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A b s t r a c t .  Both one-sample and multi-sample estimation problems for the 
means of one parameter exponential distributions are addressed. In the one- 
sample case, for the existing purely sequential and recently obtained piecewise 
sequential estimation methodologies, we follow and extend the development in 
Isogai and Uno (1993, Ann. Inst. Statist.  Math. (in press)) in order to obtain 
a class of estimators that provides asymptotic second-order risk improvement. 
In the multi-sample problem, we address the analogous aspects for the exist- 
ing purely sequential methodology as well as the newly developed piecewise 
methodology. 
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1. Introduction 

Let there be a sequence X1, X2,.. .  of independent and identically distributed 
(i.i.d.) random variables from a population having the probability density function 
(p.d.f.) given by 

(1.1) f(x; A) =/~-1 exp(--x//~), 

for x E R + and A E R +. The unknown parameter A represents the mean of the 
population and we first address minimum risk point estimation problems for A via 
sequential sampling. 

Start and Woodroofe (1972) proposed the following formulation of the prob- 
lem. Having recorded XI,...,Xn, one estimates /~ by means of _~ (= n -I • 
Y~.in__, Xi) and assumes that the loss function is given by 

(1.2) Ln  = A ( f ( ~  - A) 2 + cn,  

where A (> O) and c (>  O) are known numbers,  respectively reflecting a "weight" 
constant  and the "cost" per observation. The  risk associated with (1.2) is given 
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by ]~n(c) = E(Ln) = AA2n -1 +cn ,  which is minimized when n = n* = (A/c)I/2A. 
Since n* is unknown, Starr and Woodroofe (1972) proposed a purely sequential 
estimator and studied the asymptotic (as c --~ 0) behavior of the regret function. 
Later, Woodroofe (1977) obtained the asymptotic second-order expansion of the 
associated regret function. Recently, Isogai and Uno (1993) provided an improve- 
ment over the sequential estimators of the percentiles of a two-parameter negative 
exponential distribution, first proposed in Ghosh and Mukhopadhyay (1989). As 
a corollary, Isogai and Uno (1993) also provides an improved sequential estima- 
tor of the corresponding population mean as compared with the original version 
suggested in Mukhopadhyay (1987). 

For the population distribution given by (1.1), we first obtain a class of sequen- 
tial estimators of A which improve upon the Starr and Woodroofe (1972) estimator 
up to the second-order approzimation (that is, up to o(c)) of the regret function. 
This is included in Subsection 2.1. In Subsection 2.2, we pursue similar aspects 
in the multi-sample set up as developed in Mukhopadhyay and Chattopadhyay 
(1991). 

Along the lines of Mukhopadhyay and Sen (1993), recently Bose and 
Mukhopadhyay (1993) have introduced a piecewise sequential version of the Starr 
and Woodroofe (1972) estimator of A which is asymptotically equivalent to the 
original purely sequential estimator in terms of the regret expansion up to the 
second-order term. But, in terms of operational convenience, the piecewise estima- 
tor is indeed significantly superior. In Subsection 3.1, we first incorporate the idea 
of risk improvement for the piecewise sequential estimator of A, considered in Bose 
and Mukhopadhyay (1993). Then, in Subsection 3.2, we introduce a new piece- 
wise solution of the multi-sample problem of Mukhopadhyay and Chattopadhyay 
(1991), followed by related analogous aspects on risk improvement. 

2. Sequential estimation of means 

First we consider the one-sample problem followed by the multi-sample meth- 
odology. In either situation, we put forth a class of estimators that improve upon 
the existing sequential estimators. 

2.1 The one-sample problem 
Under the loss function (1.2), recall that n* = (A/c)I/2A. Let m (_> 1) be the 

starting sample size and define 

(2.1) N = inf{n > m(_> 1) : n  > (A/e) l /2f(n}.  

Starr and Woodroofe (1972) estimated A by means of 3~N. Woodroofe (1977) 
showed the E(LN)  - Rn* (c) = 3c + o(c) if m _> 3. Now, suppose we estimate A by 
A~(N) defined by 

(2.2) = + a (c /A)  1/2, 
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for a E R such that  a 2 < 2a. For the stopping variable (2.1), let the overshoot be 
7~ = N2n  *-1 - SN where SN = }-~,N 1 Y~, the Y's  being i.i.d, s tandard  exponen- 
tials. Now, 

~_ _ ~ n  * - 1  _~_ 0(cl/2), 

if m >_ 2, since (i) E ( N  - n*) = (~ - 1) + o(1), (ii) E ( ~ ¢ )  = ~ + o(1), and (iii) 
n * N  -1 is uniformly integrable, where %," comes from equat ion (2.4) in Woodroofe  
(1977). Now, the risk associated with ~ ( N )  is given by (for m _> 3): 

( 2 . 4 )  - + c X }  

= E { A ( X N  - )~)2 + cN}  + 2a(Ac) I /2E[2N - a] + a2c 
= + + - + 

That  is, ~a(N) will asymptotically dominate X N  up to the o(c) te rm if 2a > a 2. 
The asymptot ic  "gain" in risk is obviously maximized if a = 1. In otherwords,  
(2.2) provides a class of dominat ing est imators while the best  one turns out  to be 

~ I (N)  in the class { ~ ( N )  : a E R, 2a > a2}. 
We remark that  the result given in equation (2.4) also follows from Theorem 

2.1 of Isogai and Uno (1992) obta ined independently in the context of est imation 
of the mean of a gamma distribution. 

2.2 The multi-sample problem 
Along the lines of Mukhopadhyay  and Cha t topadhyay  (1991), let us consider 

k (> 2) independent  populat ions and suppose that  we have X i l , X i 2 , . . .  i.i.d. 
from the i- th populat ion having the p.d.f, f ( x ;  )~) given in (1.1), i = 1 , . . . ,  k. 
Having recorded X i l , . . . ,  Xin~ from the i-th population,  we est imate ),i by means 

of 2in~ = n ;  1 ~f~~=l Xi j .  The goal is to est imate 0 = }-~'~i~1 biAi where b l , . . . ,  bk 
are known, but  arbi t rary and fixed, non-zero real numbers.  The parameter  0 is 
then es t imated by T(_n) k = ~ i = 1  biJ(in~ where n = ( n l , . . . , n k ) .  In the paper  of 

Mukhopadhyay  and Cha t topadhyay  (1991), the following loss function was used. 
Let 

k 

( 2 . 5 )  = - 0] 2 + 

i=1  

where A and c are known positive numbers,  The associated risk is given by 
k b2~2_-1 k R(n ,c )  = E(L(n) )  = A ~-~i= 1 i ~ni + c ~ i = l n ~ ,  which is minimized for n = 

n* = ( n ~ , . . . , n [ ) ,  n~ = (A/c)l/2lbi[Ai , i = 1 , . . . , k .  Since n* is unknown, 

Mukhopadhyay  and Cha t topadhyay  (1991) proposed the following sequential es- 
t imat ion procedure.  Suppose mi (>_ 1) is the start ing sample size from the i- th 
populat ion and let 

(2.6) Ni = inf{n _> mi : n  _> (A/c)l /2lb~12~ }, 



512 N. MUKHOPADHYAY 

for i = 1 , . . . , k .  Finally, one estimates 0 by T ( N )  where N = ( N 1 , . . . , N k ) .  In 

the theorem of Mukhopadhyay and Chattopadhyay (1991), it was shown that 

(2.7) E[L(_N)] - R(n* ,c )  = 3kc + 2c ~ E didj + o(c), 
l<_i<j<k 

if m i n { m l , . . . , r n k }  >_ 3, where di = bi/Ibi], i = 1 , . . . , k .  
Now, having given the stopping variables N1, • • •, Nk, let us consider the follow- 

ing class of est imators  for 0. Choose a = ( a l , . . . ,  ak) E R k such tha t  2q Eik=l  d i ) 

k k 1/2} q2 where q ~ i = 1  aibi. Now define Oa(N) = _ _ = E i = l b i { 2 i N ~  + ai (c /A)  = 

T ( N )  + q(c/A)  1/2. The  risk associated with the es t imator  09(N) of 0 under  the 

loss function (2.5) is given by (in view of (2.7) and (2.3)) 

(2.8) - 0) 2 + cX]  

= E [ A ( T ( N )  - O) 2 + cN] + 2 q ( c A ) I / 2 E [ ( T ( N )  - 0)] + q2c 

: + 3kc  + 2c Z e eJ - 2q - + 
l<i<j<_k 

k where one may recall tha t  N = ~ = 1  Ni. Th a t  is, 0e(N)  will asymptot ical ly  

k q2 dominate  T ( N )  up to the o(c) t e rm if 2 q E i =  l d i  - > 0. From (2.8) one 

notes tha t  the asymptot ic  "gain" in risk is obviously maximized if a E R k is N 

k q2 chosen in such a way tha t  2q }-~-i=1 di - is maximized. One should recall tha t  
k q = ~-2-~=1 aibi. In general, it does not appear  feasible to give an explicit expression 

of such "optimal" choice for a. However, in a given scenario, one should be able 

to find improved est imators  in the class, as suggested. 

Example 1. Consider k = 2 and 0 = A1 + A2. Then,  one gets improved 
est imators  Oa(N) where, for example, a = (1, 1) or (1, 1) among many  other  

N 

choices. In this case, a = (1, 1) is "optimal" in our sense in the subclass, when 

al  = a 2 .  

Example 2. Consider k = 3 and 0 = 2A1 + A2 - A3. Then,  one gets improved 
est imators  0a(N) where, for example, a = (1 1 1 ) or (½, ½, ½) or ( 1  1 5, o) _ _ N i0 ' I0 ' i0 

among many other possibilities. In this case, a ---- (½, ½, ½) is "optimal" in our 

sense in the subclass when al ---- 32 ---- a3. 
k 

In fact, the following result is in order. Let B -- Y~i=l bi and assume that B 

is positive. Now, let us restrict the choice of "a" so that 31 ..... ak = a, say, 
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k and we also write D = }-~i=1 di. Then,  in order to find the opt imal  choice for "a", 
one should maximize 2 a D B  - a2B 2 with respect to a E R. The  solution obviously 
turns  out  to be a = D / B .  

Example 3. Consider k = 3 and 0 = / ~ 1  - , ~ 2  - /~3, SO tha t  B = - 1  and 
D = - 1 .  Then,  0~(N) will dominate  T ( N )  in our sense if a = a l where, for 

1 In fact, any "a" such tha t  2a > a 2 will provide an improved example, a = 1 or ~. 

version 0~(N). In this subclass, the "optimal" choice works out when a = 1. In 

other  words, the result quoted right before this example also holds if both B and 
D are negative. 

3. Piecewise sequential estimation of means 

Recently, Bose and Mukhopadhyay  (1993) proposed a piecewise est imation 
methodology along the lines of Mukhopadhyay  and Sen (1993) for the problem 
discussed in Subsection 2.1. Suppose there  are p (_> 2) locations or individuals, 
and each is going to est imate A in the one-sample case simultaneously in a parallel 
network and finally obtaining an es t imator  of A by combining resources obta ined  
from all the components  together .  First,  we discuss the aspects of improved es- 
t imators  of A in the framework of Bose and Mukhopadhyay  (1993). Then,  we 
introduce the piecewise methodology for the multi-sample problem of Subsection 
2.2, followed by similar, but  corresponding discussions of associated improvement  
aspects. 

3.1 The one-sample problem 

Let X i l , X i 2 , . . . ,  X in~ , . . .  be the sequence of i.i.d, r andom variables having 
the p.d.f, given by (1.1) associated with the i - th  individual, i -- 1 , . . . , p .  One 
writes J~i(ni) n [  1 n~ = E j = x X i j ,  n = ( n l , . . . , n ; ) ,  n = EiP__lni, i = 1 , . . . , p  and 

the pooled estimator of A is 

p 

( 3 . 1 )  Tp(n) = n -1 E nizYi(ni)" 
i=1  

Along the lines of (1.2), suppose tha t  the loss function in es t imat ing A by Tp(n) 

is given by 

(3.2) L(n_) = A[Tp(n) - A] 2 + cn, 

where A and c are the same known positive numbers  as before. The  risk associ- 
a ted with (3.2) is then  R(n,  c) = ElL(n) ]  = AA2n -1 + cn, which is minimized if 

n = n* = (A/c)X/2A. Instead of est imating n* as a whole, Bose and Mukhopadhyay  
(1993) proposed tha t  the i - th  individual est imates n* = p-17t*, i = 1 , . . .  ,p and 
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they considered p separate and independent stopping times. Each of the p indi- 
viduals starts with m (>_ 1) samples and proceeds purely sequentially according 
to the stopping variable, 

(3.3) Ni = inf{n >_ m :  n >_ p- l (A/c) l /2 f ( . i (T t )}  , 

i = 1, . . .  ,p. Finally, one combines all the samples thus obtained and estimates A 
by means of Tp(N). Bose and Mukhopadhyay (1993) showed that 

(3.4) E[L(N)] -- R(n*, c) + 3c + o(c), 

if m > 3, where n* -- (n~, . . . ,np) .  

Along the lines of (2.2), let us consider a class of estimators for A given by 

(3.5) Aa(P, N)  = Tp(N) + a(c/A) 1/2, 

f o r a E R s u c h t h a t 2 a > a  2. 
One combines (2.3) and uses tools from Bose and Mukhopadhyay (1993) to 

write (if m > 3), 

(3.6) E[rp (N) - A] = ;E[N1 (21(N1) - 

= _An*-1 + 0(£ /2) .  

Thus, 

(3.7) 

for m _> 3, one combines (3.1)-(3.6) to write 

E[A(A~(p, N)  - A) 2 + cN] 

= E[A{Tp(N)  - A} 2 + cN] + 2a(Ac)I /2E[Tp(N) - A] + a2c 

= R(n*, c) + 3c + ca 2 - 2ac + o(c). 

That is, ~a(P, N) will asymptotically dominate Tp(N) up to the o(c) term if 2a > 

a 2. The asymptotic "gain" in risk is obviously maximized if a = 1. This is clear 
from (3.7). In other words, (3.5) provides a class of estimators dominating the 
Bose and Mukhopadhyay (1993) estimator Tp(N), while the "best" one in this 

class turns out to be A1 (P, N).  

3.2 The multi-sample problem 
First we propose a piecewise sequential analogue of Mukhopadhyay and 

Chattopadhyay's (1991) estimation procedure. Then, we address the associated 
improvement aspects. Suppose we have X~j l ,X~ j2 , . . . ,  X i j ~ 5 , . . .  i.i.d, from the 
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j - t h  "location", corresponding to the i-th t rea tment  (population),  say, character- 
ized by the p.d.f, f ( x ; ; ~ ) ,  as in Subsection 2.2, j = 1 , . . . , p~  (> 2), i = 1 , . . . , k  

k (> 2). Let 0 = }-~'-i=1 biAi where b l , . . . ,  bk are known and non-zero real numbers  
as before. Let us write P = ( P l , . . . , P k ) ,  ni = (n i l , . . . , n ip~)  and n = ( n l , . . . , n k )  

for i = 1 , . . . ,  k. Now, the parameter  )~i will be es t imated by 

Pi 

(3.8) =   j2j(n j), 
j = l  

- -  Pi where f ( j ( n i j )  = nij  1 }-~.z'~ X i j t ,  ni = E j = I  ni j ,  i = 1 , . . . ,  k. Thus, 0 is es t imated 
by means of 

k 

(3.9) e )  = 
i = l  

which is the piecewise version of T(n)  considered in Subsection 2.2. Suppose that  

the loss function in est imating 0 by T(P, n) is given by 

k 

(3.10) L(n) = A[T(P, n) - 012 + c E ni, 
i=1  

along the lines of (2.5). The associated risk is given by R(n ,c )  = E[L(n)]  = 

k rAb2)~2 -1 * = (d/c)l/21bil)~i , for i = ~-~i=1[ i i n i  + cni], which is minimized if ni = n i 
1, . . . ,  k. Now, each "location" within the i-th populat ion starts  sampling with rni 
(k  1) observations and let 

(3.11) Niy = inf{n _> mi  : n >_ pCl (A /c ) l /21b i l f~ j (n ) } ,  

for j = 1 , . . .  ,Pi and i = 1 , . . . ,  k. In other words N i l , . . . ,  N~p~ are i.i.d, est imators  
of nij  -- Pi n i ,  tha t  is, all Pi pieces in the j - t h  population,  when combined, 
est imate n*. Finally, we propose to est imate 0 by means of T(P, N) .  Now, after 

utilizing (3.8)-(3.11), the associated risk is given by 

k 

(3.12) E[L(N)]  = E E[b2A{TiP' ( N  i) - Ai} 2 + cNi] 
i : 1  

+ 2A ~ ~ bibiE[Tip~(N{) - l{]E[Tzp~ (Nl)  - All 
l<i<l<_k 

---- I ÷ II, say. 

Here, we obviously write Ni P~ = }-~-y=l N i j .  Now, from the theorem of Bose and 
Mukhopadhyay  (1993), it follows that  

(3.13) I = R(n*,  c) + 3kc ÷ o(c), 
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if min{m~, . . . ,  mk} > 3. Next, utilize (3.6) to evaluate II and verify that 

(3.14) E[T~p~ (Ni) - li] = - t i n ~  -1 + o(cl/2), 

if min{ml , . . .  ,mk} _> 3. Hence, from (3.12)-(3.14), one can write 

(3.15) E[L(N)] = R(n*,c) + 3kc + 2c E E d{dl + o(c), 
l_<i<l_<k 

if m i n { m l , . . . , m k }  > 3 where d{ = bi/Ib{l for i = 1 , . . . , k .  The second- 
order expansion of the associated regret is then same (up to o(c)) as that for 
the original purely sequential estimator of 0 proposed in Mukhopadhyay 
and Chattopadhyay (1991). This is clear from (3.15). However, the piecewise 
methodology (3.11) has significantly more operational convenience than the 
Mukhopadhyay-Chattopadhyay procedure. On top of that we can unbiasedly es- 
timate the Var(N{) by 

Pi 

(3.16) zxi : p{(p, 1) -1  -1  x , 2  
- -  - P i  i )  , 

j = l  

where recall that N~ P~ = }-~j=l Nij, i = 1 , . . . ,  k. The type of estimators proposed in 
(3.16) was originally put forth in Mukhopadhyay and Sen (1993) for the one-sample 
normal problem. 

Now, consider the following class of analogous improved version of T(P, N) in 

order to estimate 0. Let us define 

(3.17) O~(P, N) : T(P, AT) + a(c/A) 1/2, 

where a E R such that 2a~-~/k ldi  > a 2. Obviously, for min{ml , . . .  ,mk} >_ 3, 
from (3.6) one obtains 

k 

(3.18) E[T(P, N) - O] = -(c/A) I/2 E di + o(ci/2), 
{:1 

and hence from (3.17)-(3.18), 

(3.19) E[A(0a(P, N) - 0) 2 + cAr] 

k 

= E[A(T(P, AT) -- 0) 2 + cN] + ca 2 - 2ac E di + o(c). 
i : 1  

That is, in view of (3.15) and (3.19), 0a(P, N) asymptotically dominates T(P, N) 

k a 2 up to the o(c) term if 2a ~i=l  di > The asymptotic "gain" in risk is obviously 
k d maximized if a = }-~i=1 i. In other words, (3.17) provides a class of estimators 

k dominating T(P, N), while the best one in this class is obtained when a = ~ = 1  di. 
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Appendix 

Here we provide a proof of (3.6). We write I( .)  for the indicator function of 
(.). Observe tha t  

(A.1) E[NI(XI(N1)  - A)/N] = AE[(Sl(N1) - N1)/N] 

where one writes S l (n  ) = E i L 1  Y/ and 7~ = N 2 n ~  - 1  - SI(N1), the Y's being i.i.d. 
s tandard  exponentials. Note tha t  7~ is the overshoot for the stopping variable N1 
defined in (3.3). 

Now, n * N  -1 = n * - l { ( N  - n*)2N -1 - N + 2n*} and hence (a.1) leads to 

(A.2)  (Sl( ]V1)  -- N1)/]~ 

= _ n . _ x { ( N l - n ~ ) 2 f t *  , n* ~ * }  
x + (Xl  -  I)N - 

= n*-l{I1 + I2 -- I3}, say. 

From Lemma 2.3 and Theorem 2.3 of Woodroofe (1977), one respectively 
obtains 

( 1 . )  . - m  ( ) 
(A.3) P N1 _< ~/~t I = O(n 1 ), r N _< 2 n* = O(n*-m) ,  and 

1 
(X.4) IN;I ~ is uniformly integrable i f m  > ~s  for s > 0, 

where N{ = (N1 - n'{)/nl 1/2 which converges to N(0,  1) in distribution. 
Let us evaluate the te rm 11 in (A.2). Since N { 2 n * N - I I ( N  > ~ * _ ) <_ 2 N ;  2, 

£ 2 the 1.h.s. is uniformly integrable if rn _> 2. Also, the 1.h.s. ~ X1, hence E ( I I I ( N  > 
1 * 1 * 7z ,E1/2  ~n )) = 1 + o ( 1 )  if m _> 2. But E [ N ; 2 n * N - 1 I ( N  < 7n )] _< (N~4) • 

1 * P1/2(N < gn ) = n*O(1)O(n *-~/2) = o(1) if m _> 3. Thus, 

(A.5) E(I1) = 1 + o ( 1 )  if m_>3 .  

This follows after repeated use of (A.3) (A.4). 
Now, we consider I3 in (A.2). Let D = ~'~--1 n - l E [ S l ( n ) - 2 n ]  + and ~ = l - D ,  

where x + stands for max(0, x). Since T~n*N-1I(N > 1 * 
_ ~n ) _< 27~, from Lemma 

2.1 of Woodroofe (1977) it immediately  follows tha t  E[7~n*N-1I(N > 1 • _ ) ]  = 

+ o(1) if rn _> 2. On the other  hand, note tha t  E [ ~ n * N - 1 I ( N  < ~n*)] _< 
1 . n*E1/2(T~2)p1/2(N < gn ) = n*O(1)O(n *-~/2) = o(1) if m _> 3, in view of (A.3) 

and Lemma 2.1 of Woodroofe (1977). Thus, 

(A.6) E(I3) = ~, + o(1) if m _> 3. 
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Let us now evaluate the term I2 in (A.2). One notes that 

(A.7) I2 = (N1 - n ~ ) n * - l { ( N -  n*)2N -1 - (N - n*) + n*} 

= ~ t * - l ( N 1  - n ~ ) ( N  - n*)2N -1 - n*-~(N1 - n~) (N  - n*) 

= I21 - I22 + I23, say. 

Observe tha t  

(A.8) IE(I21)I < n~l /2n*- lE[{lN1 - n~[/n*~/2}{(N - n*)2/N}] 

<_ O(n*- l /2 )E1/r[{ lN  1 -- n~l/n*ll/2}r]E1/S[{(N _ n*)2/N}S], 

by Holder's inequality where r > 1, s > 1 and r -1 + s -1 = 1. Now, by (A.4), 

. , .1/2 1 On the other hand, { ( N - n * ) 2 / N } S I ( N  > E [ { l N l _ n l  / n  1 }r] < oc if rn > ~r. 
~nl .) _< 2 S { [ N _ n  • I/n*1/2} 2s, and the r.h.s, is uniformly integrable if rn > ½ (2s) = 
s. This can be verified along the lines of part  (ii) in Theorem 3.2 of Mukhopadhyay 
and Sen (1993). Thus, E [ { ( N -  n * ) 2 / N } S I ( N  > 1 • _ ~n )] < oc i f m  > s. Also, 

1 * 1 . E [ { ( N -  n * ) 2 / N } S I ( N  < gn )] < E [ { ( N -  n*)2}*I(N < -~n )] < O(n*2~)p(N < 
1 * ~n ) = O(n *2s-'~) = O(1) if m _> 2s, by (a.3).  Tha t  is, E[{(N - n*)2 /N}  *] < oc 

1 and if m >_ 2s. In other words, from (A.8) one obtains E(I21) = o(1), if m > 7r  
5 m_> 2s. Now, plug i n s =  a a n d r  = 5, and henceE(I21)  = o ( 1 )  if m_> 3. For 

P the term I22 in (A.7), let us first write tha t  I22 = n*- l (N1 - n~) 2 + ~ i=2(N1 
n*?n *-1 and hence for m > 2, - i ,  , 

E(I22) * * *2 =- ( n l / r L ) E [ N ~  ] ~- ( p  - 1 ) r t * - l E [ ( N 1  - n ~ ) ( N  2 - r t~) ]  

= p - l ( 1  + o(1)) + (p - 1 ) n * - l { ( B  ' - 1) -]- O(1)} 2 

= p--i q_ O(1), 

in view of (A.4). Obviously, E(I23) = (~ - 1) + o(1) for m >__ 2. Thus, from (A.7), 
one obtains 

(A.9) E(I2) = _p-1  _~_ (// _ 1) -[- O(1) if m >_ 3. 

Now, combine (A.2), (a.5),  (A.6) and (A.9) for m >_ 3 to conclude tha t  

E[(SI(N1) - N1)/N] 
= n , - 1 { 1  _ p - 1  + 1)  - + o ( 1 ) }  

: - ( p n * )  - 1  + o ( n * - l ) .  

This leads to (3.6). 
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