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A b s t r a c t .  It is shown that a degenerate rank d-variate stationary time series 
can be reduced to a full rank time series of lower dimension via an orthogonal 
transformation T provided that p, the canonical correlation between past and 
future of the time series is strictly less than one. Procedures for estimation of 
rank of the multiple time series, T and testing p = 1 are outlined, the latter is 
related to testing the unit root hypothesis in ARMA models. 
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1. Introduction 

The only source of redundancy in the multivariate data (when the observa- 
tions are independent) is from inclusion of too many contemporaneously correlated 
variables in the study. In sharp contrast, multivariate time series data have two 
apparently distinct sources of redundancy. The first one is as above, while the 
second source is that of excessive temporal correlation. Notwithstanding this, 
most data reduction techniques used in multiple time series analysis seem to be 
complete analogues of those developed and used in multivariate statistics. That 
is, given data from a d-variate time series {Xt}, one seeks a (contemporaneous) 
linear transformation T, a d × d matrix so that the components of the transformed 
series Yt -- TXt have certain "desirable" properties. Two notable recent examples 
of such developments are (1) the class of M T V  (mult ivariate  t ime series variance 
component)  models in t roduced by Kar iya  (1987, 1991) for which there  exists an 
or thogonal  t ransformat ion  T so tha t  components  of Yt = T X t  are uncorrelated;  
(2) the class of vector  ARMA models for which components  of Yt = T X t  follow 
the scalar component  model  (SCM), Tiao and Tsay  (1989). A notable except ion is 
the spectral  domain methods  of principal component ,  factor analysis and canonical 
correlation, see Brillinger (1981), tha t  lead to noncontemporaneous  and noncausal  
t ransformat ions  of the original multiple series. 

Motivated by the foregoing discussion we may raise the following questions: 
For what  classes of mult ivariate  t ime series does there  exist a t ransformat ion  T 
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so that components of the transformed series Yt = TXt have certain "desirable" 

properties? Given such a class, how can T be estimated? We address these ques- 

tions for a particular situation. Namely for the class of degenerate rank d-variate 

time series {Xt} we find conditions on {Xt} so that there exists an orthogonal 

transformation T with 

and Zt is an r-variate (1 _< r < d) time series of full rank. More precisely, let 
{Xt} be a mean zero, d-variate covariance stationary process with autocovariate 
function {Fk} and innovation covariance matrix E, cf. Hannan (1970). For a matrix 
A, let r(A) stand for its rank and R(A) for its range or column space. A d-variate 
stationary process {Xt} is said to be of full rank if r(E) = d, and of degenerate 
rank if 1 ~ r(E) < d. Note that r(E) = 0 if and only if E = 0, such processes 
are called singular processes, and are excluded from further consideration in this 
paper. 

We show in Section 2 that when p, the largest canonical correlation between 
past and future of the d-variate time series {Xt} is strictly less than one, then 
there exists an orthogonal matrix T which reduces {Xt} to an r-variate process of 
full rank as in (1.1) also it reduces F0 to the form 

(1.2) TF°T'  = ( F°'~ 00) 0 

r = r ( r o )  = r ( r 0 ,  

where F0,r is an r z r covariance matrix. We estimate r and T in Section 3 by 
performing a singular-value decomposition of the sample covariance matrix Sn of 
the data X1, . . . ,  Xn. This completely avoids the difficult problem of estimation 
of E, usually done by fitting parametric models to data which is inefficient in 
the presence of degeneracy because of redundant parameters, cf. Tiao and Tsay 
(1989). 

2. Degenerate rank multivariate time series 

In this section we review some basic concepts regarding the structure of d- 
variate stationary processes with particular attention to degenerate rank processes. 
The equivalence of time-domain and spectral-domain analysis of d-variate time 
series is used to motivate the class of constant range processes. 

Consider a d-variate mean zero stationary process Xt = (Xlt, X2~,. . . ,  Xdt) I, 
with autocovariance function Fk = Cov(Xt+k, Xt), k = 0, ± 1 , . . .  and d× d spectral 
distribution F(~),  let 

(2.1) dF(A) = dFac(A) + dF~(A) = f(.k)dA + dF~(,~), 

be the unique Cramer-Lebesgue decomposition of F into its absolutely continu- 
ous (Fat) and singular (F~) parts. For more information on these and related 
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concepts, see Hannan (1970) and Masani (1966). We use Fk,x, Fx,  etc. when 
working with more than one multivariate process. Corresponding to (2.1) in the 
spectral domain, there is the Wold decomposition in the time domain which writes 
any nondeterministic process {Xt}  as sum of its purely nondeterministie and de- 
terministic parts 

( X ]  

( 2 . 2 )  = + = + 

k=0 

where {et} is a d-variate white noise process with E = cov(et) and {Vt} is a deter- 
ministic process uncorrelated with {Ut}, and }--~k~__0 tr ~ k ~  < ec. The innovation 
covarianee matrix E carries considerable information about the dependence of 
components of {Xt}  and it is related to the spectral density f()~) of the process. 
Note that in general, r[f(A)] is a function of the frequency ),. Next we motivate 
the class of processes whose spectral densities have constant rank. 

The implicit and well-accepted equivalence between time-domain and spectral- 
domain analysis of time series is usually justified by the fact that the autocovari- 
ance function {Fk} and the spectral distribution F are Fourier pairs. Although 
this mathematical justification points to the right direction, the real reason for 
statistical equivalence of the two approaches to time series analysis is much deeper 
and relies on both the Cramer-Lebesgue decomposition (2.1) of F, and the Wold 
decomposition (2.2) of the process {Xt}  itself. Note that since {Ut} and {Vt} are 
uncorrelated, (2.2) gives an alternative decomposition of F: 

(2.3) dF = dFg + dFv = ~Eq2'dA + dFv = fud)~ + dFv 

where Fu and Fv are spectral distributions of {Ut} and {Vt}, respectively, and 
• (k) = }-~k~__0 ~ke ika, is the transfer function of the MA(oc) part of (2.2). Now, 
having two apparently different decompositions of the spectral distribution F of 
{Xt} ,  we need to know whether these decompositions are the same. From (2.1) 
and (2.3), our question is whether 

( 2 . 4 )  f = Iv ? 

Evidently, a positive answer to this question would provide a bona fide justification 
for the statistical equivalence of the two approaches to time series analysis. 

The question (2.4) makes sense and is relevant even in the univariate case 
(d = 1). Note that  from (2.2) f u  is the spectral density function of an MA(eo) 
and thus purely nondeterministic (regular) process. Therefore, for (2.4) to hold 

f(A) must satisfy f+~ log f(A)dA > -oo  which can be interpreted as r[f()~)] = 1 
for almost all A, i.e. rank of f(A) does not depend on A. In 1963, Robertson showed 
that the above observation regarding univariate processes can be generalized to 
d-variate processes, cf. Masani (1966). 

THEOREM 2.1. (Robertson) Let {Xt}  be a nondeterministic d-variate sta- 
tionary process with r(E) = r. Then, f = f u  if and only if r[f()~)] = r, for almost 
all ~. 
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This important result indicates the relevance to time series analysis of the 
class of processes whose spectral density matrices have constant ranks. It also 
indicates the relationship between ranks of E and f(A) for such degenerate rank 
processes. Unfortunately, this class is too large for our purposes in this paper, 
we give two simple examples of bivariate stationary processes where their spectral 
density matrices have constant ranks and yet (1.2) is not satisfied, indicating the 
need for imposing further restrictions on the density matrices than the constancy 
of their ranks. Let {ct} be a univariate mean zero white noise process with unit 
variance, that is cov(6t, es) = St,s, the Kronecker's delta. 

Example 2.1. (a) Consider the bivariate stationary process {Xt}: 

(2.5) Xt  = @t, (~t--1)', t = 0, i l , . . . ,  

with autocovariances 

and innovation eovarianee matrix 

E = 

Note that r(F0) • r(E) and (1.2) is not satisfied even though 

f (A) - -  ei a 

for all A. The failure of (1.2) can be explained on two has constant rank one, 
accounts. First, the range or column space of f(A) depends on the frequency A. 
Second, p the largest canonical correlation between the past and future of {Xt}, 
which in this case, is the same as the largest canonical correlation between the sets 
of random variables P = s~-g-ff{et;t >_ 0} and F = s--p~{et;t ~_ 0} is equal to one. 
For the sake of comparison with the next example, we rewrite (2.5) as an MA(1) 
process: 

(b) Let {Xt} be a univariate AR(2) process defined by 

Xt  ~-~ ¢ l X t _  1 q- ¢2Xt-2  ~- ct, 

and Xt be the bivariate process Xt = (Xt, X t - 1 )  I with a bivariate AR(1) repre- 
sentation 

_ _  

This process has many features of the process defined in (2.5), in particular p = 1. 



REDUCTION OF MULTIPLE TIME SERIES 629 

In view of these examples and our discussion so far, we need to further restrict 
the class of d-variate processes whose spectral density matrices have constant rank. 
A d-variate stationary process { X t }  of rank r, 1 < r < d, is said to have constant 
range, if the range (column space) of f(A) does not depend on A, i.e. R[f(A)] = 
constant, for almost all A. Such processes arise in theoretical problems dealing 
with invertibility of the MA(c~) part of (2.2) and autoregressive representation 
of degenerate rank processes. It is known that when the canonical correlation 
between past and future of { X t }  is less than one, then f(A) has constant range, cf. 
Miamee and Pourahmadi (1987). For ease of reference, we state this result more 
precisely. 

THEOREM 2.2. Let { X t }  be a d-variate stationary process with the spectral 
distribution F decomposed as in (2.2). I f  p < 1, then 

(a) Fs = O, i.e. dF  = fd)~. 
(b) R[f(,~)] = constant, for almost all frequencies )~. 

In the rest of this section, we deal only with processes for which p < 1 so that 
their spectral densities have constant ranges. Since R[f(A)] is a constant subspace 
of R d, let us denote this subspace by R ( f ) .  By using the standard argument for 
relating two orthonormal bases of R d, cf. Miamee and Salehi (1979), it follows that 
there exists an orthogonal matrix T such that 

0 ' 

where f z ( )O is an r × r spectral density matrix of a full-rank r-variate process. 
Now, by letting Yt = T X t  it follows that 

f cov(Yt+k, Yt) = T cov(Xt+k, X t ) T '  = T e- ik~f ( )OdAT'  
7r 

= e-ik) 'T ~d.,~ = e -ik)~ 
7r 7r 

00] 
showing that the last d-r components of Yt are zero, as stated in (1.1). Further- 
more, this calculation shows that for any integer k, 

 rkxT' [F z and 
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3. Estimation of r and testing p = 1 

Reduction of F0 in (1.2) provides some insight into the problem of estima- 
tion of r and T, since it identifies r as the rank of F0 and T as the orthogonal 
matrix that  reduces F0 to a block diagonal form with the leading block being 
of full rank r and the other blocks are null matrices. Having time series data 
X1 , . . . ,  Xn from a d-variate stationary process {X t } ,  a natural estimator of F0 is 
Sn = X ( I ~  - n - l e n e ~ ) X  ' where X = ( X I , . . . ,  Xn) is the d x n matrix of data 
and e~ = (1 , . . . ,  1)/, its rank gives an estimator of the rank of F0 as well as E, see 
(1.2). Let rn = r(Sn),  in the following we give conditions under which {rn} is a 
strongly consistent estimator of r, see Okamoto (1973) for a proof of the following 
theorem. 

THEOREM 3.1. Let {Xt} be a d-variate normal stationary process with inno- 
vation covariance matrix E of rank r and p < 1. Then, for n > d we have, 

(a) P{~n = r} = 1. 
(b) P { n o n  zero eigenvalues of Sn are distinct} -- 1. 

Our procedure for estimation of r can be implemented and a reduction of 
dimension of {Xt} may result if the process is of degenerate rank and p < 1. To 
render it fully satisfactory, one must infer from the time series data X 1 , . . . ,  Xn 
as whether p < 1 or p -- 1. Computation of canonical correlations and test of 
p = 0 for multiple time series are discussed in Tiao and Tsay ((1989), Section 4). 
However, the problem of testing p = 1 is a challenging problem and is related 
to the problem of testing unit roots for ARMA models. For information on the 
relationship between canonical correlations and location of roots of characteristic 
polynomials of ARMA models, see Hannan and Poskitt (1988). For a univariate 
AR(1) model, Xt  = CXt-1 + ct, it can be shown that  p = I¢1. For testing p = ¢ = 
1, Chan and Wei (1987), have proposed a double-array setting to reparametrize 
AR(1) models by 

X t =  ( 1 - ~ ) X t - l + ~ t ,  

where V is a fixed constant. They show that  the limiting distribution of the least 
squares estimator of ¢ can be expressed as certain functional of Ornstein-Uhlenbeck 
process. 
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