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A b s t r a c t .  The existence of a generalized Fisher information matrix for a vec- 
tor parameter of interest is established for the case where nuisance parameters 
are present under general conditions. A matrix inequality is established for the 
information in an estimating function for the vector parameter  of interest. It 
is shown that  this inequality leads to a sharper lower bound for the variance 
matrix of unbiased estimators, for any set of functionally independent functions 
of parameters of interest, than the lower bound provided by the Cram~r-Rao 
inequality in terms of the full parameter. 
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1. Introduction 

Suppose X has probabi l i ty  d is t r ibut ion Po with p a r a m e t e r  0 in some open  in- 
terval  19 of Ri .  Under  the  s t anda rd  regular i ty  assumpt ions  for unbiased es t imat ion  
of pa rame t r i c  funct ion f(O), the Cram~r -Rao  inequal i ty  

[f'(o)] ~ (1.1) v o ( r )  >_ - -  
i(0) 

provides a lower bound for the variance of unbiased estimators T = T(X), I(0) 
being the Fisher information concerning parameter 0 in X (or in the distribution 
Pe of x ) .  

If  we consider the  score function l(z;O) = Ologp(z;O)/O0,  where p is the  
probabi l i ty  densi ty  function (p.d.f.), then  the basic op t imal i ty  of the score funct ion 
l as an estimating funct ion for 0 was es tabl ished by G o d a m b e  (1960). Suppose 
g = 9(z; O) is to be used as an es t imat ing  funct ion to provide unbiased es t imat ing  
equat ion g(z; 0) = 0, then  G o d a m b e ' s  result  m a y  be s ta ted  in the  form 

(1.2) [g(O) <_ It(O) = I(O), 
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for all regular unbiased estimating functions g, where [g is the information con- 
cerning 0 in the estimating function g (Bhapkar (1972)) 

(1.3) Ig (0) = E~ lOg(X; O)/O0] 
~(0) 

and ¢~(0) = Vog(X; 0). For 9(X; O) = T - f(O), the inequality (1.1) follows from 
(1.2). 

More generally, for 0 in an open interval of R~, we have the matrix form of 
the Cram&-Rao inequality under regularity assumptions (see, e.g., Rao (1965)) 

(1.4) Vo( T) >_ F(O)I-I(O)F'(O), 

where F(O) is the k x k matrix of partial derivatives Ofi(O)/OOj, I(0) is the Fisher 
information matrix and T is unbiased estimator of f(O). 

The matrix form of (1.2) is 

(1.5) xg(o) <_ i,(o) = z(o), 

where the information in the estimating function g = g(x; O) is 

(1.6) xg(o) = c ' (o )r~; l (o )c (o) ,  

G(O) is the k × k matrix Eo[Ogi(X; O)/OOj], and Eg(0) = Vo(g(X; 0)) (see, Kale 
(1962), Bhapkar (1972)). Again (1.4) follows from (1.5) by taking g(X;O) = 
T - f(O). 

In Section 2 the basic notation and terminology is given for the case of pa- 
rameter of interest 0 in the presence of nuisance parameters ¢. Existence of the 
generalized Fisher information matrix for 0 is established in Section 3. Inequalities 
are considered in Section 4 for information in estimating functions in the presence 
of nuisance parameters. The inequality (4.4) is shown to lead to a sharper in- 
equality than the Cram6r-Rao inequality for unbiased estimation of parametric 
functions in the presence of nuisance parameters. Finally, Section 5 develops the 
inequality concerning generalized information matrices for X and any given statis- 
tic S = S(X) with some examples. 

2. Notation and terminology 

Suppose that  the random variable X with values x in the sample space X has 
probability distribution P~ with the density function (p.d.f.) p(x; w) with respect 
to a G-finite measure #. Assume that  the parameter co = (0, ¢), where 0 is the 
parameter of interest, and ¢ is the nuisance parameter variation independent of 0 in 
the sense that  the corresponding parametric spaces satisfy the relation ft = O x @. 
It is also assumed that  ft is an open subset of d-dimensional Euclidean space and 
0, ¢ have dimensionalities dl and d2, respectively. 

Let l~(x) = c9 logp(x; w)/Ow denote the row-vector of partial derivatives and 

I(~) = E~l~(X)%(X) 
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is then the usual Fisher information matrix.  
Along with /~(x), the score function for the distr ibution of X,  we call its 

components /0, I¢ the 0-score and C-score, respectively. 
We assume the following regularity conditions on the probabili ty distr ibution 

R: (i) P~ has p.d.f, p(x; co) with respect to measure # and the partial deriva- 
tives up to second order, of fpd# can be obtained by differentiating with 
respect to co under the integral sign for all co E ft. 
(ii) I(co) = E~I~(X)I~(X) is positive-definite (p.d.) for all co. 

Now the Fisher information matr ix  for parameter  of interest 0 is defined as 

(2.1) I(O; co) = m i n E ~ [ m ( N ) m ' ( N ) ]  
N 

where r e ( N )  = lo (X) -N ' (co) l¢ (X)  for any d2 Xdl matr ix  N(co), and min denotes 
the minimal matr ix  M *  in the class AA~ of non-negative definite (n.n.d.) matrices 
M~o(N) = E ~ [ m ( N ) m ' ( N ) ]  in the sense M £  < M~,  i.e., M - M*  is n.n.d., for 
all M~ in A4~. 

Such a minimal matr ix  exists and we have 

(2.2) I(O; co) = 211 -- B'I22B,  

for any B satisfying 122B = 221. Here 2ij denote the part i t ioned submatrices of 
I(co) by dl, d2 rows and d:, d2 columns. Note tha t  the expression (2.2) is invariant 
under any choice of B ,  and 2(0; 0) = I(0). If 222 is p.d., as under condition (ii) 
in R,  then I(O; co) : / 1 1  - I12 2221121. 

Now we turn  our a t tent ion to the generalization of the above information 
function due to Godambe (1984) and the matr ix  form discussed by Bhapkar (1989, 
1991). 

Let ~ be the class of real-valued functions g(x; 0) over 2( × O satisfying the 
following regularity condition: 

R~: E~g(X;O) = O, E~g 2 = f g2pd# < oc for all co E ft. 
Now consider the class of real-valued functions u(x; co) such tha t  for all co E ft 

(i) E~u2(X;w) < ~ ,  
(2.3) 

(ii) E~u(X;CO)g(X; O) = O, 

for all g E 6. 
The generalized Fisher information matr ix  is defined as 

(2.4) IG(O; co) : m i n E ~ n ( u ) n ' ( u ) ,  
~t  

where n(u)  = lo(X ) - u(X;  co), u is a vector with elements satisfying (2.3) and 
the rain denotes the minimal matr ix  in the class of n.n.d, matrices M ( u )  = 
E~(n(u)n'(u)). 

~f ~ is a vector with elements satisfying condition ((2.3)), let E.u(X;~) = 

v(w) and w = u - v. Then elements of w satisfy condition ((2.3)). Furthermore,  

~n(u)n'(u) ---- ~ ( w ) n ' ( ~ )  + vv' > ~ n ( w ) W ( ~ ) .  
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Hence, without  loss of generality, we could confine at tent ion to u with zero mean 
and elements satisfying (2.3) in order to define It(O; co). 

Let t h e n / / / b e  the space of real-valued functions u --- (x; co) such tha t  u(X; co) 
has zero mean, finite variance and it is uncorrelated with g(X; O) for all co C ft and 
every g E G. 

The following lemma is easy to prove by showing tha t  u = 0 gives the minimal 
matrix. 

LEMMA 2.1. If  co = 0 and ¢ is absent, then Ic(O;O) = I(O). 

Although the existence of the matr ix  It(O; co) was established under some 
special conditions where suitable p-ancillary, or p-sufficient statistics exist for 0 
(see Bhapkar (1989, 1991)), its general existence under regularity conditions R 
and R~ alone still remained unproven. 

In the next section we establish the existence of the integrated (or global) 
version of generalized Fisher information matr ix  for 0 from which the existence of 
the local version Ia follows. 

3. Generalized information matrix for 0 

Let :P be a family of probability measures P~, co E f t  over the measurable 
space (X, A), dominated by a ~-finite measure p, and suppose p(x; co) is the p.d.f. 
dP~/dp. Assume tha t  p satisfies the Cram4r-Rao regularity conditions R.  Assume 
also tha t  II is the class of all probability measures 7r over the measurable space 

(a, 9). 
Before establishing existence of the minimal matr ix  I a ,  defined by (2.4), we 

first establish existence of its integrated version J~ as the minimal matr ix  in a 
certain class of n.n.d, matrices for any given probability measure 7c in II. 

Let 'E' denote the overall expectat ion with respect to p (or #) as well as 7r, 
while E~ denotes the conditional expectation E(.  I co)- Consider the space C of 
functions c = c(x; co) from X x f~ --~ R1 such tha t  

(3.1) 
E (c) -- f c(x; co)p(x; = 0, 

E(c 2) =_ / c2(x; co)p(x; co)dp(x)dTr(co) 

E (c 2) < 

< (:x:). 

for all w E f~, 

Then C is a Hilbert space with the inner product  defined by 

(3.2) @I, c2) = / cl (x; co)c2 (x; co)p(x; co)d#(x)dTr(co). 

Let Q* be the subspace of functions g = g(x; O) in C which depend on w only 
through 0. Denote by 5/* the orthogonal complement of G* in C. 

Consider now the class 57 of n.n.d, matrices 

(3.3) J(u)  = E n ( u ) n ' ( u ) ,  
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where n(u) = le(X ) - u, and u = u(x; w) is a vector with all elements belonging 
to b/*, assuming tha t  all elements of the O-score function le belong to C. 

The  integrated version of Fisher informat ion function for pa ramete r  of interest  

8 is now defined as 

(3.4) J~ = rain J ( u ) ,  
U 

where the minimum is for the class J with u having elements in 5/*. 
The  existence of the minimal mat r ix  can now be demonst ra ted .  By the pro- 

ject ion theorem (see, e.g., Fr iedman (1982)) tha t  for each real-valued c = c(x; w) 
in C there  is a unique decomposi t ion c = g* + u*, where g* = g*(x; 8) E G* and 
u* = u* (x; w) c 5/*. 

If le has all elements in C, then  we have the unique decomposi t ion Io(X) -- 
g*(X;8) + u*(X;w) where all elements of g*, u* belong to subspaces G*, 5/*, 
respectively. 

Hence, from (3.3), we have 

(3.5) ; ( u )  = E g * g * '  + - - 

since the cross-product  terms Eg*(u* - u)' vanish. From (3.4) and (3.5), it now 
follows tha t  

(3.6) J ,  = Eg*g*', 

since the min imum is a t ta ined  at u = u*. Thus  we have 

PROPOSITION 3.1. If all elements of lo( X) belong to C, and G* is the subspace 
of functions depending on w only through 8, then the integrated version J~ exists 
and it is given by (3.6) where g* is the projection of lo(X) onto the subspace G*. 

Considering now the one-point  degenerate  dis tr ibut ion 7~ at w we have 

THEOREM 3.1. Assume conditions R and R 6. Then the generalized infor- 
mation matrix Ic(0; w), defined by (2.4), exists; it is given by 

(3.7) /G(8;  = E g*(X; 8 ) g * ' ( x ;  8), 

where g* is the projection of le(X) onto the subspace G. 

We note  here tha t  G* = G and 5/* - - /4 ,  with G, L/ defined in Section 2, for 
one-point  dis tr ibut ion ~ at w. 

Suppose now tha t  the functions g in G are futher  restr ic ted by the regularity 
assumption (see Godambe  (1984), Bhapkar  (1989, 1991)). 

R* 6: In addit ion to R6 ,  the funct ion g = g(X; 0) has part ial  derivatives with re- 
spect to 8 and, fur thermore,  the equali ty f gpd# = 0 can be differentiated 
with respect to elements of w under  the integral sign. 
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Hereafter  we thus assume tha t  G is the class of regular real-valued functions 
g = g(x; O) which satisfy conditions R* an d / / / i s  the class of real-valued functions 6, 
u = u(x; ~) with zero mean which are uncorrelated with g in G. 

Let ~* denote  now the closed linear subspace in C spanned by functions g in 
G N C. As before, let 5/* denote  the complement  of G* in C. For J~, defined by 
(3.4) with 5/* defined as here, the proof  of Proposi t ion 3.1 remains valid. 

More specifically, for the one-point distr ibution 7r at a J, we have 

THEOREM 3.2. Assume conditions R, and suppose G* is the closed linear 
subspace spanned by functions g which satisfy R* Then I a (0 ;w)  exists and it is 6" 
given by (3.7) where g* is the projection of lo(X) onto G*. 

Note here tha t  for a one-point distr ibution 7r at w, G C G* since not every g* 
in ~* is differentiable with respect to 0. Hence 5/* C 5 / an d ,  thus, Ia(O; ~z) is the 
minimal mat r ix  at u = u* (in the proof  of Proposi t ion 3.1). 

4. Inequalities with nuisance parameters 

We now generalize the inequalities in Section 1 to the case of pa ramete r  of 
interest 0 in the presence of nuisance parameters  ¢. 

Assume tha t  the elements of est imating function g for 0 satisfy the regular i ty  
conditions R* in Section 3. We have then  g 

(4 .1)  [ g ( X ;  e)l (X; = - 

where G(~)  is the dl x dl mat r ix  Ew[cgg/cgO]. Using now the terminology of 
Section 3, we have then  for probabil i ty  measure ~r over 

[0g(x;e)] 
= - E  [ 

= - H ,  say. 

Therefore  for any vector u with elements in 5/* we have 

E[g(X; 0){/0(X; cv) - u(X; w)}'] = - H .  

Arguing now as in Rao ((1965), p. 266) we see that ,  for every u in 5/* the mat r ix  

~g - H  
H' J(u) 

is n.n.d.; here Eg = E(gg') and J(u)  is defined by (3.3). If Eg is non-singular,  
we have J(u)  - H ' E ~ I H  n.n.d, for every u. In view of (3.4), we have then  

(4.2) H']Eg 1H <_ J~r. 
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DEFINITION 4.1. The information concerning 0 with regard to 7r in the reg- 
ular unbaised estimating function g, with p.d. covariance matrix Eg is defined 
as  

Jg = H'E-gl H.  

Since (4.2) is true for every vector u with elements in/~*, we have 

PROPOSITION 4.1. For every regular estimating function g for 0 with p.d. 
covariance matrix 

(4.3) Jg <_ g~. 

The inequality (4.3) is a generalization of the inequality that one obtains for 
a one-point distribution 7r at w, viz. 

(4.4) Ig(O;w) < Io(O;w), 

where Ig = G'(w)E~l(w)G(w) is the local information for 0 in estimating function 
g, and leg (w) = E~ [gg']; see Ferreira (1982) for an equivalent definition of I t .  The 
relation (4.4) was established in Bhapkar (1989) provided the minimal matrix I c  
exists. In view of the existence Theorem 3.2, such a qualifying statement is no 
longer necessary. The inequality (4.4) is the vector extension of the scalar result by 
Godambe (1984). It is now seen that the inequality (4.4) is the generalization of 
the outside inequality in (1.5) to the case where nuisance parameters are present. 

A weaker inequality 

(4.5) Ig(O;w) <_ I(O;w) 

was established by Chandrasekar and Kale (1984), where I(0; w) = [II1(0;w)] -1 
is the information concerning 0 in P~, as defined by (2.1) and (2.2), and 

However, it was shown in Bhapkar (1989) that I(O;w) >_ Ic(O;w); thus the 
relation (4.4) provides an inequality which is sharper than the inequality (4.5). 

The inequality (4.4) is also seen to lead to a sharper lower bound to the vari- 
ance (or eovarianee matrix) of unbiased estimators of any dl-vector of functionally 
independent estimable functions f(O) of the parameter of interest 0, in the pres- 
ence of nuisance parameters ¢, than the Cramer-Rao inequality. If T is unbiased 
for f(O), we have (see, e.g., a a o  (1965), p. 265) 

(4.6) Vw(T) >_ F(w)I - l (w)F ' (w)  = F1(O)I11(w)F~(O), 

where F(w) is the dl × d matrix [Of/Ow], while F1 (0) is the dl × dl matrix [0f/00]. 
Now for the estimating function g = T - f (O) ,  we have 

Ig = FI(O)E;I(w)FI(O) = F;(O) V-1FI(O). 
In view of (4.4) we have V -1 < (F~)-IIGF71 i.e. 

(4.7) V~ (T)  > F1 (0) /~  1(0; w)F~ (0), 

provided IG is nonsingular. However, IG(O; w) < I(O; w) ---- ( i l l ) - 1  implies I ~  1 _> 
11~. Thus the inequality (4.7) is seen to be sharper than the inequality in (4.6). 
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5. Information concerning 0 in statistic S 

Consider now the statistic S = S(X)  where X has distr ibution P~ which 
satisfies regularity conditions R in Section 2. Hereafter we assume the extended 
regularity conditions R* defined below. 

R*: (a) The conditions (i) and (ii) in R.  
(b) There exists a minimal sufficient statistic (S, T) for 7) = {P~ :  w e f~} 
and measures v, r/8 such that  

(5.1) p(x; ~) = f(s;  ~)h(t; ~ I ~)k(x I s, t), 

where f is the p.d.f, of S with respect to r~, h is the conditional p.d.f, of 
T with respect to r/8, given s --- S(x), for almost all (r,)s. 
(c) f and h satisfy condition (i) in R for integrals with respect  to ~ and 
r/8, respectively. 
(d) The Fisher information matr ix I(S)(w) -- E~I~)(S)I~('~)(S) exists 

for the marginal distr ibution of S, where /~'~)(S) is the marginal score 
function of S given by [CO log f(S; cJ)/cow]'; similarly the conditional Fisher 
information matr ix (of T) given s, is 

x(~  Is) = E~fg~<C>(T;~ I s)C>' I s], 

with/~c) (T [ s) the conditional score function given s, viz. [c0 log h(T; w ] 
8)/0~]' .  

Some redundancy among the conditions R* is ignored for convenience of ref- 
erence. 

The following proposit ion concerning the integrated generalized information 
is easy to establish; see Bhapkar  (1991) for the proof of its local version. 

PROPOSITION 5.1. If ( S, T) is minimal sufficient for the family 7 ) -- { P~, a~ E 
f~} of distributions of X,  then for any distribution ~r in II, 

(5.2) j ( j , T )  = j~ .  

Here J U  'r) is defined for (S, T) as J~ is defined in Section 3 for X.  In view 
of this proposition, hereafter we work with the reduced model based on (S, T). 

For the sake of simplicity we will assume hereafter tha t  7r is a one-point dis- 
t r ibut ion at w. 

We need to define a space analogous to C (in Section 3) and subspaces thereof. 
Now let 

(5.3) e={c(s , t ; c~) :E~(c)=O,E~c2<oo,  for all a~ e f~}. 

It is easy to show that  C is a Hilbert  space with inner product  @1, c2) = E~clc2. 
Define 6 to be the subspace of C spanned by ~ = {g(s,t;O) : g E C}, the set of 
all regular elements of C depending on w only through 0. Denote  the orthogonal 
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complement of ~ in C by /g. 
notation.) Thus, 
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(The asterisks are deleted here for simplicity of 

(5.10) C = G(S) ® Y(S) ® G(T I S) ® y ( T  I S). 

Next we consider the generalized Fisher information for 0 in the reduced model 
(5.1), viz., 

(5.11) Ia(O; co) = min E~(lo(S, T) - u)(to(S, T) - u)' 
uEbl 

= E~og*g*', 

Thus we have 

(5.7) 
(5.s) 
(5.9) 

We will also need to work with the subspaces C(S) = {c(s, co) : c • C}, the 
collection of all elements of C depending only on s and co, and C(T I S) given by 

(5.5) C(TIS) = {~(s , t ,  co) • C :  E~(~ Is) = 0, E~(c  ~ Is) < ~ ,  

almost all (z/)s, all co • ft}. 

Finally, let G(T I S) and ~(S) denote subspaces spanned by ~ n C(T I S) and 
N C(S), respectively. With all the necessary quantities defined, we have the 

following proposition. 

PROPOSITION 5.2. The orthogonal complement C±(S) of t (S)  coincides with 
C(T I S). That is, 

(5.6) C±(S)  = C(TI S). 

PROOF. Let cl • O(TI S). Then for any c2 • O(S), 

<<, ~2> = E~c1~2 = E~{E~(~ ,c2  I S)}  = Eco[o2Ew{(e 1 ] S)}] = 0 .  

Hence, c 1 E C±(S). Since cl is arbitrary, it follows that C(T I S) C C±(S). To 
prove the converse, C±(g) C C(T I S), let Co • C±(S). Now suppose Co ~ C(T I S). 
Then the function e0(S, co) = E~(co ] S) is non-zero with positive probability. But 
~o(S, co) = 0 a.e. because ~0 • C(S) (and hence, co is orthogonal to ~o), leading to 
a contradiction. Hence, co • £ (T]  S) and C±(S) C C(T] S). [] 

Prom this proposition we can write down the following decompositions. Let 
F(S) = G±(S) in C(S) and Y(T I S) = ~±(T  I S) in C(T I S). Then 

c = c ( s )  ~ C(T I S), 
C(S) = a(S)  ~ V(S) ,  

C(T I S) = G(T I S) • N(T ] S). 

(5.4/ c = G ® u .  
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where g* ---- projection of lo(S,T) onto g. The expression (5.11) follows from 
Theorem 3.2. Here, and hereafter, by u C 5/ we mean a vector u = u(S, T; cz) 
with elements belonging to the space 5/, orthogonal to g, defined earlier in this 
section. Similarly we define the generalized information for 0 in the marginal 
distribution of S, as 

( 5 . 1 2 )  x(J)(o,~) = m i n  ~ ( z o ( s )  - v)(lo(s) - v)' 
v~v(s) 

= E~g', 

where g = projection of/0(S) onto ~(S). 

Again, the definition of I (s) is similar to that of/G, for the marginal distri- 
bution of S. The expression (5.12) follows from Theorem 3.2. 

We now define the generalized Fisher information concerning 0 in the condi- 
tional distribution of T, given S, by 

(5.13) I(TIS)(o;a;) : rain E~[ lo (TIS  ) - y][ lo(TIS  ) -  y]'. 
yCy(TIS) 

PROPOSITION 5.3. Assume conditions R* and suppose g (T  I S) is the sub- 
space of C(T I S) spanned by 0 N C(T I S), then I (Tls) exists and we have 

(5.14) I(cTIS)(o;~) : E ~ ' ,  

where ~I is the projection of lo(T [ S) onto 6 (T  ] S). 

The proof is parallel to that of Theorem 3.2 and, hence, it is omitted. 
We have then the following theorem. 

THEOREM 5.1. Assume conditions R* and let IG, I (s) and I (T]s) denote 
the generalized informations for O, defined in (5.11)-(5.13), then 

(5.15) IG(0;~) > I(J)(O;oJ) + I(GTIS)(O;W). 

PROOF. Consider the decomposition given earlier, viz., 

C = g(S) ® ]2(S) ® g(T ] S) ® Y(T ] S). 

Let Pg(s) and Pg(T]S) denote the projection operators on to subspaces 0(S) and 
G(T ] S), respectively. Since PO(s)Pg(TIS) = PO(TIs)Pg(s) = O, Pg(s) + P~(TIS) is 
also a projection operator and satisfies 

Pg(s) -}-Pg(TIS) = Pg(s)Og(TIS)" 

But, 
g(s) • g(T I S) c g. 
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Hence, letting g3 = g e (g(S)  • g ( T  I S)) 

Pg = Pg(s) + Pg(TIS) + Pg3" 

Now, since t0 (S, T) = to (S) + to (T I S), we have 

P~(to(S, T)) = P~(to(S)) + P~(Zo(T I S)) 
= P~(s)(lo(S)) + P~<T,S)(to(r I S)) 

+ Pga(Io(S,T)) 

because Pg(s)(Cl) = 0 = Pg(TIS)(C2) for any c I E C(T ] S) and c2 E C(S). Thus 
we have shown that  

g* =g+~+~ 

where g*, g, g are given by (5.11), (5.12), (5.14) and ~ = Pga(Io(S,T)). The 
theorem now follows from the observation that  g, ~ and ~ are orthogonal.  [] 

COROLLARY 5.1. Assume conditions R* and suppose S and T are indepen- 
dent. Then 

(5.16) xo(o;~) ~ I~(~)(o; ~) + I~(~)(o;~). 

The possible inequality sign, rather  than a strict equality, might seem some- 
what  surprising in the relations (5.15), and especially in (5.16). The following 
example illustrates the need for a possible inequality. 

Example 5.1. Let X 1 , . . . , X ~  be i.i.d, normal variables with mean # and 
variance ~2. For 0 = 0.2, it has been shown in Bhapkar  (1989), tha t  i (a2;  co) = 
n/2~ 4, while It(o-2; w) : ( n -  1) /2a  4. 

Now for S = ( X I , . . . , X m ) ,  T = ( X , ~ + I , . . . , X ~ ) ,  m < n, we have I(S)(a2;w) 
= ( r n -  1)/20. 4 and I(T)(a2;w) ---- ( n -  r n -  1)/2a4; this does illustrate the need 
for a possible inequality sign in the  s ta tement  (5.16). 

This example also brings out  an interesting difference between i(0.2;~) and 
IG(0.2; ~)  as measures of information for 0.2, when # is unknown, viz. in any single 
observation X{, i(0.2; m) = 1/2a4,  while IG(0.2; ~) = 0. 

Example 5.2. As a generalization of Example 5.1, let now X 1 , . . . , X ~  be 
independent  normal variables with variance 0.2 and means given by E ( X )  = Aft, 
where A is a known n × p matr ix of rank p, and j3 is an unknown regression vector. 
Then for 0 = cr 2, and w = (0 "2, ~), 1(0.2; W) = n/2a 4, while IG(0.2; w) = (n-p)~20. 4. 

If we let here S = X ' [ I -  A ( A ' A ) - I A ' ] X  and T = A ' X ,  then (S, T)  is 
minimal sufficient for w, T is p-ancillary for 0.2 in the complete sense, while S is 
p-sufficient for a2 in the complete sense using the terminology of Bhapkar  (1990, 
1991). In view of the results established in these papers,  we have I t ( a 2 ;  w) = 
E,~I(o "2 [T)  = I(S)(c~2). 
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Example 5.3. For the distr ibution in Example 5.2, if we have 0 = j3, we do not 
have either p-ancillary or p-sufficient statistic for ~. However with parametr izat ion 
0 = ~ / a 2  we do have a p-ancillary statistic T = X~X in the complete sense, in 
the terminology of Bhapkar (1989). Hence Ic(O; w) = E~[I(O I T)] for 0 = ~/cr 2. 
We note here tha t  al though (~, a2) are orthogonal parameters (see, e.g., Cox and 
Reid (1987)), (0, cr 2) are no longer orthogonal if we take 0 -- l~/~r 2. 

Thus, in this example, conditioning on the p-ancillary statistic T = X~X is 
indicated, for inference concerning 0 = ~/~r 2, on the basis of generalized informa- 
tion measure, Ia(0;c0), but  not on the basis of measure I(0;aJ), and I(0;co) ¢ 
E~[I (0  I T)]. 

For the special case p = 1 with common mean # for all Xi, and 0 = # /a2 ,  the 
conditional distribution of S = J(, given T = t, has the p.d.f. 

k(s; 0, t) = (t - rts2) (n-3)/2 exp{nsO + c(t, 0)} 

for Isl ~ (t/n) 1/2. This distr ibution does belong to one-parameter  exponential  
family and, at 0 = 0, this distribution is equivalent to Student 's  distr ibution with 
n - 1 degrees of freedom for S / { [ T -  nS2]/[n(n - 1)]} 1/2, both  conditionally and 
unconditionally. 
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