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A b s t r a c t .  A nonparametric estimator of the distribution function G of a 
random sum of independent identically distributed random variables, with dis- 
tribution function F, is proposed in the case where the distribution of the 
number of summands is known and a random sample from F is available. This 
estimator is found by evaluating the functional that  maps F onto G at the em- 
pirical distribution function based on the random sample. Strong consistency 
and asymptotic normality of the resulting estimator in a suitable function space 
are established using appropriate continuity and differentiability results for the 
functional. Bootstrap confidence bands are also obtained. Applications to the 
aggregate claims distribution function and to the probability of ruin in the 
Poisson risk model are presented. 
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1. Introduction 

C o m p o u n d  dis t r ibut ions arise as quant i t ies  of interest  in insurance m a t h e m a t -  
ics, as well as in o ther  areas of applied probabil i ty.  Before giving an i l lustrat ion 
f rom insurance,  we give a descript ion of the general  set-up and  int roduce no ta t ion  
to be  used throughout .  Let  {Xi}i~l  be independent  and identically d is t r ibuted  
r a n d o m  variables wi th  d is t r ibut ion function F ,  defined on a probabi l i ty  space 
(~,  $-, P ) ,  and let N be a r a n d o m  variable,  defined on the  same probabi l i ty  space, 
independent  of {Xi}i~l ,  and tak ing  values in No = {0, 1, 2 , . . . } .  Let  p = (Pk)keNo 
be given by pk = P ( N  = k), so t ha t  p specifies the  d is t r ibut ion of N .  Wri te  

N 
S = }-~-i=1 Xi  when N is positive, and define S to be zero when N is zero. Then  
S, a r a n d o m  sum, has a com pound  dis t r ibut ion with  d is t r ibut ion funct ion 

(1.1) G(x)  = ~--~pkF*k(x), 
k=0 

p where for k > 1, F*k(x)  = ( ~ i = l X i  <_ x) is the k-fold convolut ion of F ,  
and  F*°(x)  = I[0,o~)(x) (where I[0,~) is the  indicator  funct ion of the set [0, ec)).  
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Observe that we do not require F to be concentrated on [0, oc), although in many 
applications F(0) is zero. 

We give an example from insurance mathematics. Claims arrive at an insur- 
ance company, and the number of claims arriving in the period (0, t] is a random 
variable N(t). Let Xi be the size of the i-th claim. Assume that  successive claim 
sizes are independent identically distributed random variables with distribution 
function F1, and that  the claim sizes are independent of N(t). In this context 
one quantity of interest is the distribution of the total claim amount during (0, l]. 
Writing Pk for the probability that  there are k claims in this period, we see that  
the total claim amount is a random variable having a compound distribution with 
distribution function G given by (1.1) with F equal to F1. 

In this paper we concentrate on the statistical problem of estimating G when 
F is unknown but p is known. We suppose that  we have a random sample of ob- 
servations on F. We establish asymptotic properties of a particular nonparametric 
estimator of G. We take a functional view of the stochastic model, as in Griibel 
(1989), and the estimator is defined in terms of the relevant functional as in Gr/ibel 
and Pitts (1993). This means that we consider the functional that maps the input 
distribution function F onto the output distribution function G. By analogy with 
a procedure often followed in a parametric context, the estimator is constructed by 
evaluating the functional at a nonparametric estimator of the input distribution 
function based on the random sample from F. The particular input distribution 
function estimator considered here is the empirical distribution function. Statis- 
tical properties of the output estimator are then proved by combining statistical 
properties of the input estimator with analytical properties of the functional itself. 
The method by which the input properties are combined with the analytical prop- 
erties of the functional to obtain strong consistency, asymptotic normality and 
asymptotic validity of bootstrap confidence bands is well known (see Gill (1989)). 
However application of these methods to a specific situation requires a detailed 
analysis of local properties of the particular functional in question. This we do in 
the present paper for the compound distribution functional. 

The compound distribution function does not have an easy explicit form except 
for certain special cases for the input distribution function and for p, for example 
if F is exponential and p is geometric. Much attention in the literature has been 
concerned with approximations, as in, for example, Embrechts el al. (1985a) and 
yon Chossy and Rappl (1983). In the insurance context, the tail of the compound 
distribution function is of interest and so several papers deal with the asymptotic 
behaviour of this quantity, see for example Embrechts el al. (1985b) and Willekens 
(1989). Csgrg5 and Teugels (1990) consider nonparametric estimation of an ap- 
proximation to the asymptotic behaviour of the tail of a compound distribution 
function, i.e., to 1 - G(x) for fixed x, given a random sample of the claim sizes 
and assuming p is known. They obtain consistency and asymptotic normality of 
their estimators. 

A second important example from insurance mathematics is the probability 
of ruin in the classical Poisson risk model. With notation as introduced for the 
total claim amount above, let p = /~#/c where # is E(XI), c is the premium 
rate (so that the premium income in (0, t] is ct), and the claims are assumed to 
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arrive in a Poisson process rate )~. We assume that  the (relative) safety loading 
= lip - 1 is positive so that  the expected amount claimed per unit time is less 

than the premium income per unit time. The probability R(z) of no eventual ruin, 
starting with initial capital x > 0, is given by the right hand side of (1.1) with 
Pk = (1 - p)pk, k E No, and F(x) = ( l /p)  f0x(1 - Fl(y))dy (see Embrechts and 
Veraverbeke (1982)), and is thus seen to fall into the general framework considered 
here. Nonparametric estimation of the probability of ruin in this classical risk 
model is studied in Croux and Veraverbeke (1990). They estimate F*k(x) by a 
U-statistic and then calculate a finite sum approximation to (1.1), using ideas 
from Frees (1986b). Frees (1986a) proves consistency of finite and infinite time 
horizon ruin probability estimators obtained by sample re-use methods. Both Frees 
(1986a) and Croux and Veraverbeke (1990) estimate 1 - R ( x )  for a fixed value of x. 
Hipp (1989) takes a functional approach in discussing nonparametric estimators 
of quantities such as 1 - R(x), defined in the same way as the estimators in this 
paper, as the output of a functional when the input is the empirical distribution 
function. However we go beyond estimation of 1 - R(x) for a single x to consider 
nonparametric estimation of the curve I[0,~) - R. 

To this end, we estimate the compound distribution function as an element of 
a suitable function space and we regard the compound distribution functional as 
a map between function spaces. Section 2 gives definitions of the relevant spaces 
and collects various properties linking the topology and convolution. The choice 
of topology is closely related to the form of the bootstrap confidence region for the 
unknown compound distribution function. We aim to obtain non-constant width, 
rather than constant width, bootstrap confidence bands, since the former may well 
be more useful for the tails of distribution functions and interest in insurance often 
focuses on distribution tails. The weighted function spaces introduced in Section 
2 provide one setting in which this aim can be achieved. These spaces are those 
considered in Grfibel and Pitts (1993). In Section 3 we obtain a continuity result 
for the functional and combine this with an appropriate strong consistency result 
for the input estimator to derive a strong consistency result, Theorem 3.1, for the 
output estimator. In Section 4 we prove an asymptotic normality result, Theorem 
4.1, for our estimator in terms of convergence in distribution to a Gaussian process, 
and in Theorem 4.2, we show that  bootstrap (simultaneous) confidence bands give 
asymptotically correct coverage probabilities. Both these results depend on a 
differentiability result for the functional, proved in Proposition 4.1. In Section 5 
we build on the results of earlier sections to obtain corresponding results for the 
probability of ruin in a classical Poisson risk model, and we give examples. We 
also discuss the case where p is unknown. The approach throughout this paper is 
that  of Griibel and Pitts (1993). 

2. Definitions 

A more careful description of the compound distribution functional involves 
definition of the spaces forming its domain and codomain. We need these spaces 
to include distribution functions, and it is natural to consider the space Doo of 
all real-valued functions f on [-0% eel that  are right-continuous with left-hand 
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limits, and left-continuous at +oo. Let 

]Ifl]c~ = sup If(x)], 
x~[-~,~] 

then (D~,  II' II~) is a Banach space. A function f : R -+ R with finite limits 
at +oe can be extended to an element of D ~  by defining f (+cc )  = l imx+~ f (x )  
and f ( - e c )  = limx-~_~o f (x) .  We write f for both the original and the extended 
function. 

This space provides one setting for the continuity and differentiability of the 
functional. Such results are straightforward to prove and yield for our estimator 
strong H Ho~-consistency and asymptotic normality in terms of convergence in 
distribution to a Gaussian process in D~ .  We would also obtain a theoretical 
justification for a constant width bootstrap confidence band. However, as noted 
above, we wish to explore the possibility of obtaining a non-constant width band 
through the use of weighted spaces of functions. 

For/3 in R and a function f mapping R to R, let 

(T~f)(x) = (1 + ]xDZf(x). 

We define DZ to be the set of all functions f : R ~ R such that  T z f  is extendable 
to an element of D~ .  For f in D5 let ][f]l~ -- ]]T~I]I~. Then (On, l]" ]15) is a 
(nonseparable) Banach space. Note that  D ~  = Do. The requirement that  T z f  
is extendable to an element of D ~  means that T z f  : R --~ R is right-continuous 
with left-hand limits, with finite limits at +co. For such an f we have supx(1 + 
Ix])5]f(x)] < oe. On occasion we deal with functions f that, while not in OH, 
still have T h f  bounded. We write ]tf]]z for supx ](ThI)(x)] in this case. For a 
given distribution function F,  let Cz(F) be the set of all elements of D z that  are 
continuous at continuity points of F.  We note that  Ca(F ) is a separable subspace 
of D~. Below we collect elementary properties of Dp-spaces for future reference. 

It is easily checked that if F is a distribution function and/3 > 0 then 

(2.1) []I[o,¢¢) - Film _< f ( 1  + Ixl)ZF(dx). 

The following lemma relates convergence in D~-spaces to convergence of moments, 
using Theorem 8.1.2 of Chow and Teicher (1988). 

LEMMA 2.1. Let c~' > 0 and 0 < c~ < E .  Let { Fn }ncN and F be distribution 
functions with I[0,~) - F~ and I[0,~) - F in D~, for all n, and IIf  - fll , -~ 0 
as n ~ co. Then, as n ~ co, 

/ ]x]~Fn(dx) ~ / lxl~F(dx) and 

f (1 + Ixl) Fn(dx)-  /(1 + 

We now consider when the output distribution function G satisfies I[o,~) - G 
k 

is in DZ for ,~ > 0. We begin by collecting results for the moments of Y]i=l Xi 
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and for I [ 1 [ 0 , ~ )  - F * k ] l ~  . For random variables X and Y, and for/3 > 0, we have 
(see, for example, Grimmett and Stirzaker ((1982), Theorem 7.3.7)) 

(2.2) E(IX + YI ~) < (2 ~-1 v 1)(E(IX[ ~) + E(IYI~)), 

where :cVy is the maximum of x and y. As an application of Minkowski's inequality 
for/3 >_ 1 and of (2.2) for 0 </3 < 1, we have, for {Xi} independent and identically 
distributed with distribution function F and/3 k 0, 

(2.3) E Xi _< k~VlE(IXII3). 

For future reference we note that, from (2.1), (2.2) and (2.3), for/3 > 0, 

< 

We obtain from (2.3). 

LEMMA 2.2. Let/3 > O. Assume that 

O 0  

f lx]~F(dx) < co and E k~Vlpk < co" 
k=0 

Then, for G = Y~,k~=oPkF *k, f IxlZG(dx) < co. 

Writing Op for the functional that maps a distribution function F onto 
Eoo F.~ ~p(F) k=oPk , we see that, under the conditions of Lemma 2.2, I[0,oo) - 
is in D~. 

For measurability purposes we give D~ its open ball (projection) a-field. If 
{Yn} and Y are random elements of D~ then we say that Y~ converges in distri- 
bution to Y in D~, and write Yn --~a Y in D~ as n -+ co, if E(f(Y=)) --+ E( f (Y ) )  
as n --+ co for all bounded, continuous, measurable f that  map D/3 to R. We 
write X =d Y if random elements X and Y of D/~ have the same distribution. See 
Pollard ((1984), Chapter IV) for further details of these notions for convergence 
in distribution in nonseparable metric spaces. 

The nonparametric estimator of the input distribution function is the empirical 
distribution function i/'~, based on a random sample X I , . . . ,  X~ from F,  where, 
for x in R and aJ in fl, 

K(x,~)  = ~ ±(_~,<(x~(~)). 
i=1 

Our estimator of the output compound distribution function is then 

O O  

k=0 
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i.e., 0n = ~p(Fn). It is easy to check that I[0,oo)(x) -0 ,~(x , - )  is a random variable 

for each x, and so I[0,~) - Gn is a random element of DZ. 
Since our functional involves convolutions, and since we wish to prove conti- 

nuity and differentiability results for this functional in D,-spaces, we investigate 
the II' II, -norms of convolutions. Let H be a nonnegative and nondecreasing func- 
tion from R to R so that the Lebesgue-Stieltjes measure l] H can be defined by 
Z/H((a, b]) = H(b) - H ( a ) ,  a < b. Suppose that f is a real-valued function on 
R such that f ( x -  .) is integrable with respect to /"H for all x in R. Then the 
convolution f ,  H is defined by f * H(x)  = f f ( x  - y)H(dy), x in R.  

LEMMA 2.3. Let/3 > O. Then 

I I f *  HI I .  2"llfll .  (ll40,oo)lIHll o - HI I .  ÷ ilHli ) • 

PROOF. For x in R,  

(1 + IxJ)"lf~H(x)l 

_< (1 + Ixl)" ~ ,x /2 j  /2 ,~> 

For x ~ 0 this is at most 

( 1 +  Ix])" ( sup $f(y)[HHN~o + tlfl]~o(llHN~ - H(x/2))~  
\y>x/2 / 

_< 2"[[f[]. ([[gH~ + [lI[o,~)HH[[~ - g [ ] . )  . 

Using similar arguments for x < 0 we obtain the result. [] 

Observe that this lemma gives conditions for the existence of f * H(x).  We 
shall also need the following lemma, which is proved using similar techniques to 
those employed in the proof of Lemma 2.3. 

LEMMA 2.4. Let/3 > O. Let F and G be distribution functions with I[0,m) - F  
and I{0,~) - G in D , .  Then 

II/[o,~) - F * GI[ a < 2"(N/ [o ,~ )  - Film + II/[o,~) - CII . ) .  

We shall need the following applications of these two lemmas for distribution 
functions {Fn}n~N and F with I [0 ,~)-Fn and I [ 0 , ~ ) - F  in D, ,  and NF~-FII,,  ~ 0 

k-1 F , (k - l - i )  F. i ,  as n ~  ec, where/3t > /3_> 0. For k i n  N ,  write Hn,k = ~-~-~=0 n * 
and let f be in D , .  Write c1(/3) for 2" and c2(/3) for 2 " - t  V 1. Then by Lemma 
2.3 

IIf * ( f ~  ( k - l - i )  ,.k F *i) 119 
~< c~(~)[Ifll~(1 + IIS[o,oo) - F ~  ( k - l - i )  * F*~II~), 
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so that  by (2.1) and Lemma 2.1, for all n large enough, 

(2.5) I I f , H ~ , k l l ~ < _ k c l ( 3 ) l l f L l ~  1 +  2 ( l + l x l ) ~ F ( d x )  . 

From Lemma 2.4 we also have 

IIf * (F~ *(~-1-i) * F*i)ll~ 

_< e l ( 3 )  l l f l b ( 1  + Cl(/3)(llZ[o,~o) - F~*(k-~-~) 119 + IIII0,~) - F* i l l~ ) ) ,  

so that,  by (2.4) and Lemma 2.1, 

(2.6) Ilf * H~,k I[~ 

<_kcl(/3),,f,,z (1 + 2c1(/3)c2(/3)(1 + 2(k-1)~'~/I<@(d@), 

for all n large enough. 

. 
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Continuity and consistency 

We are now in a position to prove the continuity of the functional ~p. 

PROPOSITION 3.1. Let /3' > /3 >_ O. Let {Fn}nC N and F be distribution 
functions with 

f i x i tY(&)  < oo, 

IlFn - FIIz ,  ~ o as  

Let p = (Pk)keNo satisfy ~k=l  kZVlPk < oo. Then 

PROOF. 

(3.1) 

IxlZFn(dx) < oc for n e N 

f t - - +  CX). 

{l~p(F~)  - ~ ( F ) { } ~  --+ 0 as  n -+ oo.  

and 

By Lemma 2.2 Op(F~) - 42p(F) is in D~. For any M in N ,  we have 

E Pkl]I[°, ~) - F*k]]Z 
k > M  

+ ~ PklIZEo,~)- y*~ll~ 
k>M 

M 

+ ~ p k l l Y  *k - f*kll~. 
k=O 

By (2.4) the first term is at most 

c2(/3) ,k>~,  ( ~ pk + / [xI~F(dx)  k>M ~ k~VlPk) ' 
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and the second term is at most 

(3.2) "2(') \k.M(E Pk-~ /" 'Xl'1~n('x) k.ME k/3Vlp/c) " 
By Lemma 2.1, for n large enough, (3.2) is at most 

and so, for n large enough, each of the first two terms can be made arbitrari ly 
small by taking M large enough. For the third term on the right hand side of (3.1) 
we have F~ *k - F *k = (F~ - F)  * H~,k where H~,k is defined at the end of Section 
2. By (2.5), for all n large enough, the third term is bounded by 

el(/3)IIF - FII  kpk (1 
k<_M 

and this is at most 

+ 2 ( 1 +  [xDZF(dx) , 

eI(/3)IIFn-FII,M'(I+(2/(I+lx,)'F(dx))M-I). 
This can be made arbitrarily small for fixed M by taking n large enough. [] 

To obtain a strong consistency result for our estimator, we combine this con- 
tinuity result for the functional with a strong consistency result for the input 
estimator. This is given next. 

LEMMA 3.1. Let {Xi} i~  N be independent identically distributed random vari- 
ables with distribution function F. Let Fn be the empirical distribution function 
based on X1, . . . ,  Xn. Then, for c~ > 0, 

E(IX~] ~) < oc ~ []Fn - FI]a ~ 0 as n -* oc, 

with probability one. 

This is a weighted Glivenko-Cantelli result, and appears as Proposit ion 3.7 
in Griibel and Pi t ts  (1993). It is proved by rescaling by F the corresponding 
result (see Shorack and Wellner ((1986), 10.2)) for random variables uniformly 
distr ibuted on (0, 1). Proposit ion 

THEOREM 3.1. Let /3~ > /3 
distributed random variables with 

/ 

3.1 and Lemma 3.1 together give 

>_ O. Let {X~}icN be independent identically 
distribution function F satisfying 

IxlS F(dx) < ~ .  

Let p = (Pk)keNo satisfy ~k~_l kZVlpk < oo. Then with probability one 
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4. Differentiability and asymptotic normality 

The  derivative of the functional  involves the quant i ty  H = Ek°°= l  kpkF *(k-l).  
Write  mp for ~k~__l kpk. The  next  lemma follows easily using (2.4). 

LEMMA 4.1. L e t ~  > O. Assume that ~k~=l k(l+Z)V2pk < oc and f IxlZF(dx) 
< co. Then 

l lmpS[o,~)  - H I I ~  < ~ .  

LEMMA 4.2. Let a t > c~ >_ 0 and G > O. Suppose that g is in D~,. Then there 
exists gl, a linear combination of indicator functions of the form I[~,b), --oc < a < 
b < oo, such that Ilg - gll]~ < s. 

This is similar to  Lemma  3.12 in Griibel and Pi t t s  (1993). 

LEMMA 4.3. Let o~ > 0 and let gi be a linear combination of indicator func- 
tions of the form I[~,b), --oc < a < b < oo. Then there exists a constant c(c~,gl) 
such that, for distribution functions F and {F~}~cN with IIF~ - FII~ < oo for all 
ft~ 

IIg~ . F .  - g~ * F I I ~  ___ ~(~ ,  gz ) l lF .  - FII~. 

PROOF. We have 

(1 + Ix l )~ l±i~ ,b) .  F . ( x )  - Iio,b ) * F ( x ) l  

< (1 + Ixl)~(IF~(x - a )  - F ( x  - a) l  + I F ~ ( x  - b) - F(x  - b)l) 

_< ((1 + lal) ~ + (1 + Ibl)~)llF~ - FI I . .  

The  result now follows on using the tr iangle inequality. [] 

PROPOSITION 4.1. 

functions with 
Let /Y > /3 >_ O. Let F and {F~,}ncN be distribution 

f ]x]ZF(dx) / [ x [ Z F n ( d x )  < for all in N ,  
f 

< o o  ~ o o  n 

v ~ ( F n  - F )  - ~  g a s  n - - +  oo  i n D . , ,  

where g E D~,. Let p = (Pk)keNo satisfy ~k~=l k(l+Z)V2pk < oo. Then 

]lv/-~(aSp(F~) - ~ p ( F ) )  - g ,  g]]fi ~ 0 as n ~ c~. 

PROOF. 

and 

By Lemmas 2.3 and 4.1 we have tha t  Hg * HI[z < oc and so 

Hv/n(Op(Fn) - #pp(F)) - g *  H]]~ < oc. 
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Observe that  

(4.1) H v/-~(<I,p(F~) - ~ p ( F ) )  - g .  HII~ 

M H n , k  + k~=pk(v~(r~ - F) - g)* 

+ k =~pk(g*Hn'k- kg*F*(k-1)) /3" 

For the first term on the right hand side of (4.1), by (2.6) we have 

p k l l v ~ ( &  - F )  * Hn,~tl~ 
k>M 

< Cl(~)(Jlgll~ + 1) 

"k~>Mkpk (1 + 2C1(/3)C2(/3)(1 + 2 ( k - 1 ) ~ V l / I x l ~ F ( d x ) ) ) ,  

for all n large enough, and this can be made arbitrarily small by taking M large 
enough. 

By Lemma 2.3 and (2.4), the second term on the right hand side of (4.1) is at 
most 

Cl(/~)IIgl'/3 k~>M (1 + C2(/3)(1 + ( k - 1 ) Z V l / ' x ' ; ~ F ( d x ) ) ) ,  

and this can be made arbitrarily small by taking M large enough. 
For fixed M, using (2.5), we have that  the third term on the right hand side 

of (4.1) tends to zero as n tends to infinity. 
For the fourth term, consider first 

g * F ~ ( k - t - i )  . F *i _ g * F*(k-1) .  

Write Jn for Fr~ (k-I-i)  *F *i and J for F *(k-l). Using Lemma 4.2 we can find gz, 
a linear combination of indicator functions of the form I[a,b), --ec < a < b < oc, 
with lit - gt]lz arbitrarily small. Then, by Lemmas 2.3 and 4.3, we have 

(4.2) ]lg. J n - g .  Jllz <Cl(/3)llg-glllz(llI[o,~)- Jnllz+ l) 
+ Cl(Z)llg - g~ l l~ ( l l± [o ,~ / -  JIIz + 1) 

+ c(Z, g~)II& - JIt~- 

Put t ing H~,o(X) = 0 for all x, we see that  

IIJ~ - orl[/3 = II(F~ - F) *H,~,k-l-i * F*i]]~. 
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Using Lemma 2.3, (2.4) and (2.5), we have 

II& - JIl~ 

<__c~(/3) U F n - F U ~ ( k - l - i )  ( 1 + ( 2 / ( 1  

× (1+c2(~) ( l + i ~ V l / l x l ~ F ( d x ) ) )  . 

+ ]xl)~F(dx)) k -2- i )  

Hence for 0 < i < k <_ M, IlJn - Jll9 tends to zero as n tends to infinity. This 
implies that HI[0,~) - J~[]~ -< 211I[0, ) - JIIz  for all n large enough. Thus we can 
make IIg * & - g * JIl  arbitrarily small by first choosing g~ close enough to g in 
DZ so that for all n large enough, the first two terms on the right hand side of 
(4.2) are small, and then taking n sufficiently large so that the third term is also 
small. This implies that, for fixed M, the fourth term on the right hand side of 
(4.1) can be made arbitrarily small by taking n large enough, and the assertion of 
the proposition then follows. [] 

Observe that g*H(x) tends to zero as x tends to +oc. The above proposition 
gives an explicit form for the derivative q~p,Y of the functional ~p at F along 

! certain curves of distribution functions; ~p,F(g) = g * H. 
The asymptotic normality of the input estimator is given in the following 

lemma. Let B be a standard Brownian bridge. We write B o F for the process 
given by B o F(x, w) = B(F(x),  w). We call B o F a Brownian bridge rescaled by 
F.  

LEMMA 4.4. Let 7 > O. Let {Xi}i~N be independent identically distributed 
random variables with distribution function F, satisfying 

/ Ixl~F(dx) < oc. 

Then for every/~ such that 0 < • < 7/2, 

v/n(Fn - F) ---+d B o F as n ---+ ~c in DZ. 

This is obtained by rescaling by F the corresponding result (Shorack and 
Wellner ((1986), 3.7.1)) for random variables uniformly distributed on (0, 1), and 
appears as Proposition 3.8 in Griibel and Pitts (1993). 

The last two results are combined using the delta method as explained in Gill 
(1989) to obtain asymptotic normality of our output estimator. 

THEOREM 4.1. Let /~ > ~ > O. Let {Xi}icN be independent identically 
distributed random variables with distribution function F satisfying 

f jxl2YF(dx) < ~. 
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Let  p = (Pk)keNo sat is fy  ~k°°__l k(l+Z)V2pk < oo. Then  

v/n(q~p(Fn) - q~p(F)) ---~d Z as n ~ oc 

where Z is a Gauss ian  process wi th  zero means  and 

cov(Zs, z 0  = ff F[(s  - x) 

in DZ,  

A (t - y ) ] H ( d x ) H ( d y )  - F .  H ( s ) F .  H ( t ) .  

PROOF. Choose c~ such that ¢~ < c~ < ~. By Lemma 4.4, 

v ~ ( F ~  - F )  -~a B o F as n --~ oc in D~. 

Since B o F concentrates  on the separable subspace C ~ ( F )  of D~, we can apply 
the Skorohod-Dudley-Wichura  Theorem (see Shorack and Wellner ((1986), 2.3, 
Theorem 4)) there  exists a probabil i ty  space (f~, H ,  p t )  with random elements 
{F~} and B '  defined on it, such tha t  F~' =a  F~, B '  =a  B and with P ' -p robab i l i t y  
one, 

(4.3) v ~ ( F ~  - F )  + B '  o F as n + ec in D~. 

Fix w' in a set of P ' -p robab i l i t y  one such that (4.3) holds. Write  9(x )  = B ' ( F ( x ) ,  
cz), so tha t  it is in D~. Applying Proposi t ion 4.1 we have 

x/~(  q~p( F~) - q~p(F) ) ~ g ,  H as n --~ oc in D~. 

Write  Z for the process obta ined by applying the map tha t  takes g to 9 - H  to the 
sample paths  of B / o F .  This map  is linear and bounded  and so Z is Gaussian. 
Thus P~-almost surely 

v/-~(q~p(F~) - q~p(F)) ~ Z in D~, 

which implies tha t  

v/~(Op(F~) - ~Sp(F)) --~d Z in D~, 

and this in tu rn  implies the theorem since/~n ----d F~, B ----d B f- It  is easily checked 
tha t  the process Z has zero means, and has the covariance s t ruc ture  shown in the 
s ta tement  of the theorem. [] 

To assess the quality of the estimator, we aim to give a confidence region 
for the unknown G. The development of such a confidence region follows that in 

Griibel and Pitts (1993). 
For z in R let Rn(z) -- P(v/nllGn - GI] ~ <_ z). If known it could be used to 

form a confidence region for G. Define, for z in R, Rz(z) = P(IIZII~ <_ z) where 
Z is the limiting Gaussian process in Theorem 4.1. The continuous mapping 
theorem (see, for example, Pollard ((1984), IV.2.12))implies that Rn(Z) --* Rz(z) 
as n --* oc for 311 continuity points z of Rz. Knowledge of the c~-quantile q(c~) 
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of R z  would lead to asymptotic confidence regions for G. However the structure 
of Z is complicated and it is not easy to see how q(a) can be obtained. In this 
situation we can consider bootstrap confidence regions constructed as follows. An 
estimator /~n of Rn is defined as the empirical distribution function for all n n 
(not necessarily distinct) possible values of x/~l[¢p(F* ) -~p(/Tn)I1~ where/7* runs 
through the empirical distribution functions obtained by taking samples of size 
n from Fn- Let ~ ( a )  be the a-quantile of/~n. The next theorem shows that  
confidence regions constructed from ~ ( a )  give asymptotically correct coverage 
probabilities. 

THEOREM 4.2. Let fl~ > /3 >_ O. Let F be a distribution function satisfying 
f Ixl2"F(dx) < Then 

n ( ~ - ~ l l C p ( P ~ )  - C p ( F ) l l ~  ~ 0 n ( a ) )  - ~  a a s  n - ~  ~ .  

The proof of this theorem proceeds as the proof of Theorem 2.3 in Griibel and 
Pitts (1993), which is based on that  in Gill (1989). It uses the differentiability 
of ~Sp to show that Rn --*d Rz in D~, and thus, loosely, we may use Rn as an 

approximation to -Rn for n large enough. In practice, /)n and hence On(a) are 
approximated by Monte-Carlo methods. 

5. Discussion and applications 

5.1 Example 
As an example we consider the case where p is Poisson with mean 10 and F is 

exponential with mean 1. A sample of size 300 is generated from F and this is used 
to construct our estimate of the resulting compound distribution function, and a 
bootstrap confidence band. The tail estimate is shown in Fig. 1. The estimate 
and the "true" G are calculated using the fast Fourier transform algorithm. The 
non-constant width (simultaneous) 90% bootstrap confidence band corresponds to 
/3 = 1 in Theorem 4.2. The band is calculated from 300 bootstrap repetitions. 

5.2 The total claim amount 
In this subsection and the next one we relate the results about compound dis- 

tributions to applications in insurance. Here we consider the total claim amount. 
Two important forms for the distribution p in the insurance context are Poisson 
and negative binomial, For both these distributions the conditions on p in The- 
orems 3.1, 4.1 and 4.2 are satisfied for any/3 > 0. Thus, assuming p known, we 
obtain strong consistency and asymptotic normality of the nonparametric estima- 
tor of the total claim amount distribution function G, together with a bootstrap 
confidence band for G. The estimate in the previous subsection may be inter- 
preted as an estimate of the tail of the total claim amount distribution function 
for a classical risk model. 

5.3 Unknown claim number distribution 
The case where p is unknown and must be estimated from data covers various 

situations reflecting different assumptions on the claim arrivals, such as whether 
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Fig. 1. Estimate (large dashes), true I - G (solid line) and bootstrap confidence band 
(small dashes) for Example in 5.1. 

p has a par t icular  pa ramet r i c  form, or whether  the claims arrive in a renewal 
process. There  are also different possibilities for the  na ture  of the  d a t a  available 
for es t imat ion  of G. This  is an area  for future  investigation,  and it should be 
possible to ex tend  the  me thods  of this pape r  to derive s tat is t ical  proper t ies  of 
es t imators  of G in some of the  above si tuations.  

As a s t ra ight forward  example  of the  ideas involved, assume tha t  the  claims 
arrive in a Poisson process with ra te  ~, so tha t ,  t ak ing  t = 1 for simplicity, 
p = p(A) : (Pk(A))kCNo where pk(A) = e-~'Ak/k!.  For definiteness, assume now 

tha t  A is es t imated  by i ~  based on a sample  of n inter-cla im-arr ival  t imes inde- 
pendent  of the  claim sizes (for example ,  i n  could be the reciprocal  of their  mean) .  

Assume tha t  ~ ~ ,k with probabi l i ty  one and x/~(J,~ - A) ~ d  N(0 ,  G 2) for some 
a 2 as n tends to  infinity. Assume t h a t / ~  and F are as in Sections 3 and  4. T h e n  
we would a im to combine the  above proper t ies  of ~ wi th  cont inui ty  and differ- 
ent iabi l i ty results for the m a p  taking the  pair  ( Z , F )  to G = ?-~k=0Pk~ ; , to 

yield s tat is t ical  proper t ies  of Gn ~ - ~  ~, ~.k = 2,k=0Pk~ ~) ~ as an es t ima to r  of G. 

5.4 The probability of ruin for the classical risk model 
The  quant i ty  of interest  here is the probabi l i ty  of ruin ~ (x )  s ta r t ing  f rom 

initial capi ta l  x > 0 in the classical risk mode]. The  ruin funct ion ~ is re la ted to 
the funct ion R in t roduced in Section 1 by 

= 1 - R = I - ~ p ( F ) ,  

where Pk = (1 - p)pk for k in No, and  F(x) ---- ( 1 / # ) f o ( 1  - Fl(y))dy, F1 is 
the claim amoun t  dis t r ibut ion function and # = f xF1 (dx). Here we suppose  t ha t  
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F1 (0) = 0. We consider the situation where the claim amount distribution function 
is unknown but a random sample X I , . . . ,  Xn from F1 is available. We may then 
wish to estimate g? for different safety loadings or, equivalently, for different values 
of p. For a particular known value of p, the map • taking the claim amount 
distribution function onto ~ can be decomposed 

(5.1) F1 ~ F ~ R ~ gJ; 

the resulting nonparametric estimator ~ of ~ is given by ~n = I'I/(Pl,n) where 
FI,~ is the empirical distribution function based on X 1 , . . . ,  Xn. We observe that  
there are other situations where different ruin functionals would be appropriate, 
for example, if data are also available for the inter-claim-arrival times and A is to 
be estimated as well. This is not considered here, although the methods of this 
paper can be extended to construct an estimator for ~ in this case (see Subsection 
5.3). 

Returning to the fixed p example, in order to derive strong consistency and 
^ 

asymptotic normality results for ~ ,  we first establish continuity and differentia- 
bility of ~. In addition to Propositions 3.1 and 4.1, we need these properties for 
the first and last stages in (5.1). The last stage is trivial. 

Since F1, F and ~ are all zero on ( -oo ,  0), we consider weighted spaces on 
[0, oo) and write now D# = {f][0,~) : T z f  E D ~ } ,  with ll" II# correspondingly 
defined. Write I for the function that is identically 1 on [0, oc). Below we omit 
reference to the embedding necessary in order to apply Propositions 3.1 and 4.1 
to the compound distribution functional as a map between these new Dz-spaces. 

For f such that c I  - f is in D~,/3 > 1, for some c in R, write f (ec)  for c, and 
let 

5 (621f) (x)  = ( f ( o c )  - f ( y ) ) d y  x E [0, oc). 

Writing ~P for the first map in (5.1), the decomposition becomes 

Let {Fn}~ENo be distribution functions with, for all n in No, F~(0) = 0. 

LEMMA 5.1. Le t /3  > 1. A s s u m e  that  f x#F,~(dx)  < oo and 

I I F ~ - F o [ 1 9 ~ O  a s  n ~ o o .  

Then ,  f o r  0 < 7 <_/3 - 1, 

II~(F~) - ~(Fo)l l~ -~ 0 as n ~ ~ .  

PROOF. The result follows easily on noting first that 

01(Fn) (I) I(Fo) "~ 

~l(Fn)  (0) 6~1(Fo)(0) 

1 
-< ,:I,1 (Fn)(O)HC'I(F~) - ':I:'l(Fo)ll~ 

1 1 
+ [l±-Ol(Fo)[l~, ~ ( F ~ ) ( 0 )  , I , ~ ( F o ) ( O )  ' 
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Then  use 

IIFn - Foll~ --+ 0 ~ ~ l (Fn ) (0 )  --+ ~Pl(Fo)(0) as n --+ oc, and 

(1 + x)'Y[q~z(F~)(x) - ~x(Fo)(X)[ 

/F _< (1 + x) 7 ]F~(y) - Fo(y ) l dy  

/F _< (1 + x)~HF~ - fo/ l~ (l+y)-~dy 

with T _< / 9 - 1 .  [] 

Now suppose t h a t / 3 '  > 0, and tha t  {F~}~eNo are distr ibution functions with 
F~(O) = O, f x a + Z ' F ~ ( d x )  < oc and lien - Folll+Z, ~ 0 as n ~ oc. Prom the 
above lemma, we have 

II~(Fn) - ~(F0)llg'  ~ 0 as n -~ o~. 

We also have 

t /0 x S ( ~ F n ) ( d x  ) = xZ, (1 - F n ( x ) )  

= 1 xl+CFFn(dx ) 
(1 +/~¢) ((I)lFn) (0) 

<OO, 

on integrat ing by parts.  This means tha t  {~(F~)}nCNo satisfy the conditions of 
Proposi t ion 3.1. The  conditions required of p are satisfied. Thus,  for 0 _</3 </3 ' ,  

IF~(Fn) - ~ ( r 0 ) l l ,  = I I % ( e ( r ~ ) )  - % ( e ( F 0 ) ) l l z  

and this last quant i ty  tends to zero as n tends to infinity. This cont inui ty result 
for the ruin functional  • leads to a strong consistency result for the ruin function 
es t imator  ¢~. 

THEOREM 5.1. Let /3 '  > / 3  > O. Let  F be a d is t r ibut ion  f u n c t i o n  wi th  F(O) = 
0 and fzl+9'F(dx) < oc. Wi th  no ta t ion  as above, wi th  probabil i ty one,  

For the differentiability of • we have the following lemma. 

LEMMA 5.2. L e t / 3  > 1. A s s u m e  that  f XZFn(dx) < oo and 

V~(Fn - Fo ) ~ g as 

where g E D z .  Then  f o r  all O < 7 < / 3 - 1  

v ~ ( + ( F n )  - + (E0) )  -~ + '  F 0 0 )  

n ~ oo in DZ,  

as n ~ oo in D r ,  
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where (I)~o (g) = - ( I ) l ( g ) / ( I ) l ( F 0 ) ( 0  ) + ( ( I ) l (g) (0) / ( I ) l (F0) (0)2) ( I ) l (F0) .  

PROOF. Note first t ha t  

V/~((I)l(F'n) (0) -- (I)j_(Fo)(O)) - (I)l(g)(O) ----+ O, 
( 1 1 )  

V/n (]) l(Fn) (0) (I)I(F0) (0) -~- 

as n tends to infinity. Fur thermore  

v ~ ( e ~ ( F n )  - e ~ ( r o ) )  - e ~ ( g )  - ~  o 

and so 

• ~(g)(0) ~0 
( ~ l ( r 0 ) ( 0 ) )  ~ 

as n -~ co in D~. 
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We combine Lemma 5.2 with Proposi t ion 4.1 to obtain differentiability of the 
ruin functional • along certain curves. 

Suppose tha t  /3! > 0 and tha t  {Fn}nCNo are dis tr ibut ion functions with 
F~(0) = 0 and f x l + Y F ~ ( d x )  < co for all n in No. Assume tha t  

v ~ ( F ~  - Fo) ~ g as n ~ co in D1+¢~,, 

where g E D1+13,. By Lemma  5.2, {~(F~)}~cN o satisfy the conditions of Proposi-  
t ion 4.1. Thus  we obta in  for 0 _</~ < /3  ! 

! ! 

and this tends to zero as n tends to infinity. We note tha t  

O(3 

Fo (g) * Z kP~ (~(F0)) *(k-l) 
k=l  

The  above leads to an asymptot ic  normal i ty  result for ~ .  

THEOREM 5.2. Let /3' > /3 > O. Let {Xi}ieNo be independent identically 
distributed random variables with distribution function F satisfying F(O) = 0 and 
f x2(l+;3')F(dx) < co. With the above notation 

v~(~b~ - ~)  ~ a  Z'  as n ~ co in D~, 

where Z I is a Gaussian process obtained by applying q2; F to the sample paths of 
t3 o F,  where B is a standard Brownian bridge. 

By analogy with the discussion preceding Theorem 4.2, define Rn(z )  to be 

P(x/n l l~n  - ~]1~ <- z) and let 0n(g) be the c~-quantile of the boo ts t rap  es t imator  

/ ~  of R~. 

The  result then  follows on using arguments  similar to those used in proving a 
product  rule for derivatives. [] 
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THEOREM 5.3. Let /3  t > 13 >_ O. Let F be a distribution funct ion satisfying 
f x2(l+~')F(dx)  < oc. Then 

P ( v ' ~ l l ' I ' ( F , ~ )  - ¢ ( F ) I I ~  _< c2,~(o0) --, o~ a s  n - ~  o~. 

As an example, we consider the (grouped) data for 799 fire claims in Ramlau- 
Hansen (1988). The data used for our purposes are obtained from the grouped 
data by distributing the observations within a class at random uniformly over 
the class-interval. Figure 2 shows the resulting ruin function estimate ~ ,  and 
approximate 90% bootstrap confidence region, with/~ = 1, and p = 1/3, for the 
unknown ~. 

,:5 

dY 
?' ,  

~_~ 

o , 

,::5 ( ",, 
~c~ \ \  
c~ ,, \  
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c:; \ 
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, i 

o 0 . 0  0 . 5  1 0  1.5 2 .0  2 .5  5 .0  
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m i l l i o n  D K r  

Fig. 2. Estimate of probability of ruin (solid line), and bootstrap confidence band 
(broken lines) for fire claims data. 

It should be noted that this data set consists of 798 observations smaller than 
8 x 105 DKr and one observation of 3.6 x 106 DKr, and that  the estimator (and 
the probability of ruin function calculated for a bootstrap sample) is sensitive to 
the inclusion of the largest observation in the sample. However, this sensitivity, 
arising in a situation where we deal with heavy-tailed claim size distributions, is 
not specific to the estimator considered here. 

The choice of/3 in a particular application reflects the tension between on the 
one hand the desirability of confidence limits that  decrease rapidly at the far right 
of the compound distribution function tail (or of ~), and on the other the moment 
assumptions that we are prepared to make about F.  

The estimator in Frees (1986a) is defined when we also have observations on 
the inter-claim-arrival times, and hence is not directly applicable in this context. 
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For the estimator in Croux and Veraverbeke (1990), the comments in Section 4.2 of 
Griibel and Pitts (1993), concerning a similarly defined estimator for the renewal 
function proposed in Frees (1986b), are relevant. As mentioned in the introduc- 
tion, the estimators studied here are in the same spirit as those of Hipp (1989), 
but we consider the estimates as elements of a function space and furthermore 
we investigate simultaneous, rather than pointwise, bootstrap confidence bands, 
establishing the asymptotic validity of such bands. 
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