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A b s t r a c t .  Variable (bandwidth) kernel density estimation (Abramson (1982, 
Ann. Statist., 10, 1217-1223)) and a kernel estimator with varying locations 
(Samiuddin and gl-Sayyad (1990, Biometrika,  77, 865-874)) are complemen- 
tary ideas which essentially both afford bias of order h 4 as the overall smoothing 
parameter h --~ 0, sufficient differentiability of the density permitting. These 
ideas are put in a more general framework in this paper. This enables us to 
describe a variety of ways in which scale and location variation may be ex- 
tended and/or combined to good theoretical effect. This particularly includes 
extending the basic ideas to provide new kernel estimators with bias of order 
h a . Technical difficulties associated with potentially overly large variations are 
fully accounted for in our theory. 

Key  words and phrases: Bias reduction, smoothing, variable bandwidth. 

1. Introduct ion 

The (constant  bandwidth)  kernel est imator  

(1.1) / ( x )  = h- K{h-:t(x - xd} 
i=1 

of a (univariate) density f based on an i.i.d, sample X 1 , ) ( 2 , . . . ,  X~ has bias of 
order h 2 as h = h(n)  ~ O, and variance of order (nh) -1 as rt ~ oc and n h  --* oc. 
This holds provided f has at least two continuous derivatives. Here, h is the 
bandwidth,  the parameter  tha t  controls the degree of smoothing applied to the 
data.  K,  the kernel function, will be taken to be a symmetr ic  probabil i ty density 
throughout .  For much good in t roductory  material  on kernel density est imation 
see Silverman (1986). 
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Variable (bandwidth) kernel density estimation extends this idea by replacing 
the constant h in (1.1) by a(X~), say, a different bandwidth for the kernel associated 
with each datapoint. The intuitive idea behind this is to allow for varying degrees 
of smoothing across the X-space, especially allowing for greater smoothing to be 
applied in areas of sparse data, and relatively less to be used in the "main body" of 
the sample. Abramson (1982) quantified this by making the important observation 
that if a(z) were, essentially, taken to be h/fl/2(z)--it remains convenient always 
to take out a scalar overall smoothing parameter and to continue to call it h - -  
then (sufficient differentiability of f permitting) one obtains a bias of o(h 2) as 
h --* 0 (while retaining a variance of O(nh)-l). With care, o(h 2) becomes O(h4). 
For practical application, as with all methods developed in this paper, "pilot" 
estimation of a is necessary, but even then, Silverman (1986), for example, has 
demonstrated real practical potential for the method. 

Samiuddin and E1-Sayyad ((1990), Section 4) have proposed varying the lo- 
cation of each kernel, as opposed to varying its scale. This amounts to adding a 
quantity h2A(X~), say, to each X~. It turns out that, if A(z) is taken to be an 
appropriate constant times f '(z)/f(z), then again O(h 4) bias ensues (along with 
O(nh) -1 variance). Intuitively, each datapoint is moved a little in the direction 
of increasing density and, in particular, this serves to accentuate features such as 
modes in the density estimate. 

By allowing both scale and location variation at the same time, we observe 
an infinity of ways in which O(h 4) bias (and O(nh) -1 variance) can be achieved. 
The formula that  drives this is made explicit in Section 3. All scale and location 
combinations mentioned in this paper are novel. As the two approaches alone work 
in apparently complementary ways, it is to be hoped that appropriate combination 
might afford good properties in practice too. 

How might one achieve O(h 6) bias? Samiuddin and E1-Sayyad (1990) indicate 
how in the location-change case: add a further perturbation to each Xi of the 
form h4B(Xi), for appropriate B. We show that  a similar idea take a(Xi) = 
h/{c~(Xi)(1 + h2/3(Xi))} for appropriate c~ and /3--can be made to work in the 
scale-variation case. Indeed, our general framework affords another infinity of 
solutions to the O(h 6) problem, as will be made clear in Section 4. We particularly 
exhibit two further tractable special cases which are combinations of scale and 
location variation; there are two because in one the scale variation is the principal 
factor and the location variation is secondary, while in the other, roles are reversed. 

For practice, however, one can certainly hope that  the step from O(h 2) to 
O(h 4) bias will correspond to a meaningful methodological development (if we are 
fortunate in our particular choices), but that  the further step to O(h 6) would be 
of much less importance. This is borne out by preliminary simulation experience 
(not given in detail). In this sense, the work of Section 4 in particular might well 
remain largely of academic interest only (especially considering the considerable 
pilot estimations required in practice and which are not considered at all here). 

Manipulations, outlined in Section 2, are greatly simplified by use of a result 
of McKay (1993@ which greatly extends the bias formula of Hall (1990). This 
result also allows us to overcome a technical difficulty, due to possibly overly large 
bandwidths used in the tails in variable scale estimation, which was demonstrated 
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by an example of Terrell and Scott (1992). A closely related pathology can occur 
with variable location estimation; examples of both kinds are described in McKay 
(1993b). To avoid problems of this type we introduce the Condition A(II) in 
Section 2. This condition formalises the notion of locality implicit in comments of 
Terrell and Scott ((1992), p. 1239); it is related to the clipping method of Abramson 
(1982), the kernel truncation device of Hall et al. (1994) and the bandwidth- 
dependent clipping of McKay. 

2. Basic formulae and technicalities 

All estimators of interest in this paper are of the form 

(2.1) 
n 

](x)  = ~-~ Z h - b ( x d K [ h - b ( X d { x  - x~ - h~c(x~)}] 
i=1 

for appropriate functions "7 and G, which may also depend on the smoothing 
parameter h. To obtain mean and variance properties of f ,  it is most convenient 
to employ McKay's (1993a) result which identifies, for a generic function Jh of 
two variables and dependent on h, the coefficients in an expansion of the form 

h -1 / J h { z , h - l ( x -  z )} f (z )dz  = ao(x) + . . .  + al(x)h I + o(hl), 

subject to some mild conditions. If the moment functions rnk,h(X) = f z  k • 
Jh(x, z)dz, k = 0 , . . . ,  l are sufficiently smooth these coefficients take the form 

ak(x) ---- (k!)--l(--1)k{f(x)mk,h(X)} (h), 

which is immediately seen to generalize Hall's (1990) formula. We use this form 
to motivate our computations, but the most important version of our expansion 
only requires that  the moment functions mk,h(V) have suitable Taylor expansions 
in powers of h. 

Returning to the estimator defined by (2.1), for 

j~(~,  ~) = 7 ( ~ ) K [ 7 ( ~ ) { ~  - hG(~)}] ,  

we have the representation 

](x) = ~-~ ~ h-~ Jh {X~, (x - X d / h } .  
i = l  

Let 7-k = f z k K ( z ) d z  for k = 1 , . . .  ,4. The moment functions are given by 

k 

j ~ 0  
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so, under suitable conditions, the leading terms in E { f ( z ) }  are 

= f(x) - h{f(x)hG(z)}'+ ~h2[f(z){r27-2(x) + h2a2(z)}] '' E{f(x)}  

~h 3[f(x){3r2h7 ( x ) ( x )  + (x)}] ~ 2 G h a G 3 iii 

Jr- ~--~h4[f(x){T4"T-4(x) -F 6T2h2"y-2(x)G2(x) -F h4G4(x)  }] iv + ' " .  

Further progress can be made if we now, and for the rest of the paper, write 
7 and G in the following forms: 

7(z) = c~(z)(1 + h2/3(z)) and G(z) = A(z) + h2B(z). 

The functions c~, /3, A and B do not depend on h, and if they  are sufficiently 
smooth, then the bias in using f is 

(2.2) E { f ( x ) }  - f(x) = h z { 1 2f),, ~T2(a- (x) - (Af)'(x) j 

r 1 4 iv _ -{-h4/~T4(O~- f )  (X) T2(a-2~f)" (x) 

1 2 , , ,  1 I -~r2(a-  Af)  (x) + ~(A2f)"(x) - (Bf)'(x) 
) 

+ Rx(h), 

where the remainder Rx(h) is no larger than  o(h4). Much more will be made of 
this in the following sections. 

The leading term in the variance of f (z)  is 

(2.3) (nh) - l t~ f (x )o~(x)  

(compare 3.18 of Silverman (1986)). Notice tha t  this variance remains of order 
(nh) -1 whatever our choice of 7 or G; here, ~ = f K2(z)dz, assumed to be finite. 

For a precise s ta tement  of the expansion (2.2) above, we introduce the follow- 
ing conditions. Let l = 4 or l = 6, and fix some point z0 C R.  We assume 

A(I) f is bounded and integrable, and f(t)(v) exists and is continuous in a 
neighbourhood of x0. 

A(II) There is a non-negative integrable function H(u) such tha t  

(1+ Izl)ZH(z)dz < oo and I&(v,u)l ~ H(u) 

for all h in some neighbourhood of zero and all v. It is this condition tha t  under- 
lies the success of various clipping procedures (McKay (1993b)), and is therefore 
critically important .  

A(III) The derivatives cg0(v), A(l-1)(v), /3(t-2)(v) and B(Z-3)(v) are contin- 
uous for all v in some neighbourhood of x0. 
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Under these conditions the expansion in (2.2) is valid, with remainder o(h 4) for 
I = 4, or a~(x)h 6 + o(h 6) when I = 6, uniformly for x in a neighbourhood of x0. 
Furthermore, the expansion holds uniformly everywhere if the derivatives in A(I) 
and A(III) are assumed bounded and uniformly continuous for all v C R. The 
proof is given in the appendix; further details appear in McKay's thesis (1993a). 

A few remarks regarding the expansion in (2.2) are in order. First, A(II) 
actually implies that 7(v) is bounded above and away from zero, and that hG(v) is 
bounded above. As well, A(II) imposes some mild conditions on K. In particular, 
K must possess at least I absolute moments, and if hG is not constant, then 
K must be bounded. Conversely, if these conditions are satisfied, and also (1 + 
Izl)l+l+eK(z) --* 0 as Izl --~ oe for some e > 0, then A(II) will be satisfied. 
These conditions are related to Abramson's (1982) "clipping" procedure and are 
necessary to avoid problems described by Terrell and Scott (1992) and McKay 
(1993a) (see also Hall et aI. (1994)). Second, it is not necessary for our expansions 
to use a smooth kernel K,  though this might be typical in practice, and third, 
the smoothness conditions A(I) and A(III) are essential if the expansion in (2.2) 
is to make sense. Lastly, the dominating function H(u) in A(II) may be modified 
to allow for a dependence on h, if it has sufficiently many moments. Details for 
Abramson's estimator are discussed in McKay (1993b). 

Before continuing further, we must briefly address a notational point related to 
assumption A(II). abramson 's  (1982) square root law suggests the choice 3'(v) = 
fU2(v) and G(v) = 0 in (2.1). However this violates A(II), and the counterexample 
of Terrell and Scott (1992) shows that this can result in bias much larger than 
O(h4). McKay's thesis (1993a) presents additional examples, including a similar 
result for the variable location estimator of Samiuddin and E1-Sayyad (1990), and 
shows that the condition A(II) effectively resolves the problem. To enforce the 
condition in A(II), McKay (1993b) used a smooth variation of Abramson's (1982) 
original "clipping" procedure. In effect, he imposed a mild condition on the tails 
of K and replaced 7(v) by ~(v) = r(7(v)) for some suitably smooth function r 
bounded away from zero, with r(t) = t for all sufficiently large t. To see how such 
a function could be constructed see McKay (1993b). Up to a possible change of 
scale, one example considered there is given by 

1 +  1 -  2 ) +  ( t - 2 )  2 2) 3 f o r 0 < t < 2  = ( t  - - ( t  - 

t for t > 2  
1 for t < 0. 

For the variable location estimator of Samiuddin and E1-Sayyad (1990), another 
example in McKay (1993b) demonstrates that we must replace G(v) by s(G(v)) 
where s is bounded above, sufficiently smooth, and s(t) = t for sufficiently small 
t. For the remainder of this paper, we shall assume that a similar device is used 
to force A(II) to hold. Thus the choices of 7 and G recommended in Section 3 
and Section 4 below must first be passed through some such clipping "filter" to 
guarantee the claimed bias. Though this is an important point, we consider our 
results to be more easily understood with this minor abuse of notation. In any 
actual implementation a function such as that described above could be used to 
construct the filter. 
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3. Achieving O(h 4) bias 

By setting the O(h 2) bias term in (2.2) to zero, we immediately see that any 
choice of a, for scale variation, and A, for location variation, satisfying 

(3.1) f 2 \ ~ I  ( z ) = ( A f ) ' ( z )  

will achieve O(h 4) bias. The two "familiar" special cases of this are: 
(i) set A(z) - 0 so that we need (a-2 f )" (z )  = 0. The latter is satisfied 

by a(z) = f l /2(z) ,  and we obtain precisely Abramson's (1982) variable kernel 
estimator, which we will call 3~A; 

(ii) set a(z) = 1. Then, we require 1 , ~'c2f (z) = (Af) ' (z) .  The choice A(z) = 
1 / ~-2(//f)(z) will do, and this yields precisely Samiuddin and E1-Sayyad's (1990) 

variable location estimator, f~, say. 
(Notice that there are also more general solutions to these differential equations 
involving extra constant or linear terms (see Abramson (1982), for (i)) which we 
are unable to exploit.) 

Aside. The location variation in (ii) is quite different from an overall "shrink- 
age" of the data towards its mean (Jones (1991), and references therein). However, 
when f(x)  = ¢ -14 (~ -1 (x  - #)), where ¢ is the standard normal density, and K 
is normal, each kernel is located at X~ - (2¢r2)-lh2(X~ - # ) ;  this, with estimated 
# and ~r 2, is essentially the shrinkage formula (4) in Jones (1991). While such 
a device, which was motivated by the desire to correct for variance inflation, is 
certainly appropriate for normal f (Fryer (1976)), it is comparatively unsuccessful 
when used for other densities (Jones (1991)). One might now argue that it is f s  
that is a more appropriate generalisation of variance correction to other situations 
than is application of the shrinkage formula itself. 

We stress that the two existing variations of Abramson (1982) and Samiuddin 
and E1-Sayyad (1990) are but (the most obvious) special cases satisfying (3.1). 
Any scale/location pair satisfying (3.1) will also work. Such combination might 
have especial appeal since singly scale and location variations tend to work in 
rather complementary ways. (The need to pilot estimate two functions in practice 
is less appealing, however.) For example, if we choose to take a(z) = f (z )  alone, 
we get essentially the earliest proposals of Victor (1976) and Breiman et al. (1977). 
This has bias of order h 2 only, but if we combine it with the appropriate location 
variation wherein, from (3.1), A(z) = ½~-2(1/f)'(z)(1/f)(z) = 1 - ~  7-2(f' / f3)(z), 
we obtain another method with O(h 4) bias. (Notice that an adjustment of a 
purely scale variation type, i.e. with nonzero /3 rather than A, cannot achieve 
this.) It turns out that this particular scale/location combination has links with 
an alternative viewpoint, and also has considerable promise; this may be developed 
elsewhere in joint work of the first author. 

Comparisons between methods satisfying (3.1) can be made on the basis of 
their remaining bias (and variance). Write g(z) = a-2(z) .  For any pairing such 
that A(z) = ½~-2 ( l / f ) ( z ) (g f ) ' ( z ) ,  the leading bias becomes 

1 4 
(3.2) ~ h  O-4{g(fg)}i'(x) - 6~-~{g(fg)'}"'(x) + 3z22[f-l{(fg)'}z]"(x)).  
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The bias in using fs (x)  is, therefore, 

(3.3) 2~h4[(74 - 67~)fi ' (x)  + 37~{f-1(f ')2}"(x)], 

as given by Samiuddin and gl-Sayyad (1990). Also, the bias in using fA(x) is 

- - ~ h 4 7 4 ( f - 1 ) i v ( x ) .  

This simple formula was first noted by Hall (1990) and Jones (1990). (Earlier 
expressions include that of Hall and Marron (1988).) Non-integrability of squared 
bias for fA is discussed in detail by Hall (1992). 

That there seems to be little opportunity to use a and A to zero both h 2 
and h 4 bias terms is indicated by the following argument. Specialise to use of 
a standard normal kernel so that 72 = 1, 74 = 3. Consider setting the second 
antiderivative of (3.2) to zero i.e. at tempt to choose g such that f ( z ) { g ( f g ) } " ( z ) -  
2f(z){g(fg) '} ' (z)  + {(fg)'}2(z) = 0 for all z. Manipulating this leads to (9'/g)2(z) 
= [{f f , , _  (f,)2}/f2] (z). But this only has a solution if the right-hand side, equals 
{log(f(z))}", is positive. For log concave densities this is never the case, and for 
others, only at certain points z. We doubt whether reinstating greater generality 
could improve matters very much. 

We will not pursue considerations of comparative O(h 4) bias expressions fur- 
ther here. 

4. Achieving O ( h  °) bias 

We will now consider the vanishing of O(h 4) bias in addition to that of O(h 2) 
by introducing/5 and B in addition to a and A. With 7(z) = c~(z)(1 + h2/3(z)) 
and G(z) = A(z) + h~B(z) as in Section 2, choices of a, /3, A and B satisfying 
(3.1) for O(h 2) and, from (2.2), 

(4. ,)  1 4 i~ ~7u(C~-2Af),,,(x) ~ 7 4 ( a -  f)  (x) - %(a-2~f)"(x)  - 

1 
+ ~(A2f)"(x)  - (Bf) ' (x)  = O, 

to zero the h 4 term will do. With four functions and only two differential equations 
for them to satisfy, there is again considerable scope for ways of achieving O(h 6) 
bias. We will look briefly at only the four most tractable and appealing special 
ca se s .  

4.1 Scale variation only 
Set A --- 13 ~ 0. Then a(z) = f l /2(z)  satisfies (3.1), of course, and we are left 

with an O(h 4) term of 
1 iv (x) - 729"(x)  
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which disappears if 0)" Z ( z ) -  74 (z). 
2472 

Thus, the extended pure scale variat ion 

h~ fl/2(Xi) {1+ h274 

achieves bias of O(h6). This is an entirely novel extension of Abramson 's  (1982) 
result. 

4.2 Location variation only 
Set a = 1, f l -  0. Then,  w i t h A ( z )  = 1 , ~72(f / f ) (z)  zeroing O(h 2) bias, the 

O(h 4) te rm becomes 

and the extended pure location variat ion 

Xi+~h272 ( X i ) + N h  ~ ( n - - 6 T ~ ) I " ' ( X i ) + 3 T ~  (Xi) 

zeroes O(h 4) bias too. A formula like this was suggested by Samiuddin and E1- 
Sayyad (1990), but  our expression, which is the simpler, appears  to be a correct ion 
of theirs. 

4.3 Scale and location variation I 
Set /3 - 0 -- A. In this, the first of two O(h 6) bias joint  scale and loca- 

t ion variations, we let scale variat ion dominate  in the sense tha t  we remain with 
Abramson 's  square root  law, a (z )  = fl/2(z), for the scale part .  The  choice 

24 f(z) (z) 

turns out  to be an appropria te  ally to this in achieving O(h 6) bias i.e. use band- 
width h/f l /2(Xi)  and centre kernels at X~ + ~hn74f-l(Xi)(1/f) '"(X~).  

4.4 Scale and location variation II 
Finally, set a -- 1 and B --= 0. This time, location variat ion leads in the sense 

tha t  we take A(z) = 1 , ~72( f / f ) (z )  once again, and then  find tha t  the requisite 
formula for 3(z) is 

24&  1 
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Fig. 1. Marron and Wand density 2 (solid line) together with estimates fA with h = 0.3 
(dotted lines in (a)) and fs  with h = 0.4 (dashed lines in (b)). The same 5 samples of 
n = 100 datapoints are used in each frame. 

If we use a normal  kernel again, we find tha t  if the location variat ion is wr i t ten  
Xi + h2A(Xi), the  associated scale variat ion is as h/{1 - ¼h2A'(Xi)}. 

We tr ied out most of these ideas in some prel iminary simulations (which fall 
far short of a full s tudy).  A fine tes tbed  for nonparametr ic  density es t imat ion 
is the collection of densities appearing in Fig. 1 of Marron  and Wand (1992). 
A very wide variety of density shapes is catered for a l though all the densities 
are normal  mixtures.  Only "ideal" forms of the estimators,  i.e. ones using t rue  
density dependent  quanti t ies at the pilot stage, were implemented,  and pictures 
of est imates formed using subjective choice of h were examined.  No clipping was 
employed. The  performance of Abramson 's  es t imator  fA in its ideal form was 
most impressive, witness Figs. l (a)  and 2(a). Figures 1 and 2 display five realised 
est imates of Marron  and Wand 's  densities 2, the "Skewed Unimodal" ,  and 4, the 
"Kur to t ic  Unimodal" ,  for each of fA (dot ted lines in (a)) and f s  (dashed lines in 
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I i ~ f I ' i I I 

- 3  - 2  -1 0 1 2 3 

(a) 

I ~ , I I I r , i i I ~ i i i I i , , ~ r i f i , I , , , , 1 

- 3  - 2  -1 0 1 2 3 

(h) 

Fig. 2. Mar ron  and Wand  densi ty 4 (solid line) together  wi th  es t imates  SA wi th  h = 
0.15 (dot ted  lines in (a)) and  Ss wi th  h = 0.2 (dashed lines in (b)). The  same 5 samples 
of n = 100 da tapo in t s  are used in each frame. 

(b)); n = 100 throughout, h's of 0.3, 0.4, 0.15 and 0.2 used in Figs. l(a), l(b), 2(a) 
and 2(b), respectively. Notice that f s  cannot begin to match SA's performance at 
peaks without showing undesirable features elsewhere. 

The location shift Ss is generally less good: its best performance is indeed 
reserved for eases with fairly "tight" peaks, although improved properties with 
respect to peak estimation tend to be at the expense of good behaviour elsewhere. 
This is further exemplified by Fig. 3 which repeats the above for Marron and Wand 
density 9, "Trimodal". Here h = 0.175 for fit and h = 0.25 for f s .  The point is 
that while SA struggles to indicate three modes, fs does so rather better, albeit 
with neither being very good at estimating heights of modes. Other than this 
kind of behaviour, SA was usually the better of the two. Note that the very places 
where J~A is least good coincide with peak areas where Ss is at its best. 

It must be said that preliminary simulations along these lines for methods 
with O(h 6) bias were not especially encouraging. That is not to say that  the 
O(h 6) methods had inferior properties to the O(h 4) ones, just that they did little 
or nothing to improve performance. This was especially true of the pure location 



V A R I A B L E  K E R N E L  E S T I M A T I O N  531 

-:::::?.. 
.:' ",..,.. 

2 :': 
.[ .,:;::::, : .  

/? V ,  
h- • .Y 

-3 -2 -I 0 1 2 .5 

(a) 

"'::t 

t i 

".&~. 

. .  7¢ . . . . . . . . . . . . . . . . . . . . . . . .  :::,,"~ ) i  "~./..' ..:~.." "%,. ~% " 
...... %...-.., \%.. 

p ' ~ ' l  I i I I i i I i i i I I i i i I ' I I i I i i " ' t "  " l "  I 

- 3  - 2  -I 0 1 2 3 

(b)  

Fig .  3. Marron and Wand density 9 (solid line) together with estimates je A with h = 
0.175 (dotted lines in (a)) and f s  with h = 0.25 (dashed lines in (b)). The same 5 

samples of n = 100 datapoints are used in each frame. 

and location-leading location/scale combination methods (of Subsections 4.2 and 
4.4); they usually followed fs pretty closely. The other location/scale combination 
(Subsection 4.3) was much more closely related to fA. Sometimes the two were 
very similar, sometimes there were noticeable differences, but we did not get much 
impression of improvement when differences were apparent. If there was one of 
the O(h 6) bias methods that might be worth further investigation, it seemed to be 
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the pure scale variation of Subsection 4.1. The amount of improvement in going 
from fA (O(h 4) bias) to this O(h 6) method was very much smaller than that  of 

moving from f (O(h2)) to fA, as might be expected. But any small differences 
there were did appear to be in the right direction. (The extra pilot estimation 
required might, of course, nullify this in practice.) 

We are confident that the best of the kind of method discussed above will 
prove to display greater practical benefit in small samples than the disappointing 
higher order kernels (Marron and Wand (1992)). 

The work of Section 2 is straightforwardly extendible to obtain the O(h 6) bias 
terms. We give only the general formula here for possible future reference, but do 
not bother to delve into any further theoretical comparison of the methods using 
it. It is 

1 Ta(ce_6f)~i(x)_ 6T4(a_4/~f)i.(x)_ ~_~7_4(OL_4Af)V(x) 
720 

+ "r~(c~-2/~Af)"'(x)- ~-2(a-2Bf)'"(x)+ ~r2(a-2A2f)i~(x) 

+ ~T2(c~-2/~2f)"(x) + (ABf)" (x ) -  ~(A3X)'"(x). 

This is a6 (x) in our earlier notation. 
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Appendix 

In this appendix we have included several key elements in the proof of the 
crucial bias expansion (2.2). Let I = 4 or 6, and fix the point of interest x 
sufficiently close to x0. For any bounded integrable function g, denote by T 9 the 
function 

Tg(v) = h -1 f Jh{z, h- l (v  - z)}g( )dz 

= / & ( v  - hz, z)g(  - hz)dz, 

where Jh is as in Section 2 and satisfies A(II), A(III). 
Our first proposition shows that  only local behaviour of f matters. 

PROPOSITION A.1. If g is any bounded integrable function which agrees with 
f in some neighbourhood of x, then 

Tg(v) = T f(v) + o(h Z) 

uniformly for v sufficiently close to x. 
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PROOF. The  function f - g is bounded  everywhere,  and identically zero on 
some neighbourhood of x. Therefore,  for some constant  M and e > 0, A(II) implies 
tha t  for v sufficiently close to x, 

f 
ITf(v) - Tg(v)l <- I MIJh(v -- hz, z)ldz 

t>~th 

< M(h/e)lf lzl>e/h IzllH(z)dz 

which is o(h z) by dominated  convergence. [] 

This proposi t ion reveals the t rue  significance of A(II),  namely tha t  it disallows 
est imators  which are not in some sense local. Fur thermore ,  the proposi t ion as 
s ta ted  does not require the smoothness  conditions in A(I). A Taylor  expansion of 
f ( v  - hz) shows tha t  if g also satisfies A(I) and has the same Taylor  expansion at 
v, the result still holds. 

If the expansion in (2.2) holds uniformly in a ne ighbourhood of x0, then  Taylor  
expansion of the coefficients shows that ,  for each x in a possibly smaller neigh- 
bourhood,  there  is a polynomial  Px(v, h) of degree l such tha t  if Ivl = O(h) ,  the 
remainder  T f ( x  + v) - Px(v, h) is uniformly o(hZ). Our next  proposi t ion shows 
tha t  T f ( x )  has this property.  The  proof  essentially follows suggestions of Hall and 
Mat ron  (1988). 

PROPOSITION A.2. For h sufficiently close to 0 and x sufficiently close to 
Xo, there exists such a polynomial Px(v, h), with the remainder 

: r f ( x  + ~) - Px(~, h) = o(h ~) 

uniformly in x, for ~ = O(h).  

PROOF. For any e > 0, by Proposi t ion A.1, we may assume tha t  f has sup- 
por t  within c of x0, and i s / - t imes  continuously differentiable everywhere.  Wi thou t  
loss of generality, we may  assume tha t  x = 0. If we set u = ~/(v - hz){z - hG(v - 
hz)}, then  by A(II) and A(III) ,  for sufficiently small h, we can choose c, e' so tha t  

du 
d-~ = z ( v  - h z )  - h z ~ ' ( v  - h z )  + h 2 { Z G } ' ( ~  - h z )  

exists, is continuous, and bounded  away from zero, whenever Ihzl < ~ and I x -v l  < 
a ~. It  follows by the implicit function theorem and the obvious change of variables 
tha t  Tf (v )  is of the form 

T f (v) = j f (v - hz)'~(v - hz){ du /dz } - l  K(u)  du 

where z is unders tood  to be a function z = z(v, h, u). For each u we can expand z 
in powers of v and h with a remainder  tha t  is o(h t) uniformly in x and u. To see 
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this, note that if we replace 7 and G by appropriate Taylor series, we can define 
for each u an analytic function 5(v, h, u) which differs from z by o(ht). This yields 
the desired expansion. Further details are given in McKay (1993a). [] 

This argument was suggested by Hall and Marron (1988) to directly establish 
the formula in (2.2) for the special case of Abramson's (1982) estimator. However, 
it is tedious in the extreme to evaluate the coefficients in this manner. Instead, 
we employ a remarkably simple device which yields the coefficients quite easily. 

THEOREM A.1. Under A(I) A(III), the expansion in (2.2) is valid, with re- 
mainder o(h l) uniformly in x. 

PROOF. By virtue of Proposition A.2, we have at each x in a neighbourhood 
ft of x0 a Taylor polynomial Px (v, h) of degree I. Setting v = 0 yields an expan- 
sion Tf(x) 1 = }-]k=0 bk(x) hk + °(hz) uniformly for x C ft. Note that  each of the 
coefficients bk(x) is I - k times continuously differentiable. 

Let ¢(v) be any infinitely differentiable function supported in ft. Then we 
have 

l / .  

/  (x)Tf(x)dx = E / + o(h ) 
J k=0 J 

On the other hand, by a Taylor series expansion of ¢, we have 

(A.1) / ¢(u)Tf(u)du = / / ¢ ( x  + hz)f(x)Jh(x, z)dzdx 

1 

= E hk/k! / ¢(k)(x)f(x)#k(x)dx + °(hl) 
k=0 

where #k(x) -- f ZkJh(x, z)dz. Note that the size of the remainder term depends 
only on the modulus of continuity of ¢(0. By A(III) we observe that each moment 
function #k is of the form 

~ t k ( X )  = C0k(X) -/- h C l k ( X )  -~- " "" ~- h l c l k ( X )  -~ o(h l) 

for which the functions Cyk are l - j  times continuously differentiable. If we sub- 
stitute these expressions into (A. 1), and integrate each term by parts we obtain 

¢(x)T f(x) dx -- 
l 

Z hk f ¢(x)ak(x) dx + o(h 
k = l  

where the coefficient functions ak are exactly those given in the expansion (2.2). 
Since ~ is arbitrary, and the coefficients are continuous functions, we can identify 
ak (x) with bk (x). [] 
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