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Abs t r ac t .  The maximal operator plays the similar role as the summation 
operator in the sense of stability of operation. So, we could discuss ARMA 
processes in the maximal operation by the same way as in the summation op- 
eration. However, many papers already treated with moving order statistics. In 
this paper, we discuss asymptotic behaviors of maximal autoregressive (MAR) 
processes with the weight tending to 1. 

Key words and phrases: Extreme value distribution, stability coefficients, 
maximal autoregressive process, maximum of weighted random variables. 

I. Introduction 

Although the maximal operator is quite different from the summation in the 
results of their calculations, they  are similar in the sense of stability of operation. 
Tha t  is, when we consider a finite set of real numbers and its subsets which are 
disjoint coverings of the set, we see tha t  the sum of the subsums of subsets is equal 
to the total  sum of the set, and similarly, the maximum of the submaximums of 
subsets is equal to the total  maximum of the set. Thus, we could discuss maximal  
ARMA processes in the analogical way as summat ion  ARMA processes. Several 
papers discuss the behaviors of order statistics in overlapping samples and moving 
order statistics, especially moving medians, maximums and ranges (for example, 
see Inagaki (1980), Mallows (1980), David (1981), David and Rogers (1983)). 

In the present paper, we discuss about  maximal  autoregressive processes. Let 
{Y0, Y1, Y2 , . . . ,  Yn, . . .}  be the process defined recursively as follows: for t _> p, 

(1.1) Y~ =- m a x { a l E _ l ,  a2Yt -2 , . . . ,  apYt_p, Xt}, 

where { a l ,  a 2 , . . .  , ap} are positive constants, {Y0, Y1, . . . ,  Yp 1} a r e  the initial ran- 
dom variables, and {Xn : n = 0, 1, 2 , . . . }  is the innovation process of positive, 
independent,  and identically distr ibuted random variables with the probabili ty 
distr ibution function F(x). We shall call it the maximal  autoregressive process of 
order p (abbreviate to MAR(p)). Furthermore,  we consider the tr iangular  array 
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of MAR(p)  with the transformed innovation process and coefficients depending on 
the present time n and we denote it by MAR*(p).  That is, letting the transformed 
innovation process be 

Z t  - [~n 
X~, t -  - - ,  O < t < n, 

O" n 

we define {Y*,0, Y*,I, Y*,2,... ,  Y*,n} be the process recursively as follows: for p _< 
~ < n ,  

(1.2) Y*,t = max{an,lY*,t_l, an,2Y*t-2, . . . , an,pY*t_p, X*, t} ,  

where Y*,t, t = 0 , . . . ,  p - 1  are any random variables given initially (for example, we 
may takeK* = * .. . n,t Xn,t,  t = O, ., p - 1 )  Our purpose is to investigate the behaviors 
of maximal autoregressive and transformed processes by this representation, but 
it is too complicated to deal with, although its derivation is interesting. 

In Section 2, we prepare the fundamental lemmas and theorems, some of which 
are well known results and others are ones extended here. In Section 3, we show 
that  MAR(p)  and MAR* (p) processes are represented as the maximum of weighted 
i.i.d, random variables: 

(1.3) 
(1.4) 

Yn = max{crn,tXn-t  : t = O, 1 , . . . ,  n},  

Yn, n ~---  max{c%tX* ,n - t  : t = O, 1 , . . .  ,n} ,  

similarly as the usual A R  process. The nice paper of Daley and Hall (1984) 
discusses the asymptotic properties of the maximum of weighted i.i.d, random 
variables in quite general situations. 

In the present paper, we discuss only the asymptotic distributions of MAR* (1) 
process with the initial value 0 and the weight tending to 1: an = an,1 = (1 + ~). 
However, the maximal AR(1) process may be so important as the usual AR(1) 
process. Then, the process has the representation as the maximum of geometrically 
weighted i.i.d, random variables by which we have the limit distribution of the 
process. Section 4 is devoted to the discussion and includes the very kind and 
valuable comments due to one of the referees. 

2. Fundamental results 

In order to obtain the limit distribution of M A R  process explicitly, we need 
and so briefly review classical lemmas for the extreme distribution theory, some of 
which may be extended in this paper. 

Throughout this section, we suppose X 1 , . . . ,  X~ are independent and identi- 
cally distributed with a distribution function F(x )  and denote the order statistics 
as follows: 

Xn:l < X~:2 _< . . .  _< X~:n. 

The following lemma and theorem are due to Smirnov (1952). 
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LEMMA 2.1. Let us denote the distribution funct ion of the k-th order statistic 
X~:k by Fn:k(x) and one of Gamma distribution GA(k,  1) by 

l ffoX G~(~)- (k 1)-----,. y~-~e-~dy. 

Then, we have the following inequalities: for  any x E ~ ,  

(1 - ~ ) c ~ ( ~ F ( x ) )  < Fn:k(x) <_ (1 + ~ n ) a ~ ( ~ F ( x ) ) ,  

where 

n + l  n + l  ~0, 

( en = 1 +  --- 1 +  - 1 ; 0 .  
n - k  n - k  

Now, we consider the extreme statistic normalized by stabilizing coeffÉcients 
an > 0 and #n for any fixed k: Zn:k ---- x~:k-,n and its distribution function: 

¢T n 

Gn:k (x) -- Fn:k(anx + #n). Smirnov's lemma implies that the limit distribution of 
Gn:k(X) is determined only by the limit function u(x): 

It is well known that its limit function can be characterized as the power function 
or the exponential function by using theorems due to Khintchine and Feller (see 
Gnedenko (1943), Smirnov (1952) and Feller (1971)): 

(I) u(x)  = x p, x > O, p > O, 

(II) u(x) = Ixl -p, x < o, p > o, 

(III) u(x)  = e ~, - o c  < x < oc. 

Thus, the well known theorem about extreme value distribution is mentioned for 
appropriate choice of sequences of stabilizing coefficients, {an > 0} and {#n}- 

THEOREM 2.1. There are three types of the limit distribution of Gn:k(x): 

(Type I) ~ k , ( x )  - Gk(xP), x > O, p > O. 

(Type II) ~ k , ( x )  = Gk( lx l -P) ,  x < O, p > O. 

(Type III) Ak,(x) ------ Gk(eX), - o c  < x < co. 

For maximal extreme statistics X~:n-k+l, we take Xf  = -X1 ,  • . . ,  X* = - X m  
as i.i.d, samples with the distribution function F* (x) = 1 - F ( - x )  and denote the 
k-th order statistic and its distribution function by X*:k and F*:k (x), respectively. 
Then, we see X~:n-k+l = -X* :  k, and thus, F~:~-k+l(X) ---- 1 - F*:k(--x ). Hence, 
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we have the following corollary for appropriate choice of sequences of stabilizing 
coefficients, {an > 0} and {#~}. 

COROLLARY 2.1. There are three types of the limit distribution of 
a~:~-k+l(x):  

(Type I*) ffak*(x) -= 1 - t ])k,(-x),  x < O, p > O. 

(Type II*) ~k*(X) ~ 1 -- ~k,( - -x) ,  x > O, p > O. 

(Type III*) Ak*(x) --= 1 - h k , ( - x ) ,  - o c  < x < oc. 

In the sequel of this section, we denote the maximum by Y~, its distr ibution 
function by F~(y) and Gl(X) by G(x), simply. The last is the exponential  distri- 
bution with mean 1: G(x) = 1 - e -x. Let us denote their survival functions as 
follows: 

- -  - -  m 

F(x)  = 1 - F(x) ,  Fn(y)  = 1 - Fn(y),  G(y) = 1 - G(y), 

and so on. Then, three types of the limit distribution in the last corollary are 
according to the regular variation of the limit function 

(2.1) Vn(any + , . )  -- nr(a,~V + ,n )  ~ v(y), 

which is either one of the following functions: 

(2.2) 
(I*) v ( x ) = x  -p, x > O ,  p > O ,  

(II*) v ( x ) = ] x l  p, x < O ,  p > O ,  

(III*) v(x) = e -x,  - o c  < x < oc. 

Note tha t  the last convergence is uniform in the sense of the following lemma, 
which is used in the next section. 

LEMMA 2.2. For any fixed y and any fixed interval [ -M1,  M2] with 0 <_ M1 < 
1, M 2 > 0 ,  let 

w~(z) - v~(a~y(1 + z) + ~ )  and w(z) =- v(y(1 + z)), 

for z C I-M1, M2]. Then, it holds that 

Wn(Z) --+ W(Z), as n ~ cx~, 

uniformly for z E I -M1,  M2]. 

PROOF. We see from (2.1) tha t  Wn(Z) converges to w(z)  and these functions 
are monotone, and furthermore, from (2.2) tha t  the limit function w(z)  is contin- 
uous. Thus, we can prove this lemma in the same way of PSlya's Theorem about  
the uniform convergence of a sequence of distributions. [] 
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3. Limit distribution of maximal AR process 

Let us consider the M A R ( p )  process: for t _> p, 

Yt = m a x { a l Y t - 1 ,  a 2 Y t - 2 , . . . ,  a p Y t - p ,  X t } ,  

defined in (1.1). Then,  we see tha t  M A R ( p )  process has a representat ion of the 
max imum of weighted i.i.d, r andom variables. 

THEOREM 3.1. M A R ( p )  process {Y~} is represented as the m a x i m u m  of 
weighted i.i.d, random variables, when the initial random variables in (1.3) are 
denoted by { X o , . . . ,  X p - 1 }  in the place of {]To,--., Yp-1}: 

(3.1) Yn = max{o-n, tXn- t  : t = O, 1 , . . . ,  n},  

where weight constants crn,t are the m a x i m u m  of products of constant coefficients 

{al,...,ap}: 

~n,t - max  a~ 1 --. a~p : iji  = t, ji  nonnegative integers . 
i=1 

P R O O F .  W e  see, in turn,  

Yp = max{  al Xp_  l, a2 Xp_  2, . . . , apXo, Xp }, 

Yp+ l = max{  a~ Xp_  l , a l a2 X , _  2 , . . . , a l apXo ; 

al  X p ,  a2 X p _  l , . . . , a p X l  ; Z p + l }  , 

Yp+2 = max{a31Xp-1 ,a~a2Xp-2 , . . .  ,a~apXo; 

a~ Xp, al a2 Xp_  1 , . . . ,  ax apX1, a~ Xp_  2, • • •, a2apXo ; 

al  X p +  l , a2 X p ,  . . . , a p X 2 ;  X p + 2 } .  

By mathemat ica l  induction,  we have the result of this theorem. [] 

In the  sequel, we consider the limit dis tr ibut ion of only the MAR*(1)  process 
with the weight tending to  1 and the initial r andom variable 0: 

a n = a n , 1  = 1 +  , Yn = 0 .  ,0 

Then,  we have the MAR*(1)  process: 

(3.2) Y~*,n = m a x { a n Y n ,  n _ l ,  X n , n }  

• * 2 * _ n - l v *  / = max{Xn, n, anXn,n_ 1, anX,~,n_2, . . . ,  a,~ A,~,I t 

and the dis t r ibut ion function of Yn, n: 

• I I  (3.3) Gn(Y) = P(Y*,n <- Y) = F*(a~t+ly) ,  
t = l  
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where F* (x) is the distribution function of X*,t and thus, depends on n: 

(3.4) r*(x)  = P(X~i ~ < x) : r (~nx  + ~n). 

We use the following lemma without proof in order to show the limit distri- 
bution of G~(y). 

LEMMA 3.1. For real numbers {fi, i = 1 , . . . ,  n} with 0 < fi <_ 1, the follow- 
ing inequalities hold: 

1--1 f i - < e x p n  { n _ E  ( 1 - f i ) }  n 1 max ( l _ f i ) "  
~ - - ~ I f i m m  2 i ~ 1  ..... n i=1 i----1 i=1 

THEOREM 3.2. There are three types of the limit distribution G~ (y) of G* (y) 
for sequences of stabilizing coe]ficients chosen in Corollary 2.1: 

eap - 1 } 
(Type I~) ~ ( y )  = exp -ap y-p ' Y > O, p > O. 

(Type II:)  ~*(y) = exp { 1 - e -ap } ap ]Y]P ' Y < O, p > O. 

{/01 } (Type III~) As(y ) = exp - e x p ( - y e - ~ 8 ) d s  , - o o  < y < oo. 

PROOF. It follows from (2.1), (3.3) and (3.4) that the distribution function 
of MAR(l )  process Y* is rewritten as 

~) -(t-l) ] 

(3.5) G*(y) = 11 1 -  
t=l 

as n -~ oc. That relation is guaranteed by Lemma 3.1 and the uniform convergence 
to 0 of each term 

, t =  1 , . . . , n ,  
n 

which is proved in the following manner. Since 

exp(-I~[) < (1 + a_~-(t-1) < exp(lal), t =  1 , . . . , n ,  \ n ~  
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we have, by Lemma 2.2, 

( (O~/ - - ( t - -1 )  ) ( ( ( l / - - ( t - - 1 ) )  
vn ~ y  1 +  n +#,~ - v  y 1 +  n ---~0, 

uniformly for t = 1 , . . . ,  n. This leads to the fact: 

as n -+ cxD, 

( - v n  ~ n y  1 +  n 
7t t=l 

) 1~-~. ( ( O~--(t--1)~ 
+ # n  - - v y 1 +  n i  / ---+0, 

t=l 

as n--+ (2<3 

According to (2.2), we have the convergence of the second term: 

1 ~  ( ( ~ ) - ( t - 1 ) )  
J = -  v y l +  

Tt t=l 

as follows. 

Type I* case: 

j ___ l~ {  ( y 1-I- °!)-(t-I)} -p 
n t----1 n / 

--+ y_p exp(pa) - 1 
pa 

Type II* case: 

1__ ( 1 +  a__) p~ Tti - -  y - P  

n ( 1 - ( l + ~ )  p) 

O~ --( t - - l )  p 1_11+~; - p ~ [  a h  

--+ lYf 1 - exp(-pa)  
pa 

Type III* case: 

1 

n t=l n /  

1 n (~ 

-- 0 + ; )}]  
t = l  

= - ,-.-, exp - y e x p  - ~  + 
n t=l ?~t 

---+ exp ( - ye -~S )ds .  

Thus, we have the result of this theorem. [] 
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4. Discussion 

It is worth noting in Theorem 3.2 that the limit distribution of MAR* (1) pro- 
cess belongs to the same domain of attraction as the limit distribution of maximum 
when its domain is type I* or II*, but the former is quite different from the latter 
when it belongs to the type III* of domain of attraction. 

If we denote Y~ by Y* ((~) with parameter (~, we could show the limit distri- 
bution of the joint one of (Y*(c~), Y*(/3)). 

Further, we might discuss about problems of statistical inference about the 
parameters of MAR(p) process, although we treated mainly the MAR(l) process 
in this paper. 

One of the referees pointed that, in the case: #n = 0, the original process 

(4.1) Yn : r n a x { a Y n - l , X n } ,  Yo = O, 

= max{Xn, aXn-1, a 2 X n - 2 , . . . ,  a n - i x 1 }  

has an approximate distribution: 

(4.2) Fn(y) ---- P(Z~ <<_ y) ~ C*~(a_l)(¢~y), 
and a simulation study comparing Fn(y) and the approximation would be of in- 
terest, and furthermore, that the limiting distribution of Y~ is obtained: 

(4.3) Fn(y) -+ exp{-(1 - aP)-ly-P}, 

if the innovation distribution is max-stable: F(x) = exp( -x -P) ,  0 < a < 1 (noting 
that Alpuim (1989) and Alpuim and Athayde (1990) discuss the situations where 
Yn has the stationary limit distribution). I appeciate his kindness heartily. By 
virtue of his valuable comments, I have made this paper clearer. I would like to 
study the problems suggested above by the referee in the next papers. 
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