2) f ( s )  = (1 - c) + r i ~  x_ff___dV(x). 
J0 + s + x  

Define the measure A by dA(x) = xdV(x).  Then we have 

~0 °° 
1 

(2.3) f (s)  = (1 - c) + - - d A ( x ) .  
s + x  

Thus, f ( s )  is a Stieltjes transform. By Propositions 14.11 and 14.6 in Berg and 
Forst (1975), f satisfies f ( s )  = 1/¢(s) ,  where ¢ is a non-zero function with a 
completely monotone derivative. Since f(0)  = 1, we have ¢(0) = 1. We get 

1 
(2.4) f ( s )  - 1 + ¢ ( s ) '  
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where ~(s) = ¢(s) - 1. The function ~ has a completely monotone derivative and 
satisfies ~(0) = 0. This implies that the function ~(s) = e -~(~) is the Laplace 
transform of an infinitely divisible d.f. (see Feller (1971), Theorem 1, p. 450). It 
follows that 

1 
(2.5) f ( s )  - 1 - log0(s) '  

and the result follows from Lemma A. 1 in the Appendix. [] 

The second result says that a point process which is both Cox and renewal is 
overdispersed compared with the Poisson process. 

LEMMA 2.2. The coefficient of variation of the interarrivaI distribution of 
any Cox  and renewal process is at least one. 

PROOF. By Lemma A.1 in the Appendix, the Laplace transform of the in- 
terarrival d.f. F of a Cox and renewal process must satisfy (2.4), where ¢ has a 
completely monotone derivative, that is, ( -1)~¢(~)(s)  _< 0, n 2 1. Differentiating 
both sides of (2.4) and using the relations between moments and derivatives of the 
Laplace transform, we get 

CV = lim A/1 s- oV e'(8)' 

where the coefficient of variation C V  is defined by 

C V =  
standard deviation 

mean 

Since ~"(s)  < 0 and ~'(s)  > O, we must have C V  > 1. [] 

The following result gives the definitive answer to the question whether the 
Weibull renewal process can be expressed as a Cox process. 

THEOREM 2.1. The Weibull renewal process is a Cox process i f  and only i f  
0 < a <_ 1, where a is the shape parameter of the distribution. 

PROOF. According to Lemma 2.1, it is sufficient to check whether the Weibull 
distribution satisfies (2.1). 

Let F(t )  = 1 - exp(-) , t~) ,  be the distribution function of a Weibull distribu- 
tion. By easy calculations, the function ~t a has a completely monotone derivative 
when a E (0, 1]. It follows from Feller ((1971), p. 450, Theorem 1) that e -~t~ is 
the Laplace transform of some infinitely divisible d.f. V~,~. We realize that 

fO ° 
F(t )  = 1 - e-tXdV~,~, 
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where V~,~ is the d.f. of the one-sided stable distr ibution of characteristic exponent 
a (see Feller (1971), p. 448). Thus, the Weibull distr ibution satisfies (2.1) when 
0 < ct _< 1. This proves the sufficiency of the condition 0 < c~ < 1 for the Weibull 
renewal process to be a Cox process. 

We shall now prove the necessity of the condition. It can be shown tha t  the 
coefficient of variation of the Weibull distr ibution satisfies CV < 1 when a > 1. 
By Lemma 2.2, in the case a > 1 the Weibull distribution cannot be interarrival 
distribution of a Cox and renewal process. This completes the proof. [] 

We will describe the Weibull renewal process as a Cox process. In the case 
a = 1 the Weibull renewal process is a Poisson process, so we consider the case 
0 < c ~ < l .  

Since the Weibull d.f. F satisfies (2.1), it follows from the proof of Lemma 2.1 

tha t  the Laplace t ransform f(s) satisfies (2.4), where ¢ has a completely monotone 
derivative and satisfies ¢(0) = 0. Lemma A.2 in the Appendix implies tha t  

1 

(2.6) f(s) = 1 ~- bs + f o ( 1  - e-SX)dB(x) ' 

where b _> 0, and B is a positive measure on (0, ec). Combining (2.3) with c = 1, 
and (2.6) we obtain 

(2.7) fo ~ sx dV(x) 1 
s + x  _ l+b+ f ° 1 - e  -sx 

8 8 
- - d B ( x )  

Taking limits, as s ~ ee, we have 

f0 ~ 1 (2.8) xdV(x) = ~. 

In the case 0 < a < 1, the mean of the one-sided stable distr ibution V~,a is 
infinite. Hence, we must have b = 0. We also have F(0)  = 0. Since b = 0 and 

F(0)  = l i m s - ~  f(s), it follows from (2.6) tha t  f o  dB(x) = ~ .  
If b = 0 and f o  dB(x) = c~, then almost all realizations of the directing 

measure of the corresponding Cox and renewal process are continuous and singular 
with respect to Lebesgue measure (see Grandell (1976), p. 39). It follows tha t  in 
the case 0 < a < 1, the realizations of the directing measure of the Weibull 
renewal process, being a Cox process, are continuous and singular with respect 
to Lebesgue measure. It means tha t  we have continuous distributions without  
densities, and the whole increase takes place in a set of Lebesgue measure zero, 
i.e., the intervals where the distribution functions are constant  add up to length 
one. As Feller ((1971), p. 141) with right pointed out "singular distributions play 
an important  role" but  "this si tuation is obscured by the clich~ tha t  "in practice" 
singular distributions do not occur". We have here examples where continuous and 
singular distributions appear in a natural  way as distributions for the stochastic 
intensities of simple Cox and renewal processes. 
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We have shown that  the Weibull renewal process can be expressed as a Cox 
process with a directing measure which is continuous and singular, and not of the 
two-state type. We have here a similar behaviour as in the case of gamma renewal 
processes (see Yannaros (1988)). It is interesting and on the same time surprising 
that  such simple renewal processes are in fact Cox processes. 

In the case c~ < 1, the Weibull renewal process being a Cox process can be used 
as a generalization of the Poisson process, and it is a suitable model in applications 
where irregular or overdispersed processes appear. For example, it can be used 
for modeling returns on financial assets in an irregular market, where explosive 
bubbles are expected to occur. It may also serve as a useful example in theoretical 
contexts. 

Mittnik and Rachev (1990) showed that, compared with many other alterna- 
rives, the Weibull distribution represents the best fit to the empirical distribution 
of stock returns for various types of data. Assuming that  the stock return distri- 
bution is Weibull, they estimated the parameters of the distribution using various 
samples from the Standard and Poor 500 index data. In most periods the esti- 
mated shape parameter exceeded unity, but for the year 1986 the shape parameter 
was 0.876, indicating that  increasing negative movements were possible. As they 
noted, 1986 was the year before a stock market crash. This may reflect the fact 
that  in the case c~ < 1, the Weibull renewal process is a suitable model for irregular 
and overdispersed processes. 
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Appendix 

In the paper we used the following characterization of processes which are Cox 
and renewal and which is due to Kingman (1964). For the proof see also Grandell 
(1976). 

LEMMA A.1. An ordinary renewal process with interarrival d.f. F is a Cox 
process if and only if the Laplace transform f of F satisfies 

1 
(A.1) f(s)  - 1 - log0(s) '  

where O(s) is the Laplace transform of an infinitely divisible d.f. G. 

A nonnegative function ~b(s), s > 0, has a completely monotone derivative if it 
has derivatives of all orders and (-1)n@~)(s) < 0, n _> 1. Such functions have the 
following unique representation (for a proof see Berg and Forst (1975), Theorem 
9.8). 
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LEMMA A.2.  A fuT~ction ~ : (0~ oo) -+  [0~ oo) has a completely mortotone 

derivative if and only if 

/o (A.2)  ¢(s) = a + bs + (1 - e-SX)dB(x), 

where a, b, are nonnegative constants, and B a positive measure on (0, ~ )  verifying 

fo ~ x zdB(x )  (A.3)  1 + < ~ "  

We have, 
a = lira ¢ ( s )  and b = lira (~p(s)/s). 

s----~ 0 S - - - + ~  
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