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Abstract .  The large-sample frequentist property of a frequentist bootstrap 
for a posterior mean with respect to a Dirichlet prior of the survival function 
for a randomly censored data is given. The weak convergence of a bootstrap 
version of the Susarla-Van Ryzin estimator is established on the whole real line. 
An illustration of the technique and some Monte Carlo studies are also given. 
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i .  Introduction and the main result 

Recently Lo (1993) introduced a Bayesian analogue of Effort's (1981) bootstrap 
method for censored data (CDB), called the Bayesian bootstrap for censored data 
(CDBB), and developed a (first-order) large-sample theory. Lo's CDBB is defined 
by replacing the l 's  in the Kaplan-Meier (KM) estimator (cf. (1.2) below) by stan- 
dard i.i.d, exponential random variables; and is a natural extension of Rubin's 
(1981) Bayesian bootstrap for complete data. (See also Lo (1987, 1988) and Weng 
(1989).) Both Rubin's Bayesian bootstrap and Lo's CDBB are based on simula- 
tion where Efron's CDB is based on resampling. Akritas (1986) showed that, for 
almost all sample sequences, Efron's CDB estimator for the underlying survival 
function, when suitably normalized, converges weakly to a Brownian bridge. Lo 
(1993) established a similar result for the CDBB, thus implying that  the CDB 
and the CDBB are (first-order) asymptotically equivalent, and both are consistent 
bootstrap methods in approximating the sampling distribution of the KM estima- 
tor (Breslow and Crowley (1974) and Gill (1983)). Reid (1981) discussed another 
resampling method for censored data; Akritas (1986) showed that  Reid's method 
and Efron's CDB are not asymptotically equivalent. 

In this note, following Efron (1981), we propose a resampling method for 
censored data by resampling from the posterior mean of the survival function, a 
Dirichlet process prior derived by Susarla and Van Ryzin (1976). We shall call 
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the proposed resampling as the frequentist bootstrapping of the Bayes estimator 
for censored data (CDFBBE). 

Let X1,. •., X~ be survival times which are censored on the right by n follow- 
up times, Y1,... ,Y~. Assume that Xi 's  are i.i.d, with survival function (s.f.) F,  
and that Yi's are i.i.d, with s.f.G. Let the support of F and G lie in R + = (0, oc). 
Define, 

(1.1) Zi = X i  A Yi, 5i = l[Xi  <_ Y/]; i = l , . . . , n ,  

where a A b = min(a, b) and 1 [A] is the indicator of the event A. Define, the s.f. of 
Zi's by H - F G  with rH = sup{t : H(t)  > 0}. The Zi's represent a censored or 
uncensored observation according as 5i is 0 or 1. 

Following Lo (1993), let t(1) < "'" < t(k) be the distinct ordered values for 
times to death (uncensored data). For j = 1 , . . . ,  k, let D(j )  = {i:  Zi = t( j ) ,  5i = 
1} and R( j )  = {i : Zi > t(j)}. Then, the KM estimator of F is defined by 

(1.2) ({ / ~(t)= l-I 1- ~ 1 ~j)  
j:t(j)<t qED(j) q 

Efron's CDB is the KM estimator of F based on a (bootstrap) sample taken 
with replacement from (Zi, 5i), i = 1 , . . . ,  n, where as Reid's bootstrap estimator 
of F is the empirical distribution function of an i.i.d, sample from (1.2). Lo's 
(1993) CDBB is given by 

(1.3) 
j:t(j)<_t [ qED(j) [qCR(j) 

where T 1 , . . . , T n  are i.i.d, standard exponential random variables. (Note the 
change in notations in (1.3) from Lo (1993).) 

Let (1 - F)  be a Dirichlet process on R + with parameter c~ (Ferguson (1973) 
and Ferguson et al. (1992)). Suppose that (Y1,. . . ,  Y~) is independent of (F, X1, 
. . . ,  X~). Susarla and Van Ryzin's (1976) nonparametric Bayes estimator of F is 

given by 

(1.4) P~(t) = S . ( t ) W n ( t ) ,  t > O, 

where 

B~(t) = (~(t, o~) + nH~(t) ) / (~(U +) + n), 
f l  {ct[Zj,°c)-~nHn(Zj)-I-1} l[6j=O'Z'<-t] 

w~(t )  = 7[z-j:;o-) + ~ n ~ ( z j )  
j = l  

and Hn is the empirical s.f. of the Z's given by nH,~(t) = }-~-i~1 l[Zi > t]. 
Let an estimator of the censoring s.f. be given by G~, where 
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The G~ should be viewed only as a Bayes-like approximation to a maximum 
likelihood estimator of G. This estimator is not a NPB estimator of G as B~ is 
not a NPB estimator of H.  (Indeed, Bn is a NPB estimator of H is a true fact 
only if a priori H is Dirichlet with parameter c~.) 

Following Efron (1981), the proposed CDFBBE is defined as follows: let 
X ; , . . . , X *  be i.i.d, with distribution function (1 - _P~) and let I"1",..., Y~ be 
i.i.d, with distribution function (1 - G~), and define 

(1.6) Z / = X * A Y / *  and ~=I[X~*_<Y/*],  i = l , . . . , m .  

Define, ^* Ga, B~,  W~ and H~  as using (1.4) and (1.5) except now evaluate the F~, ^* 
functions at the bootstrap sample (1.6) rather than the original data (1.1). Also, 
define T~n = maxl<i<m Z*. 

Note that, as pointed out by a referee, the CDFBBE allows user input of prior 
information through the choice of the Dirichlet parameter c~. Let Q-1 = 1/Q, 
not the function inverse, and let ~) = 1 - Q. Let D[0, ~-H] be the space of cadlag 
(right continuous with left limits) functions with the Skorohod metric. Define the 
process, 

(1.7) x;(t) = v {P2(t)- L(t)}P21(t). 

The main result is given below. 

THEOREM 1.1. Let R and G be continuous s.f. on ~+. Then given the data 
(1.1), the process X ~ ( t )  in (1.7) converges weakly to X ( t )  on D[0, ~-H], as n and m 
tend to infinity, for almost all sample sequences (Z1, 51 ) , . . . ,  (Z~, 5n), where X ( t )  
is a mean zero Gaussian process with covariance function 

f 
s A t  

C(s, t) = H - 1 F - l d F .  
J O  

Note that this result is the large-sample property of the CDFBBE on the 
entire space D[0, TH]. Thus, if c~ -- 0, Theorem 1.1 is an extension of Akritas' 
result to D[0, TH] rather than to the subset D[0, rH). The extension of Gill's 
(1983) classical results on the weak convergence of the normalized Kaplan-Meier 
process on D[0, ~-H] has been studied by Ying (1989). 

The proof of Theorem 1.1 is given in the Appendix. In Section 2, we use this 
theorem to construct confidence bands for the survival function. 

2. Confidence band for the survival curve 

In this section we show how the weak convergence theorem of the previous 
section may be applied to obtain simultaneous CDFBBE confidence bands for the 
survival curve. The bands that we construct are asymptotically correct and do not 
require tables for construction. Similar bands for Efron's CDB were constructed 
by Akritas (1986). We will compare our CDFBBE bands to those of Akritas' CDB 
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bands and illustrate that  the CDFBBE bands have similar coverage but narrower 
width. 

To construct the confidence bands we first need to make some remarks about 
the limiting Gaussian process in Theorem 1.1. The results of this theorem may 
be reformulated to say that the process Z,~ (t) = v ~ { F ~  (t) - F~ (t)} convergence 
weakly to B°(K(t))F(t)/K(t) as rn and n --~ oc, conditionally almost surely, where 
B ° is a Brownian Bridge, 

[(/o ,tl] K(t) = 1 + H-~(s)dAQs , 

and A F is the cumulative hazard function of F.  Define K~ to be the empirical 
estimator of K,  obtained by substituting in K the empirical analogs of H and 
A. Note that the bootstrapped process Zm and the non-bootstrapped process 
v~{ /~ ( t )  - F(t)} converge to the same limiting Gaussian process. Therefore, if 
one would compute a constant C,~(/#~) from the bootstrap distribution that is 
such that 

P rn /2 sup 
O<~<"/'H 

= 1 - a ' ,  

(r~(t) - -f'.(t)) \ F.(t) /I < c (L) (Zi,5i),i = 1 , . . . , n }  

one would have the desired coverage probability (1-a t ) .  Note that  if one computed 
a constant Cn(F) as above, however, from the non-bootstrap distribution, C,~(F~) 
and C~(F) would be asymptotically equal as rn and n --+ ec. These results may 
be proved by applying the continuous mapping theorem (cf. Billingsley (1968), 
Section 1.5). Using the bootstrap critical value one may construct the confidence 
band 

\ K n ( t ) J  

< F(t) ~_ ~f'~(t) + L(t) 
tic(t)/ 

for each of the B bootstrap samples, then approximate Cm (Fc~) by the 100(1-a ' )% 
percentile of the frequency distribution of these numbers. 

Now we present the Monte Carlo studies. Following Akritas (1986), in the first 
study the survival times are generated from the unit exponential distribution with 
distribution F(x) = 1 - e  -x, x > 0, and the censoring times from the uniform (0, b) 

as a 100 (1 -  o?)% confidence band for the unknown survival function. From 
Theorem 1.1 it follows that  to construct a 100(1 - a / ) %  CDFBBE confidence band 
one must compute 

^ ,  
sup ( r 2 ( t )  - 

O<t<'rH 
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Table 1. Achieved confidence levels with 1,000 simulations using random samples of size n = 30 
from unit exponential  and uniform censoring distributions. 

a/  20%Censor ing  40%Censor ing  

.01 .009 .019 

.05 .053 .062 

.10 .O94 .O89 

.20 .194 .177 

Table 2. Simulated data  with exponential  survivals and uniform censoring. A comparison of 
the lengths of the CDB, the CDBB and CDFBBE are given. 

20% Censoring 40% Censoring 

x LCDB LCDBB LCDFBBE LCDB LCDBB LCDFBBE 

• 10 .2943 .2941 .2911 .2721 .2793 .2839 

.25 .2943 .2913 .2718 .2721 .2797 .2992 

.50 .3109 .3001 .2669 .3555 .3249 .3044 

.75 .3099 .2992 .2752 .3555 .3249 .3094 

1.00 .3094 .2992 .2639 .3555 .3252 .3091 

1.25 .3094 .2989 .2642 .3642 .3252 .3162 

1.50 .3327 .3164 .2701 .3442 .3441 .3201 

1.75 .3327 .3241 .2745 .3793 .3676 .3349 

2.00 .3672 .3367 .2837 .3793 .3553 .3416 

2.25 .3672 .3375 .2842 .3793 .3653 .3502 

2.50 .3551 .3241 .2938 .4014 .3894 .3567 

distr ibut ion with 20% and 40% censoring (b = 4.9651 and 2.2316, respectively).  
We generated 1,000 simulations using random samples of size n -- 30. The  achieved 
confidence levels using the above C D F B B E  confidence band are given in Table 1. 
We chose the paramete r  of Dirichlet process a to be given by a (x )  = e - x ,  x > O. 

(In this s tudy  we have not considered the effect of varying F and c~. This is an 
interesting problem for future research.) 

In the second s tudy  we compared  the lengths of Akri tas '  CDB and Lo's CDBB 
bands with the corresponding lengths of our C D F B B E  bands. Once again we 
generated survival t imes from the unit  exponential  dis tr ibut ion and the censoring 
t imes from the uniform (0, b) dis tr ibut ion with 20% and 40% censoring. We took 
n = m = 30, and B = 200. The  paramete r  a was taken to be a ( x )  = e x 

x > 0. The  bands were const ructed  to have 90% coverage. The  results are given 
in Table 2 wherein LCDB, LCDBB and L C D F B B E  represent the lengths for the 
CDB, the CDBB and the C D F B B E  bands,  respectively. 

The  results of the simulations are quite clear. The  achieved confidence levels 
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are quite close to the nominal levels. This is also true in the CDB simulation 
of Akritas ((1986), Table 2). As for the lengths of the CDB, the CDBB and the 
CDFBBE bands, it appears that  the CDFBBE bands are in general narrower than 
the CDB bands which in turn are narrower than the CDBB bands. As a referee 
pointed out a narrower band is not always better. In fact, one could use a point 
mass distribution at the Kaplan-Meier estimator as a basis for bootstrapping, re- 
sulting in a band with zero width. The not yet available second-order results for 
censored data bootstraps will have the final word. It is also noted that  the CDF- 
BBE and the CDBB bands are smoother than the CDB bands. This should not 
be surprising since the KM estimator is a step function, where as NPB estimator 
is not. Both the KM and the NPB estimators are discontinuous at the uncen- 
sored observations (provided a(.) is continuous). However, the NPB estimator is 
a smooth estimator resulting in the continuity at censored observations (provided 
a(.) does not have any point masses). Thus, while the KM estimator have hor- 
izontal parts the NPB estimator is strictly decreasing. Therefore, it follows that  
the CDFBBE and the CDBB bands will be narrower and smoother than the CDB 
bands. 
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Appendix 

The proof of Theorem 1.1 is based on Akritas' martingale arguments, and the 
following lemmas. 

LEMMA A.1. Under the conditions of Theorem 1.1, 2C~ has the same asymp- 
totic behavior as the process 

(A.1) 
- - 1  - (0) Ym "~ VI'-'~B~-n l{~*m- Bn}-[- ~ [L' ~][]~-ld}7]~°) - L Hn d~-]n ] 

= Yl,~ + Y2,~, say, 

.-o(O) ~ .~ , ( o )  .~ 
where n u  n (t) = E i = l  l[Zi <_ t, Si = 0] a n d m ~  m (t) = ~ i=1 l[Zi* -< t, 6~ = 0]. 

PROOF. Apply an argument similar to the one used by Susarla and Van 
Ryzin (1978) in Lemma 4.1 and Corollary 4.1. [] 

LEMMA A.2. The process Yl,~ in (A.1) has the same asymptotic behavior as 

y *  = - a S } ,  lm 

where AH(t) = fo Hn l ( s )d~n ( s )  and A H• (t) = fo H*-l(s)dH*~(s)" 
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- = H,,,llo Op('fft-1), Note tha t  liB. H~II;" Op(Tt -1) and I I B ~ -  * ~" = 

v ~ H ~  {Hm -- H.}llg" = O p ( m - 1 )  • IlYl.~ - - 1  * 

Also, if AH(t) = fo H- l ( s )  d[-I(s) is the cumulative hazard function of H,  we have 

- v / n H - l  {[]-] n - H} = V~ j~ o" HnH- l  d[A H - AH]. 

Therefore, the Glivenko-Cantelli and the Lebesgue Dominated Convergence theo- 
rems imply that 

v~IIH-I{H~-H}+{AB~ -AH}II'~" P~O as n ~ o c .  

A similar argument for the bootstrap versions of these processes implies that 

(1.3) {ZI IH~I{H;~  - H,}  + {A~ B* _ ;'~AH* ~H~-j,,o £ 0 

as m--- ,oo and n ~ c o .  

Finally, by applying the triangle inequality to (A.2) and (A.3) the results follows. [] 

PROOF OF THEOREM 1.1. Define the true and empirical cumulative hazard 
rate of G as 

/0 /0 A a ( t )  = G-l(s-)dG(s) a n d  a ~ ( t )  = H~l(s-)dH(~°)(s). 

G* Let AG~ * be the bootstrap analog. Clearly, Y2m in (A.1) is equal to x/~{A,~ (t) - 
Aa(t)}. Therefore, Lemma A.2 implies that  

IIZZ(t) v ~ { A a ( t )  AO(t)} v ~ { A ~ * ( t )  H ~. - * - - - A  s ( t ) } l l  o P O  

as re-+co and n--~co.  

The relation H ---- FG implies that A H -- A F + A c, and hence 

I I X ~ ( ~ )  - z~(t) ll~ ~ ~ o 

v ~ { A ~  (t) - At ( t )} ,  where Z~( t )  = F* 

/0 AnF(t) = [H]nl(8-)dO--](1)(8), 

and A F* is the bootstrap analog of A F. 

as m --+ c~ and n --+ co, 

n 

nHO)(t) : E l [Z i  _( t, Si = 1] 
i = 1  
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Following Akritas (1986), define the square-integrable martingale 

M*( t )  = x / ~  [H(ml)*(t) - ffotH~n(s-)dAF~(s)l. 

Then, it may be shown that the process Z *  may be expressed as the stochastic 
integral (cf. Gill (1980), p. 37) 

f0 t x ~ ; ( t )  = J;(s)(Hm(S-))* * - 1  dM~(s),* 

where J~n(s) = 110 < s < T ~ ] .  Applying the results of aaeod (1975), the bracket 
function of M *  is given by 

f0 t ( M * ) ( t )  = H ~ ( s - ) ( 1  - AA~(s))dA~(s), 

where for a right-continuous function A, AA(t) = A(t)- A(t-). Hence the bracket 
function of the stochastic integral Z *  is given by Lipster and Shiryayev ((1978), 
pp. 268-276) 

~0 t ( Z * > ( t )  = J ~ ( s ) ( H ~ ( s - ) ) - l ( 1  - AA~(s))dA~(s). 

Since J*(s) L 1 on [0, rH], we have 

fo' fo' (Z~n} (t) -~g H-I(s)dAH(s) = H-l(s)F-l(s)dF(s) 

uniformly on [0, 7H]. Hence, following the approach of Akritas (1986), an applica- 
tion of Rebolledo's (1980) central limit theorem yields that Z *  (t) converges weakly 
to the Gaussian process X(t) on D[0, ~-H]. Note that Z *  is a stopped process, and 
what we have proved is that X'*(t A Tr~ ) converges weakly to 2( on D[0, TH]. 

We now show that the process X*, not a stopped version, converges weakly 
on D[0, TH]. First, note that for large m, I IP j l ( t - ) l l ; "  < oc by applying the 
definition of ~-H. Next define, pC = inf{t : v~ {P~ ( t )  - P~(r~)} = c}. An easy 
calculation shows that 

P ( v / ~ { P ~ ( T L )  - P~(~- . )}  > ~) _< P(T;n  S P~) = (1 - B~(p~))  m 

= (1 - ~ d . ( p ~ ) / 4 - ~ ) ' ~ £ o  as m --e oo. 

Therefore, I I X * ( t A ~ c * ) - X ~ ( t ) I I ~  ~ < V~IIP~(t-)}I~"IIP~(T~)-~(~H)II~" £ o  
as m --~ 0% and the desired results on the entire space D[0, ~-H]. This type of 
argument first appeared in Ying (1989). 
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