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Abstract .  A Gaussian-sum smoother is developed based on the two filter 
formula for smoothing. This facilitates the application of non-Gaussian state 
space modeling to diverse problems in time series analysis. It is especially useful 
when a higher order state vector is required and the application of the non- 
Gaussian smoother based on direct numerical computation is impractical. In 
particular, applications to the non-Gaussian seasonal adjustment of economic 
time series and to the modeling of seasonal time series with several outliers are 
shown. 
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1. Introduction 

This paper is addressed to an implementation of the Gaussian-sum smoother. 
In recent years, the non-Gaussian state space modeling has become popular in 
time series analysis. See for example, West and Harrison (1989) and the references 
therein. Non-Gaussian modeling is especially useful in the analysis of nonstation- 
ary time series with abrupt changes in structure, in handling outliers and in the 
analysis of discrete or nonlinear processes. 

Kitagawa (1987) showed a non-Gaussian smoothing algorithm implementation 
based on numerical approximations to the relevent probability distributions. That 
method has diverse applications. However, since that  method involves computa- 
tionally extensive numerical integration, the application of the method to problems 
with higher state dimension (say more than five dimensions) is impractical. On the 
other hand, there are some problems that  require a higher dimensional state vec- 
tor. For example, a standard analysis of seasonal adjustment of monthly data time 
series, requires a 13 dimensional state vector. Our previous experience of model- 
ing seasonal time series (Kitagawa and Gersch (1984), Kitagawa (1989)) motivated 
the work reported here. Kitagawa (1989) used a state space model with Gaussian 
mixture system noise or observation noise density to handle abrupt changes in the 
trend or seasonal component or outliers in the seasonal data. Earlier work using 
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Gaussian mixtures (Sorenson and Alspach (1971), Alspach and Sorenson (1972), 
Harrison and Stevens (1976) and Anderson and Moore (1979)) did not address 
smoothing. Of course, the smoothing problem is critically important in statistical 
data analysis. In Kitagawa (1989), a high dimensional state vector (40 states) was 
used to get an approximate smoother. This achieved significant improvement of 
the seasonal and trend component estimates, at the expense of costly computations 
in both CPU time and memory. 

On the basis of that experience, we were motivated to develop a Gaussian- 
sum smoother which directly yields the smoothing estimates without augmenting 
the state vector. In this paper, we show a Gaussian-sum smoother based on a 
non-Gaussian version of two-filter formula for smoothing. Consequently, it is now 
practical to use high dimensional non-Gaussian state space models. 

The plan of the paper is as follows. In Section 2, several existing filtering 
and smoothing algorithms are briefly shown. Section 3 develops a non-Gaussian 
version of the two filter formula for smoothing. In Section 4, the Gaussian-sum 
smoother is developed from this two filter formula. Section 5 is devoted to some 
numerical problems related to the implementation of the Gaussian-sum smoother. 
Sections 6-8 are devoted to various numerical examples for the illustration of the 
proposed algorithm. 

2. A brief review of the filtering and smoothing algorithms 

2.1 The state space model and the state estimation problems 
Assume that a time series y~ is expressed by a possibly non-Gaussian state 

space model 

(2.1) xn = iPnXn_ l -~- Gn Vn , 

Yn = Hnxn + Wn 

where xn is an dx-dimensional state vector, v~ and w~ are d.-dimensional and 
1-dimensional white noise sequences having density functions q~(v) and r~(w), 
respectively. The initial state vector x0 is assumed to be distributed according to 
the density p(xo). The information from the observations up to time j is denoted 
by Yj, namely, Yj -- {Yl,. . .  ,Y j}. The problem of state estimation is to evaluate 
p(x~ [ Yj), the conditional density of xn given the observations Yj and the initial 
density p(xo I Yo) = p(xo). For n > j ,  n = j and n < j ,  these are the problems of 
prediction, filtering and smoothing, respectively. 

2.2 The Kalman filter and the smoother 
It is well known that if all of the noise densities %(v) and rn(w) and the initial 

state density p(xo) are Gaussian, then the conditional density p(xn I Y-0 is also 
Gaussian and t ha t  the mean and the covariance may be obtained by the Kalman 
filter and the fixed interval smoothing algorithms (Anderson and Moore (1979)). 

To be specific, if we put qn(v) N N(O, Q~), r~(w) ~ N(O, Rn), p(xo [ Yo) 
N(xolo, 17o1o) and p(x~ ] Y~) ~ N(x~l.~, V~I.~), then the Kalman filter is given as 
follows: 
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One-step ahead prediction: 

(2.2) 
Xnln_ x = FnXn_lln_l, 

V~I~_ 1 = F~Vn_xl~_x Ft  + G~Q~G t.  

Filter 

(2.3) 
K~ = V~ln_xH~(H~V~l~_xH~ + R~) -x, 
Xnl n = Xnln- 1 Jr- Kn(Yn - gnXnln-1), 

vn,~ = (z - KnH~)V~I~_I .  

Using these estimates, the smoothed density is obtained by the following, 
Fixed interval smoothing algorithm: 

(2.4) 

An t --X = VnlnF~V£+lln, 

X~IN = X~I~ + A~(Xn+IlN -- Xn+lln), 

VnlN = Vnl~ + A~(gn+XlN - Vn+lln)A t .  

2.3 The non-Gaussian filter and the smoother 
In Kitagawa (1987), it was shown that  for the state space model (2.1) with non- 

Gaussian white noise vn and wn, the recursive formulas for obtaining the densities 
of the one step ahead predictor, the filter and the smoother are as follows: 

One step ahead prediction: 

(2.5) F p(Xn I Yn-1) = p(Xn I Xn-x)p(x~-i  I Y n-x)dxn-1.  
(3O 

Filtering: 

(2.6) P(Yn ] x~)p(xn [ Y~-I) 
p(xn lye)  = p(y~ [ gn-1) 

where p(y~ I Y~-I) is obtained by f P(Yn I Xn)p(Xn I Yn-1)dxn" 
Smoothing: 

(2.7) p(Xn+l I Y N ) p ( x n + l l x n )  
p(Xn I YN) = p(Xn I Yn) I dXn+l. 

oo p(Xn+l I Y~) j _  

In Kitagawa (1987, 1988), an algorithm for implementing the non-Gaussian 
filter and smoother was developed by approximating each density function based on 
a continuous piecewise linear function and by performing numerical computations. 
This method was successfully applied to lower order systems (see Kitagawa (1987, 
1988)). 
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2.4 The Gaussian-sum filter 
For higher order state space models such as the one for the seasonal adjust- 

ment of monthly data however, the application of this direct numerical method is 
impractical due to the huge amount of computation involved in numerical integra- 
tion. 

One practical way to mitigate this computational burden is the use of a 
Gaussian-sum filter (Sorenson and Alspach (1971), Alspach and Sorenson (1972), 
Harrison and Stevens (1976) and Anderson and Moore (1979)). In Zitagawa 
(1989), it was shown that such a Gaussian-sum filter can be easily derived from 
the non-Gaussian filter by using Gaussian mixture approximations to the related 
densities. Specifically, the following approximations were used: 

( 2 . 8 )  

Kv Kw 

i----1 j----1 

L,~ Mn 

p(x~ I Yn_l) = ~ 7k~k(Xn  I Y~-l), p(Xn I Yn) = E ~5~n~OZ(Xn I Yn)" 
k = l  ~=1 

Here pi denotes a properly defined Gaussian density. Substituting these into (2.5) 
and (2.6), we immediately obtain the following algorithm for the Gaussian-sum 
filtering. 

One step ahead prediction: 

Kv M,~_ 1 

(2.9) p(xn I Zn-1) = ~ ~ ~/i~,,~(x,~ [ Yn-1) 
i : 1  g:l 

Ln 
- 

k=l 

Here ~i~,n : O~i~i,n--1 and ~iZ(Xn I Yn-1) is the one-step-ahead predictor of x n 
obtained under the assumptions that the filter of x~- i  is pi(Xn-1 I Yn-1) 

g 
N(xn_l l ,_ l ,  V~_lln_l) and that p(v,~) = ~i(v~) ~ N(O, Qi). Therefore, pie(xn I 
Y~-I) is also Gaussian and its mean and covariance can be obtained by the ordinary 
Kalman predictor: 

X~ln_ 1 = rnX~_lln_l, 
(2.10) it ~ t t 

V~ln_ 1 = FnV~_lin_IF + GnQiGn. 

In (2.9), _= means renumbering the double summation by a single summation, and 
therefore L~ - -  KvMn_l. 

Filtering: 

K~o Ln 

( 2 . 1 1 )  p(x~ I Yn) (x E E 6jk,n~°jk(Xn [ Y'~) 
j : l  k : l  

Mn 
- 

£=1 
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Here, 6jk,~ = 3jVk~jk(Y~ [ Y~-I), Mn = KwL~ and ~jk(x~ ]Y~) ~ N(xJ~, V3~lkn) 
is the filter of x~ obtained under the assumption that  the one-step-ahead predictor 
of x~ is N(xknl~_l, V~n_l) and p(Wn) = ~j(Wn) ~ N(O, cr2). Therefore, it can be 
obtained by the following Kalman filter: 

KJk= Ynk[n_lHtn(HnVnk[n_lHtn +O-2) -1, 

(2.12) x ~  = k k 

K~ Hn)V~,n_ 1 . 

3. The two-filter formula for smoothing 

As shown briefly in the previous section, the non-Gaussian filter naturally 
yields the Gaussian-sum filter which can be applied to higher order state space 
models. To date however, the corresponding Gaussian-sum smoother has not 
been developed. The problem, in the derivation of the Gaussian-sum smoother, 
is due to the presence of division by non-Gaussian densities in (2.7). That  spoils 
the effectiveness of the Gaussian-sum approximation. Therefore, another formula 
that  does not explicitly contain division by a non-Gaussian density is motivated. 
In this section, such a formula is derived. 

First, we note that the smoothed density p(xn I YN) can be expressed as 
follows: 

(3.1) p(xn I YN) = p(x~ I Yn_l, Yn) 
= p(x~, Y~IY~_I)p(Y~IYn_I) -1 

= p(Xn I Yn-1)p(Y n I xn, Yn-Op(Y '~ I Yn-O -~ 
= p(x,~ I Yn_l)p(Y~]x~)p(Y'~lY,~_l)-l. 

Here Y~ - {y~, . . . ,  YN} is the information from the present and the future obser- 
vations. Since p(x~ I Y~_I) has been already given by filtering and p(Yn ] Y~-I) 
is a constant which does not depend on x~, the smoothed density can be obtained 
if p(Y~ I x~) is given. Here this term can be evaluated by the following backward 
filtering. 

Initialization 

(3.2) P(VN I xN) ----p(vN I xN). 
Backward filtering 

/? (3.3) p(y~+l l xn) = p(y~+l, xn+l I xn)dXn+l 

F = p(gn+llXn+l, Xn)p(Xn+l I xn)dXn+l 
o o  

= p(yn+llx~+l)p(xn+l I xn)dx~+l, 

(3.4) p(V'~lx~) = p(V '~+~, yn I xn) 
= p ( V ~ + ~ l x , O p ( y ~  [ r  '~+~, xn) 
= p(v~+l  I ~ )p(v~  b x~). 
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The quantity p(Y~ [ x~) is not a state conditional density. Rather, it is an entity 
that is similar to the likelihood, and with care, it can be evaluated formally by the 
backward filtering algorithm• If p(yn ] xn) as a function of xn can be considered 
as a non-degenerate density function of xn, then the backward filter is identical 
to the ordinary filter. Unfortunately, this does apply for the initial several points• 
For example, for many important applications, the observation model 

(3•5) YN = H X N  -[- WN 

cannot be directly inverted to get a distribution for XN since the rank of H is 
generally less than the dimension of the state vector x~. This exhibits the difficulty 
in initializing the backward filter• One practical way to avoid this problem is to 
use 7-3I for some large 7-3 as the initial covariance of XN+l and that actually works 
for many problems• However, starting from XN-,~+l, the repeated use of (2.1) 
yields 

(3.6) 

YN 

Y N - m + 2  

Y N - m + I  

• H F . ~ -  1 

HF 
H 

X N - m + I  

VN-1  

V N - m + I  

+ 
W N - m + 2  

W N - m + I  J 

That can be expressed as 

(3.7) N N - 1  N 
Y N - m + I  = H ( m ) X N - m ÷ I  -[- G ( m ) V N - m + l  -}- W N - m + I ,  

using an obvious notation. Therefore, by taking m so that H(.~) is non-singular, 
we can invert this model to get the expression for xN-.~+l as 

(3.8) H - 1  N H - 1  ~ v N - 1  -1  N 
X N - m ÷ I  = ( m ) Y N - m ÷ l  -- (m)tJ(m) N - m + 1  -- H ( m ) W N - m + I "  

Here denoting the j - th  column of H ~  G(m) and H -1 by gmj and hmj, respec- ( ) (-~) 
tively, XN-m+l can be expressed as 

(3.9) 
N m-i 

X N - m ÷ I  = H-l(m) y N - m + I  -- E g m j V N - j  -- ~ h m j W N - j + l .  
j = l  j = l  

It should be noted that in this case the backward filter is started from XN_m+ 1 

rather than XN. A more practical way, although not exact but is sufficiently 

acculate, is to use the initial distribution p(zo) even for ZN. 
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4. Gaussian-sum smoother 

We now consider the development of a Gaussian-sum smoother. Since the 
Gaussian-sum version of the filter has been already given in (2.9) (2.12), it suffices 
to show the implementation of smoothing (3.1). 

Assume that p(x~  [ Y~-I) and p(Y'~ ] x~)  are expressed by 

(4.1) 

Lr~ 

k = l  

M; 

P(Y~ ~ )  = Z ~ ( z ~  I ~n), 
g = l  

N k k where qok(x~ I Y~_I) ~- (x~bn_l,V~[~_l) and ~ ( g ~  I~n) N(z~,~, -= U~I~). Then 
by analogy to the derivation of the Gaussian-sum filter (2.11), for the state space 
model 

( 4 . 2 )  x ~  = F~xn_I + G~v~, 
Z n : -  X n zr- W n ,  

the Gaussian-sum smoother is obtained by 

(4.3) p(x~ I YN) ~< p(Y~lx~)p(x~ I Z~-I) 
M~ L~ 

= ~ ~ 6'e~k~e(Y~lxn)~k(x~ I Y ~-1) 
~=1 k = l  

M~ L~ 

- ~ ~ 5'~k~pek(x~ I YN). 
~=1 h = l  

Here ~ek(Xn I YN) is the Gaussian density whose mean and the covariance are 
obtained by replacing Hn by I and y~ by Znln, 

(4.4) 

jfnk k k / - 1 
= v~,n_l(VX,~_l + u;t~) , 

£k  k Tg~k / g k 
x~l y = XnIn_ 1 + J;~ (Z~ln -- X~I~_I), 

gh V~I N ( I -  rek~zk 
= o n ] V n l n - l "  

5. Remarks on the Gaussian mixture approximation 

Some remarks on the Gaussian mixture approximation are in order here. In 
this Gaussian mixture approximation, each Gaussian component can be evaluated 
by the Kalman filter. This is the most appealing feature of this method. However, 
this method has a severe drawback in that the number of necessary Gaussian com- 
ponents increases exponentially with time. If the number of Gaussian components 
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used for the noise densities are K~ and K~, respectively, then the number of nec- 
essary Gaussian components for the state density at the n-th step is (K.  • K~) ~ 
times that of the initial density. In this section, we will show a method to overcome 
this problem. 

5.1 Reduction of the number of Gaussian components 
To avoid the explosion of the number of Gaussian components, we re-approxi- 

mate the densities by a reduced (collapsed) number of Gaussian components at 
each time step (Harrison and Stevens (1976)). The re-approximation is motivated 
by the observation that a relatively small number of Gaussian densities can ap- 
proximate a large class of distributions and by the anticipation that the complexity 
of the density will not increases very significantly with the evolution of the time 
step. 

A practical way is to approximate the prediction and filtering densities by a 
fixed number of components at each step of the recursion such as: 

(5.1) 

mpn f~ 

k=l  k= l  
mfn m 

p(Xn I Yn) = E (~tn~t(Xn I Yn) ~ E 5 ~ ( x n  I Y,~). 
/~=1 ~=1 

In principle, this can be realized by finding the minimizer of a measure of the 
dissimilarity between the true and approximated densities. For that purpose, we 
use the Kullback-Leibler information number, 

(5.2) ±(p(.); q(.)) : / l o g  

Here p(x) and q(x) are the true and the approximated densities, respectively. 
This evaluation generally involves computationally costly numerical integration 
and nonlinear optimization with respect to many parameters. It is not practical, 
especially for higher order models. A seemingly appealing method of adopting 
Gaussian terms with largest m probabilities 7hn o r  51n was found to be inefficient. 
This is mainly due to the fact that even if the weight of a Gaussian component 
is very small at a certain time point, it may become large at the next time step. 
Typically that can be seen for a Gaussian component with large variance when an 
outlier or the jump of the parameter occurs. Ignoring such a component will be 
disasterous. From our experience, a practical way is to measure the similarity of 
two Gaussian components of filtered densities by 

(5.3) D(~k, ~l) = --25k~e{I(~k; ~Z) + I(~t; ~k)} 

= 5kse{Yi-lv  + v -lYk + ( , k  - - 1  + - 

and pool the pair of Gaussian densities, ~k and pz, that minimizes D(qpk, 9~t). 
Here #k and Vk are the mean and the covariance of the Gaussian component g)k. 
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0.1778 t 
I.I=2 
f = 0 . 0 8 4 0 9  

~ =3 
F = 0.00625 

M=4 
f = 0.00614 

H = 5  
f = 0 . 0 0 4 7 2  

H =6 
F = 0.00337 0.00002 

H = 8  
F ; 0 . 0 0 0 3 7  

/i. 
Fig. i. Gaussian-sum approximations with reduced number of Gaussian components. 
Bold curves show approximated and the fine curves show the true density. 

The pooling of two Gaussian densities, Pk and ~t, can be realized by the following 
calculations: 

~tkl 

(5.4) 

Vkl = 

5knpk + 5tnpt 
5k + 5t ' 

5 k { V k  + - -  - -  + + - -  - -  

5k + 5z 

By repeating this procedure, we can get an approximation to the conditional state 
density with a fixed number of Gaussian components. 

In implementing this procedure, we systematically examine all possible pairs 
of Gaussian components. The use of the symmetrized Kullback-Leibler measure, 
(5.3), is of course, ad-hoc. A different measure might be optimal. In what follows 
however, we do show that it is a very effective approach. 

5.2 An illustrative example 
Here, we illustrate how our procedure works in reducing the number of Gaus- 

sian components. A worked example is illustrated in Fig. 1. The true density 
g(y) was arbitrarily defined using 16 Gaussian components. In Fig. 1, the fine 
curves show the true density g(y). The bold curves show the Gaussian-sum ap- 
proximations with m components, obtained by successively applying the indicated 
procedure. It can be seen that fairly reasonable approximations are obtained for 
m _~ 3. For m > 8, two curves are visually indistinguishable and thus they are not 
shown. 

The second column of Table 1 shows the Kullback-Leibler information num- 
bers of the Gaussian-sum approximations with m components, obtained by the 
indicated method. The third column shows the K-L information numbers of the 
best Gaussian-sum approximations. They are obtained by using the computation- 
ally costly numerical integration method and numerical optimization in (3m- l)- 
dimensional parameter space. It is quite time consuming and is impractical to 



614 GENSHIRO KITAGAWA 

Table i. Kullback-Leibler numbers of the Gaussian-sum approximation with smaller number of 
components. The second column shows the ones for the approximation by the proposed method. 
The third column shows the ones for the best approximations. 

m approximation best 

15 0 . 0 0 0 0 0  0.00000 

14 0 . 0 0 0 0 0  0.00000 
13 0 . 0 0 0 1 1  0.00000 
12 0 . 0 0 0 1 2  0.00000 
11 0 . 0 0 0 1 3  0.00000 
10 0 . 0 0 0 1 3  0.00000 
9 0 . 0 0 0 1 3  0.00000 
8 0 . 0 0 0 3 7  0.00001 
7 0 . 0 0 0 9 2  0.00012 
6 0 . 0 0 3 3 7  0.00012 
5 0 . 0 0 4 7 2  0.00013 
4 0 . 0 0 6 1 4  0.00013 

3 0 . 0 0 6 2 5  0.00258 
2 0 . 0 8 4 0 9  0.06967 
1 0 . 1 7 7 8 1  0.17781 

use in filtering and  smooth ing  algori thms.  The  table  shows tha t  the increase of 
the K-L informat ion number  wi th  the  decreasing number  of Gauss ian  componen t s  
induced by the approx imat ions  can be considerable.  The  example  also reveals the  
meri t  of using the  Gauss ian  mix tu re  as compared  with  the  single approx ima t ing  
Gauss ian  density. 

6. Comparison with direct numerical approximations 

In this section, we will check the  validi ty of our implementa t ion  of the  
Gauss ian-sum smoother  by compar ing  with  the  es t imates  ob ta ined  by the  non- 
Gauss ian  smoother  for the  s ta te  space model  (Ki tagawa (1987)) 

(6.1) Xn z Xn--1 Jr- Vn , Yn ~ Xn + Wn. 

In tha t  paper ,  it was assumed tha t  wn ~ N(O,  cr 2) and q(v) o ( ( v 2 + 7 2 )  -b. However, 
for compar ison  with the  Gauss ian-sum smoother ,  we assume here t ha t  q(v) is a 
mix tu re  of two Gauss ian  densities defined by 

(6.2) q(v)  : a N ( 0 ,  ~-~) + (1 - a ) N ( 0 ,  ~-22). 

The  m a x i m u m  likelihood es t imates  of the  pa r ame te r s  are & : 0.991, %2 : 0.00013 
and #z = 1.03. T ff is a rb i t rar i ly  fixed to 4. Figure  2 shows the  margina l  poster ior  
densities ob ta ined  by the  (almost)  exact  non-Gauss ian  smoother .  The  bold curve 



GAUSSIAN-SUM SMOOTHER 615 
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-2  

- 4  

I00  200 30D 400 500 

Fig. 2. The marginal posterior densities obtained by the non-Gaussian smoother. 

4 .,, .............................................................................................. ,,., . . . . . . . . . . . . . . . . . . .  

0 ¸ 

- 2 . -  

q 
-4 !' . . . . . . . . . . . . . . . . . . . . . . .  : . . . . . . . . . . . . . . . . . . . . . . . .  : . . . . . . . . . . . . . . . . . . . . . . . .  ; . . . . . . . . . . . . . . . . . . . . . . . .  : . . . . . . . . . . . . . . . . . . . . . . .  

D I00  200 30D 400 500 

Fig. 3. The marginal posterior densities obtained by an equivalent Gaussian smoother. 
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4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Fig. 4. 
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The  margina l  posterior  densit ies obta ined by the  G a u s s i a n - s u m  smoothe r  (m = 

4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Fig. 5. 
2). 

2 '  

O" 

- 2 '  

-4  
I00 200 300 400 500 

The  margina l  posterior  densit ies obta ined  by the  G a u s s i a n - s u m  smoothe r  (m = 
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4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Fig. 6. 
4). 

O. 

-2  

-4 . . . . . . . . .  ~ . . . . . . . . .  '. . . . . . . . . .  '. . . . . . . . . .  t . . . . .  ' ' '  

100 200 300 400 500 

The marginal posterior densities obtained by the Gaussian-sum smoother (rn = 

- 2  

- 4 ' ~  
0 100 200 300 400 500 

Fig. 7. The marginal posterior densities obtained by the non-Gaussian filter. 



618 GENSHIRO KITAGAWA 

shows the trace of the posterior median• The other six fine curves show the 0.13, 
2•27, 15•87, 84.13, 97•73 and 99.87 percentile points of the marginal posterior 
density which correspond to the +I ~ :1:3 standard deviations of the Gaussian 
density• To compare this result, we applied the Gaussian-sum smoother using the 
same parameters• Figure 3 is obtained by an equivalent Gaussian model with the 
system noise variance T 2 = 0.991 X 0•00013 + 0.009 X 4 = 0•03613• The estimated 
trend is very wiggly and does not clearly show the jump of the trend• Figures 4-6 
show the marginal posterior densities obtained by the Gaussian-sum smoothers 
with m = i, 2 and 4, respectively• From the model assumption, we put Kv = 2 

and Kw -- I. We also tested for m -- 8, 16, etc. However, the difference from Fig. 6 
is not apparent• From these illustrations, it is clear that even with small number 
of Gaussian components (even m = 2), we can get fairly good approximations to 
the one obtained by the non-Gaussian smoother• Finally, Fig. 7 shows the result 
obtained using the non-Gaussian filter. Comparison with this figure clearly shows 
the potential of using the smoothing algorithm in estimating the trend component. 

7. Non-Gaussian seasonal adjustment 

Kitagawa (1989) introduced a non-Gaussian version of the seasonal adjustment 
model• Detection of the abrupt changes of the trend and the seasonal components 
caused by the energy crisis or strikes was shown in an economic time series example. 
In that  paper, non-Gaussian seasonal adjustment was realized using a Gaussian 
sum filter• The augmented state vector state space model used was, 

(7.1) 
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Fig. 8. Non-Gaussian seasonal adjustment of the increase of inventory of private com- 
pany in Japan data. From top to the bottom, they show the estimated trend, seasonal 
and noise components and the original series. 

Using this state space model, we obtained the fixed-lag smoother Xn_191n. 

In contrast with that model, by using the Gaussian-sum smoother developed in 
this paper, we can obtain the fixed interval smoother XnlN directly from the state 
space model with the state vector xn = (in, in--l, Sn,..., Sn--3) t for quarterly data 
and xn = (in, in-z, s~,..., Sn_n) t for monthly data. The results of the analysis of 
an economic series (quarterly series of increase of inventories of private companies 
in Japan, 1965 1983) is shown in Fig. 8. The estimates obtained by the Gaussian- 
sum filter is shown in Kitagawa (1989). The differences of the estimated trend 
and seasonal components by the present fixed interval smoother and the fixed-lag 
smoother are not apparent in this example. However, due to the reduction of the 
dimension of the state vector (from 40 to 5 in the present case), the computing 
time and the necessary storage are significantly reduced (to about 1/64). That 
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Fig. 9. Estimated trend, seasonal and residual components for BLSALLFOOD data 
obtained by the standard Gaussian model. 

simplification will enable us to apply the non-Gaussian smoothing method to longer 
data or to more sophisticated and complex models. 

8. Outliers in time series 

The mixture model for observation noise is especially useful for handling out- 
liers in time series (see for example, Tsay (1986)). Figure 9 shows the results 
of standard seasonal adjustment of the BLSALLFOOD data (the Bureau of La- 
bor Statistics, all employees in food industries, January 1966-December 1979, 
N = 156, Kitagawa and Gersch (1984)). The original data, the estimated trend 
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Fig. I0. Estimated trend, seasonal and residual components for BLSALLFOOD data 
with six outliers obtained by the standard Gaussian model. 

with ±i ~ ±3 standard error intervals, the estimated seasonal component and the 

residuals are shown in the figure. 

To check the robustness of the Gaussian mixture observational noise model, 

we consider an artificially contaminated series of the BLSALLFOOD data. The 

data shown in Fig. i0 is obtained by replacing six observations, y29, ys0, y53, y90, 
y110, y111 by the number 1900. That data are considered as outliers. The effect 
of these outliers are evaluated by comparing Fig. i0 with Fig. 9. The estimated 
trend by the standard seasonal adjustment model for this data is strongly affected 

by these outliers and is wiggly. The estimated seasonal pattern is also different 

from the one shown in Fig. 9. The log-likelihood of the model is -2795.2. 
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Fig. 11. Es t ima ted  t rend,  seasonal and  residual components  for BLSALLFOOD d a t a  
wi th  six outliers ob ta ined  by the  Gauss ian-mixture  observat ional  noise model. 

Figure 11 shows the results obtained by assuming that  the observational noise 
density is a mixture of two Gaussian densities 

(8.1) r(w) ~ aN(O, ~2) + (1 - a)N(#, r2). 

Approximate maximum likelihood estimates of the parameters are 0 = 0.96, 
~2 = 30.3, ~2 __ 4 × 104. The estimated trend and the seasonal components 
are indistinguishable from the ones in Fig. 9. The residuals take large values cor- 
responding to the presence of the outliers. The AIC value of this model is -690.2 
indicating that  this model is significantly better than the standard Gaussian model. 

Incidentally, by applying the Gaussian mixture model to the original uncon- 
taminated data shown in Fig. 9, we obtain almost identical estimates of trend and 
seasonal components. The log-likelihood of the model is -650.8. Compared with 
the log-likelihood value of -649.4 of the best Gaussian model, it is clear that  the 
approximation made using this model is excellent. This example suggests that  the 
Gaussian mixture model is robust to outliers and also that it yields an excellent 
approximation when applied to data without outliers. 
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