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A b s t r a c t .  Directional data analysis usually assumes that the observations 
are recorded according to a coordinate system whose origin coincides with the 
center of their support. However, it may happen that the observer does not 
sit at this center and record the directions from another point. The object 
of this paper is to investigate the statistical behavior of such decentered di- 
rections. First we derive the family of distributions of these directions and 
produce statistical procedures that recover some information about the under- 
lying process. An important special case is explored in details and compared 
with the Langevin model. Finally, an example is given where the introduced 
family of models makes physical sense and well fits the observations. 

Key words and phrases: Directional data, goodness-of-fit, group family, 
Langevin distribution, location shift, maximum likelihood theory, rotational 
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1. Introduction 

Statistical procedures for directional da ta  frequently assume tha t  the da ta  
follows a yon Mises-Fisher-Langevin distribution. This distr ibution has a density, 
with respect to the area element dc~p on Sp = {x  ~ Ti p I x ' x  = 1}, given by 

1 e~0% (1.1) f , ~ , o ( x ) -  ap(~C) 

where av(g ) = (21c)P/2/t~P/2-1Ip/2_l(l~) and Iv(. ) denotes the modified Bessel func- 
tion of the first kind of order q. The Langevin distribution, hereafter denoted 
Lp(O, ~), is a member  of the exponential  family and turns out to be mathemat i -  
cally very tractable.  It  is rotat ional ly symmetr ic  about  the axis 0 E Sp and ranges 
from the uniform distr ibution on Sp when a = 0 to the point mass distr ibution at 
0 as ~ --~ oc. These and other  characterizations have made it as popular  for direc- 
tional da ta  analysis as the normal  distr ibution for Euclidean data.  An addit ional 
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reason for this popular i ty  is tha t  in many  cases, the da ta  can be assumed to arise 
from a rota t ional ly  symmetr ic  distribution. But,  as pointed out by Mardia  et  al. 

(1984), there  is usually little ground a pr ior i  to just i fy the Langevin assumption.  
As a consequence, the Langevin model will often provide a crude approximat ion  
and thus suffer from lack of fit. In part icular,  experience shows tha t  the distribu- 
t ion is often too "peaked".  This problem is compounded  by the relative scarceness 
of goodness of fit tests for this model against general al ternatives (Fisher and Best 
(1984), Mardia  et al. (1984), and also Rivest (1986)). 

In this paper,  we propose an approach generat ing families of models for direc- 
tional da ta  tha t  can arise from the physical context  of an exper iment  and, as such, 
may be more plausible. In Section 2, we develop the motivat ion and present the 
general form of the models. In Section 3, some propert ies  of the dis tr ibut ion in an 
impor tan t  subset of the family are given and compared  to those of the Langevin 
model. Inference problems on this family are considered in Section 4 and Section 
5 presents a goodness-of-fit test. Section 6 proposes a modification to Section's 4 
model and we conclude with an example in Section 7. 

2. Group families for decentered directional data 

2.1 T h e  e x p e r i m e n t a l  con tex t  
Directional da ta  are usually recorded as the coordinates of points on a sphere 

whose origin coincides with the posit ion of the observer. However, in some cases, 
exper imental  conditions can prevent  this coincidence from happening.  For exam- 
ple, asteroids are observed as they  hit the a tmosphere  whose center is roughly 
located at the center of the earth. But,  an observer will most  likely be located 
on the surface of the ear th  and may record the impact  according to a coordinate  
system where he sits at the origin. A more extreme case occurs when the observer 
is located outside the sphere as when, for example, an as t ronomer  records impact  
point of asteroids on another  celestial body. 

In such experiments,  the observer is only given to observe a directional vector  
whose origin has been shiRed to a point c. More precisely, instead of observing 
the da tum Y as measured from the center of the sphere, the observer is given to 
observe 

Y + c  
(2.1) X - 

H V ÷ 4 '  

where H " II denotes the Euclidean norm and e, the position of the center relative 
to the observer, is unknown. The  problem then  becomes tha t  of recovering the 
information on Y from tha t  given by X .  In this paper,  we will restr ict  ourselves 
to the case where the center of support  of the observations lies inside the unit  
sphere centered on the observer, tha t  is e E Bp  = { x E ~ P  I x ' x  < 1}. 

Note tha t  other  context  can lead to model (2.1). One interesting case is the 
problem of detect ing the unknown source c of a signal. At location xi, a detector  
picks up a direction ui tha t  points toward c, except for r andom variation. For this 
problem, Jupp  et  al. (1987) propose a model  tha t  assumes ~ has mean direction 
(x i  - c ) / l l x i  - ell with the xi fixed. When  the detectors are (roughly) located on 
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~= 3 ,),.= 0.8 1¢ ~ 3, ),. = 0.5 

~=5,k=0.4 ~:= 5, ~. = 0.7 

Fig. 1. a) D e c e n t e r e d  yon  Mises  L2(3,  (0, 1)), b) D e c e n t e r e d  D i m r o t h - W a t s o n  on  t h e  
circle w i t h  c o n c e n t r a t i o n  n = 5 a b o u t  t h e  axis  (0, 1) for va r ious  values  of c. 

a circle covering c and the source emits randomly (e.g. radioactive material), the 
locations x4 corresponding to those detectors that have been triggered, become 
random directional vectors. Thus, (2.1) can be looked at as a mixture model from 
Jupp et al.'s (1987) proposal. 

2.2 General models 
Suppose that  the unobserved directional vector Y possesses a density 9,,  

# • ft, with respect to &vp. Then the direction X given by (2.1) has a density 
given by 

(2.2) / , (x ;  ¢) = ¢(x; ¢)g,(z(~; ¢))d~p 

where 

(2.3) 

is the inverse of (2.1) and ¢(x ;  c) denotes its Jacobian on Sp, which may be 
obtained through standard methods of differential geometry (see Do Carmo (1976)) 
and is given by 

(2.4) 
~) (X;  5 ) :  [CzX ~- ~ V / 1 -  1t51] 2 - - ( C Z X ) 2 ]  p 1 

~/1 -115112 + (5'x)2 

Thus, from the family {g,, P • f~}, transformation (2.1) induces the group family 

(2.5) {/ ,( .;  c ) , ,  • ~, c • Bp} 
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that we will refer to as a decentered family. 
This family encompasses a much larger variety of distribution types than the 

original family {g,, # E ~2}. For example, if g,  is rotationally symmetric about 
the axis #, the resulting family (2.5) contains unimodal, bimodal and girdle type 
distributions which need not be rotationally symmetric, depending on the location 
of c in Bp. Note that rotational symmetry is retained only when c lies along the 
axis of p. Figure 1 shows the densities that can be obtained from a yon Mises and 
Dimroth-Watson distribution on the circle, for a few values of c. 

Thus besides its justification arising from physical considerations, transforma- 
tion (2.1) and the resulting family of distributions (2.5) offer a new approach to 
modeling complex patterns of data on Sp. 

3. Directional Decentered Uniform (DCU) model 

In this and the next two sections, we will suppose that Y is uniformly dis- 
tributed on Sp such that g,  = 1/wp, where cJp -- 27rP/2/F(p/2). Writing e = A0 
with 0 E Sf and A E [0, 1[, the density of X in (2.2) may be written 

(3.1) f (x ;  0) = 
1 [AO'x + ~'i - ~2{1 - ( 0 ' x ) 2 } ]  

02p @1 - &2{1 - (0'x) 2} 

p--1 

from which we see that it is unimodal and rotationally symmetric about its mode 
0. Now, from Watson (1983), we find that for such rotationally symmetric distri- 
butions, E(X) = E(T)O and 

(3.2) Var(X)  = Var(T)O0' + 1 - E(T 2) (Ip - 00'), 
p - 1  

where T = O'X. Moreover, the density of T, hp(t; ~) say, supported on [-1, 1], 
depends only on A and has the form 

p--1 

(3.3) hp(t;A) =wp-1 [ . / l [ A t + v l - ~ 2 ( 1 - t 2 ) j  ( 1 - t 2 )  (p-3)/2" 
wp V/1 - ~2(1 - t 2) 

Expanding the numerator with Newton's binomial formula then integrating term 
by term using the integral formula (15.3.1) of Abramowitz and Stegun (1965), we 
find after tedious algebra that 

(3.4) 

+ k +  
- F ) (p  1 ) P (  j 1 )  

K) 
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Fig. 2. Q-Q plots of the distr ibution of T for the DCU distr ibution versus the nearest 
Langevin distr ibution in sup-norm. 

where I~(i) = 1 if i is even, 0 otherwise, and 2F1 denotes Gauss 's  hypergeometr ic  
function (Abramowitz and Stegun (1965), Chapter  15). 

The  behavior  of X as A ~ 0 becomes tha t  of the uniform on S; ,  a behavior  
also shared by the Langevin dis tr ibut ion Lp(eC, O) as ~ ~ 0. On the other  hand, as 
A --+ 1, hp(t; A) puts  all its masses on [0, 1] so tha t  the dis tr ibut ion of X becomes 
concentra ted on the half-sphere centered at 0. This behavior  is markedly different 
from tha t  of the Langevin distr ibution which converges, as ~ ~ +oc ,  to the point  
mass distr ibution at 0. Thus the DCU distr ibut ion (3.1) cannot  be used to model  
very concentra ted  samples and the behavior  of the two distr ibutions will differ most  
for large values of A. Figure 2 presents for various values of A and p, Q-Q plots 
of (3.3) versus the dis tr ibut ion of T when X follows a Langevin dis tr ibut ion with 
ec being chosen to minimize the sup-norm distance between the two dis tr ibut ion 
functions. One can see from these figures tha t  (3.1) is much less concentra ted  
than  the Langevin dis tr ibut ion when A > 0.5 and may provide a be t t e r  fit to da t a  
with large dispersion. On the other  hand, when A < 0.5 the Langevin model  will 
provide an adequate  fit to (3.1) for most pract ical  purposes.  
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4. Inference in the DCU model 

Let Ai = Ip - X i X ( .  Differentiation of the likelihood function with respect 
to c yields the likelihood system 

Xi  v/1 - c ' A ~ c J  
(4.1) ( p -  1) ~ c 'Xi  + ~ - i - -  c~T~c 

i=1 

n A i c  _ 

I-J-A   i=1 

which must  be solved in c by iterations. Let ~ denotes the solution to (4.1). 
From s tandard asymptot ic  results on the behavior of MLE's  (see Lehmann (1983), 
Theorem 4.1), 

(4.2) nl/2(~ -- C) F.; .Np{0, ,.Z.-_I(e) } 
Tb--+ OO 

where Z(c)  stands for Fisher's information matrix. It is shown in the Appendix  
A.I that 

(4.3) 

with 

(4.4) 

and 

(4.5) 

z - l ( c )  = c71( ; , )oo '  + (p - 1 ) 4 , ; ( a ) ( I p  - oo')  

(p - 1) 
CI'p(/~) = 3p(p ~- 2)(1 - A 2) 

{ × A 2 ( P - 2 ) ( p + l ) ( 2 A 2 + p - 1 ) 2 F 1  2 ' 2 '  2 ' 

- ( p +  2)(2),4(p - 2) + )2(p _ 2 ) ( p +  1) - 3(p - 1)) 

x2F1 2, 2 '  2 

(p - 1) 
c2.p(),) - 3 p ( ;  + 2) 

x ( p + 2 ) ( a ( p - 1 )  2 - ) 2 ( p - 2 ) ) 2 F 1  2, 2 '  2 ' 

- A 2 ( p - 2 ) ( A  2 + 2 ( p - 1 ) ) z F 1  2 ,2 ,  2 ' " 

In par t i cu lar  if p = 2 we  h a v e  < 2 ( - ~ )  = ( 1 -  ; , 2 ) - 3 / ~ / 2  a . d  c~.2(~') = (1 - 
~2)--1/2/2. Now, the MLE's  ofA = Ilcll and 0 = c/[Ic[I are £ = [lell and 0 = ~/llall 
respectively. Thus from (4.2) and the delta theorem we get when e ¢ 0, 

(4.6) n l / 2 ( 0 - 0 )  n ~  £ ~ _Np {0, /~,P~)(P--1) (Ip - 00 ' )}  . 

Note that  c~,~(A) is positive and bounded away from zero for each A E [0, 1[ 
whereas ( p -  1)/(A2C2,p(A)) is positive and tends to +cx~ as A --+ 0. Thus when 
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A = 0 (i.e. c = 0), X has a uniform distr ibution over Sp and a test  of the null 
hypothesis H0 : e = 0 against H1 : c C Bp can be constructed using (4.2). We 

get tha t  under the null hypothesis nf : 'Z(0)h = n(p -  1)2(X2/p is asymptot ical ly 
2 distributed as a Xp. 

5. Goodness-of-fit test 

In this section, we propose a goodness-of-fit test for the DCU model. Let 
X 1 , . . . ,  Xn be a sample of directional vector on Sp. We are concerned with test- 
ing whether or not the sample has density (3.1) with c unknown. We will consider 
here alternatives of the form (2.2) with g~ being the density of a Langevin distri- 
bution with unknown parameters.  Other cases may be considered but  this choice 
is motivated by the fact tha t  the ensuing family of models contains the null distri- 
but ion when ~ = 0, and covers a wide range of density types (see Subsection 2.1). 

It is shown in the Appendix A.2 that ,  in this case, Rao's score test statistic 
(Rao (1973), p. 418) depends on the mean resultant length of the t ransformed 
directions 

~ri = Xi [c'Xi -4- V / 1 -  ]lcl[ 2 + ( c ' x i )  2] - c, i :  1 , . .  (5.1) A ~ n 

= 1 n where ~ denotes the MLE of c. Let Y ~ }-~-~=1 Y~- It is also shown in the 
Appendix A.2 tha t  under the null hypothesis 

(5.2) 

with 

(5.3) 

and 

(5.4) 

x A o ,  
I~ ----+ OC~ 

= + - 00') 

1 (pl,p(A) - 1) 2 
O ' l , p ( )  0 - -  p Cl ,p ( /~ )  

with pl,p(A) = ((1 - A2)/p)2FI(1, 3/2, (p + 2)/2, A2), while 

1 (p2,B(A) - ( p -  1)) 2 
(5.5) - 

; ( p -  1)c2,p( ) 

with P2,p(A) = ((p - 1)/p)2F1(1, 1/2, (p + 2)/2, A2). 
Thus the test  reject the null hypothesis for large values of the test  statistic 

(5.6) R2 : n ~ / E - l ( ~ )  

2 under the null model. which is asymptotical ly distr ibuted as a Xp 
Note tha t  E - I ( ~ )  in (5.6) can be replaced with any other consistent est imate 

of E - l ( c )  without  affecting its asymptot ic  behavior. Note also tha t  when the 
distribution of the sample is actually the null model, the t ransformed da ta  (5.1) 
should be nearly uniformly distr ibuted on Sp. This can be used to make a graphical 
assessment of the goodness of fit of the DCU model (see Section 7). 
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6. Modified DCU model (MDCU) 

The DCU model is not appropriate in situations where the underlying phe- 
nomenon generates directional data that  are restricted to a subset of the sphere. 
This set-up is common in the analysis of astrophysical data (Mardia and Edwards 
(1982)) where it may be of interest to verify whether the datum Y in (2.1) comes 
from a uniform distribution over a given subset of the sphere. 

Consider the case where Y is uniformly distributed on the girdle of Sp defined 
by Gp = {x E Sp l a < ~'x < b} for some axis ~. Then X in (2.1) is distributed 
according to what we call a modified DCU model (MDCU) that  has density 

1 
(6.1) f ( x ; c , ~ , a , b ) - c p ( a , b ) O ( x ; c ) I ( a < ~ / z ( x ; c ) < b ) d w  p 

Farcsin(b) cos(O)P-2dO and I(.) denotes the indicator function with Cp(a, b) = Wp_l Jarcsin(a) 
and z(.; c) is defined in (2.3). 

We will assume a, b and ~ known, so that  the MLE of c is still taken as 
a solution to (4.1), provided the resulting transformed directions of (5.1) all lie 
within @.  In this case, we have that  

(6.2) n l / 2 ( ~ -  c) £) Np{O,D- I ( e ) }  

where D(c)  is given in the Appendix A.3 and when the MDCU model holds, 

(6.3) n 1/2Y ~:~ Np{O,A(c)}. 
n - - ~  O 0  

Thus the goodness-of-fit test developed in Section 5 can still be used, provided we 
supply a consistent estimator, .~ say, of A(c) under the MDCU model. This is done 

in the Appendix A.3. Finally we obtain the Rao's score statistic,/~2 = n ~ , ~ - 1  ~ ,  
2 distribution. which is to be compared to the appropriate quantile of a Xp 

7. Example 

Fisher et al. (1987) (data set B3) have digitized the arrival directions of 148 low 
mu showers of cosmic rays (Bolivian Air Shower Joint Experiment) from Toyoda 
et al. (1965). A simple analysis of this data set leads the first authors to accept 
the hypothesis of rotational symmetry. Moreover an equal-area projection of the 
data directions, Fig. 3(a), suggests that  the distribution is of girdle type. 

On the other hand, Toyoda et al. (1965) and also Kiraly et al. (1979) noticed 
that  in the range of energy of the particles considered here, these rays may be 
supposed of a galactic origin. The fact that  the galactic plane does not cover the 
sphere totally, as we see it in the equatorial plane, must be taken into account. 
Indeed, from astronomical considerations described in Kiraly et al. (1979), we may 
be brought to hypothesize that  the original vector Y is uniformly distributed over 
the subset of the sphere not containing declinations above 65 ° and below -65  ° . 
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a) b) 

South 

Fig. 3. Equal-area projection of a) the original data and b) the transformed data (5.1) 
along the polar axis for the two hemispheres. 

T h a t  is, from the  physical context  of the experiment ,  we may want to test  whether  
the da t a  are dis t r ibuted according to a MDCU model  with b = - a  = sin(65 °) and 

= (0, 0, 1)'. 

For this da t a  set, the  solution to (4.1) is ~ = ( -0 .116  0.026 -0 .414) '  wi th  
IlaH = 0.43. The  resulting t ransformed directions in (5.1) all lie in Gp. Thus,  ~ is 
the MLE of c which, using (6.2), can be declared significantly different from 0 since 
n~'D(O)~ = 30.85 > X~(1%) -- 11.35. If our model  is correct,  the t ransformed 
da ta  in (5.1) should be nearly uniformly dis t r ibuted on Gp, which seems plausible 
in view of an equal-area project ion of the t ransformed points, Fig. 3(b). However, 
a Q-Q plot (Fig. 4) suggests tha t  there  remains a little excess of observations in 
a direction tha t  correspond to the Virgo cluster. This  fact was also noticed by 
Toyoda  et al. (1965). We require a test  to conclude if this excess is stat ist ically 
significant. The  goodness-of-fit test  of Section 6 can be used. We obtain  the 
est imate  

0.040 -0 .026  0.021] 
= -0 .026  0.045 - 0 . 0 3 7 |  

0.021 -0 .0 3 7  0.152 J 

so tha t  the modified Rao's  score statist ic ~2 = 5.875 < X~(5%). Thus  we do not  
reject the hypothesis  of a MDCU model at the 5% level. 

An al ternat ive approach for modeling the arrival directions of cosmic rays has 
been proposed by Mardia  and Edwards  (1982). Th ey  suggest the use of weighted 
distr ibutions assuming uniform ro ta t ion  of an off-center cap along a line of con- 
s tant  colati tude. Applying their  model  (3.2) to  this da ta  set leads to a likelihood 
condit ional equat ion tha t  numerical ly yields two dist inct  sets of MLE. One of them 
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Fig. 4. Q-Q plots of the quantiles for the transformed data (5.1) versus the correspond- 
ing theoretical quantiles of the MDCU model in a) declination and b) right ascension. 
(The arrow indicates the position of the Virgo cluster in the new coordinates.) 

corresponds to a girdle distribution with axis (82.16 °, 44.84 °) in colatitude and 
right ascension, while the other is bipolar about the axis (96.97 °, 133.07 °) which 
is almost perpendicular to the first one. The value of the (conditional) likelihood 
ratio statistic for testing their null hypothesis of a "weighted" uniform distribution 
is 6.12 compared with X32 (5~0) -- 7.81. Here, the null hypothesis essentially states 
that the longitudes are uniformly distributed. The fact that we do not reject this 
hypothesis agrees with Toyoda et al.'s (1965) empirical finding. It is also coherent 
with the goodness of fit result of the MDCU model. Indeed fi being very close to 
the south pole axis, the longitudes of the data points transformed through (5.1) 
are very close to the longitudes of the original data. It is therefore not surprising 
to find that the original longitudes are uniform since the MDCU model calls for 
uniformity of the transformed longitudes. The MDCU model is appealing here 
since the behavior of the colatitudes is not arbitrary and naturally arises from the 
context of the experiment. 
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Appendix 

A.1 Computation of the Fisher's information matrix for the DCU model 
Let L(x; c) = [O/Oc~ log(f(x;  c))]pxl with f ( z ;  c) as in (3.1). It is easy to 

verify that  ElL(X;  c)] = 0 for each c in Bp, and then 27(c) = ElL(X;  c)L(X; c)']. 
But X has the same distribution as ( Y  + c)/ll Y +cll, when Y is uniformly 
distributed on Sp. Making this substitution in L(X; c) we obtain 

(A.1.1) L ( ( Y  + ~)/ll Y + ~11; c) 
Y (c' Y + c'c) c 

= (p - 1 )  (l + c, y )  ( 1 + c ' Y ) 2  Y + ( I + c ' Y )  

= {(p 2 ) ( 1 + c ' Y ) + ( 1  c ' C ) } y +  
(1 + c 'Y)2 (1 + c ' Y ) '  

If c = A0, with A E [0, 1[ and 0 E Sp, then U = Y'O has density given in Watson 
((1983), p. 45). Hence writing Y = UO+(1-U2)I/2~p_ 1 with ~p-1 being uniformly 
distributed over the sphere orthogonal to 0 and independent of U, we get 

(A.1.2) Z(c) = E [ { ( p -  2 ) (1+  AU) + (1 - A2)}2U2/(1+ AU)4]O0 ' 
+ E[{(p--  2)(1 + AU) + (1 - A2)}2(1 - U2)/(1 + AU) 4] 

! 
X J~[~p-- 1~;-- 1]" 

But 

(A.1.3) E[{(p  - 2)(1 + AU) + (1 - A2)}2U2/(1 ÷/~U) 4] 
= (p - z ) ~ E [ u 2 / ( 1  + A u )  ~] 

+ 2(p - 2)(1 - A2)E[U2/(1 + AU) 3] 

+ (1 - A2)2E[uS/(1 + AU)4]. 

Using the integral formula for the Gauss hypergeometric function (Abramowitz 
and Stegun (1965)) we obtain 

(A.1.4) E [ ~ / ( I +  ;~U) ~] 

/ _ cup-x ~2(1 _ u2)(p_3~/2/(1 + a~)2a~ 
CUp 1 

/0 - cuP-12  (1 + ~ 2 u 2 ) ~ 2 ( 1  - ~ 2 ) ( P - 3 / / 2 / ( 1  - ~ 2 u 2 ) 2 d ~  
CUp 

1 
= -2F~ (2, 3/2, (p + 2)/2, A~) 

P 
3A 2 

+ p(p+ 2) 2F1(2' 5/2' (p + 4)/2, A2). 

The same approach yields the other terms. Then, using identities connecting 
the hypergeometric functions (Abramowitz and Stegun (1965), Chapter  15), the 
simplified expressions Cl,p(.) and c2,p(.) in (4.4) and (4.5) follow. 



584 B E R N A R D  B O U L E R I C E  AND GILLES R. D U C H A R M E  

A.2 Rao's score test for the DCU model 
Let XI~ . . .  ~ Xn be a sample of random directions having density of the form 

(2.2) with g,(y)  : e"'Y/ap(][p[I) ~ the Langevin density with parameter  p C T~ p. 
Then the null hypothesis of Section 5 is just  p : 0. Let 

0 
(A.2.1) [Ue(X)]u~(x) : occl°g(f~(X;c))0  

U~ l o g ( f . ( X ;  c)) 

Then Rao's  score statistic (Rao (1973)) for testing # = 0 against the composite  
hypothesis  # E T~; is given by/~2 = V, ,Z , -1  V*, where 

(A.2.2)  

and 

(A.2.3) 

v. 1 [o  I 

[ u~(xl) u~(xl)' 
T = E Uc(XJ U.(X~)' 

: r~(~) pip ' 

with Z(c) given by (4.3). A little algebra yields 

Ue(X1)UIz(X1)' I /~=o,c=~ 
u.(xl) u,(x,)'] 

(A.2.4) E12(c) = (pl,p(l) - 1)00' + (p2,p(A) - (p - (p - 1) 1)) (Ip - 00') 

where pl,p(A) and p2,p(A) are given in (5.4) and (5.5). The results of Section 5 
then follow easily. 

A.3 Consistent estimation of A(c) for the modified DCU model 
Let { Yi, i = 1 , . . . ,  n} be independent  and uniformly distr ibuted over Gp, so 

the X~ = ( Yi + c)/[[ Yi + c[l, i = 1 , . . . ,  n are dis tr ibuted according to the M D C U  
model of Section 6. Then, using a first order Taylor:s expansion, we get 

(A.3.1) = ~ - B ( c ) ( ~  - ~) + op( t la  - ~ll), 

where 

(A.3.2) 
n 

~ ( z ~  + ~ ) Y ' / ( 1  + c ' z ~ )  
i=1 

which converges in probabil i ty to 

(A.3.3)  B ( ~ )  = X,~ - Z[(  Y~ + ~) r;/(1 + ~' z~)] .  

Thus we may write 

(A.3.4) 9 ---- Y - B ( c ) ( a -  c) + op(l la  - c [ I ) -  
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Then, we may show, using the implicit function theorem, that a as a solution to 
the system (4.1) can be written as 

(A.3.5) (b~ - c) = D(c) -1-1 ~ Wi(c) 4- o~(lla - ~11) 
n 

i = 1  

with 

(A.3.6) 

and 

(A.3.7) 

g~ llY~ 4- cll ( Y~ Jr c) 
W~(c)=(p-1)(l_Fc, Yi ) Yi( 4-c, yi)2-F (l_Fc, Y{) 

D(c)  = Var[ W1 (c)]. 

Combining (A.3.4) and (A.3.5) yields 

(A.3.8) 
n 

~z = 1 E (  yi  _ B ( c ) D ( c ) _  1Wi(c)) 4- o~(il~ - ell). 
i=1 

It is clear then, that 

(A.3.9) 771/2 ~r £;> Np{O,A(c)} 
7~- -+  OO 

with 

A.3.10) A(c) = Var[Y]] + B ( c ) D ( c ) - l B ( c )  ' 

- -  Coy[Y1, WI(C)]D(c ) - IB(c )  t 

- B ( c ) D ( c )  -1 Cov[Y1, Wl(C)]. 

Now when Y1 is uniformly distributed on Sp, (A.3.10) simplifies to (5.3). But 
in the case where Y1 is uniformly distributed over Op, specified in Section 6, we 
have 

(A.3.11) 
E [ 1  - T 2] 

Var[ Y1] = Var[T]uu' + (Ip - uu') 
p 1 

where T has density f ( t)  = Wp_l(1 -t2)(P-a)/2/cp(a,  b) if t E [a, b]. 
Let I~i(a) be as in equation (A.3.6) with Yi and e replaced by Yi and ~. 

Then, consistent estimators of B(c) ,  D(c)  and CoylY1, Wl(e)] are given by 

(A.3.12) 

(A.3.13) 

and 

7~ 

/=1 

b(a) = -i ~ 0(~(a) eel(a)' 
n 

i = 1  
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n 

(A.3.14) S = n ~ t Wi(~)' 
i : 1  

respectively. Replacing these estimators in (A.3.10), we get a consistent estimator 
of A(c). 
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