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Abstract. Let f(w) be the spectral density of a Gaussian stationary pro-
cess. Consider periodogram-based estimators of integrals of certain non-linear
functions ¢ of f(w), like Hr := fjﬂ A(w)¢(IT(w))dw, where A(w) is a bounded
function of bounded variation, possibly depending on the sample size 7. Then
it is known that, under mild conditions on ¢, a central limit theorem holds for
these statistics Hr if the non-tapered periodogram Ir(w) is used. In particular,
Taniguchi (1980, J. Appl. Probab., 17, 73-83) gave a consistent and asymptotic
normal estimator of ffﬂ A(w)®(f(w))dw, choosing ¢ to be a suitable transform
of a given function ®. In this work we shall generalize this result to statistics
Hr where a taper-modified periodogram is used. We apply our result to the
use of data-tapers in nonparametric peak-insensitive spectrum estimation. This
was introduced in von Sachs (1994, J. Time Ser. Anal., 15, 429-452) where
the performance of this estimator was shown to be substantially improved by
using a taper.

Key words and phrases: Gaussian stationary process, spectral density, peri-
odogram, data-taper, peak-insensitive spectral estimator.

1. Introduction

Using data-tapers in periodogram-based spectrum estimation is a well-known
remedy to reduce leakage effects (see e.g. Tukey (1967), Bloomfield (1976)), in
particular if the spectrum contains high peaks. The usual asymptotic properties
which hold for non-tapered statistics carry over to the taper-modified estimates, if
these depend linearly on the periodogram (like smoothed periodograms, integrated
periodograms, estimators of the spectral distribution function), see e.g. Brillinger
(1981) and Dahlhaus (1983, 1985, 1988). So it is of general interest whether this
is still true for a kind of estimators with a non-linear functional dependence on
the periodogram ordinates, i.e. like those considered in Taniguchi (1980) for the
non-tapered case:

* This work has been supported by the Deutsche Forschungsgemeinschaft.
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454 RAINER VON SACHS

Given a real-valued Gaussian stationary time series X with mean 0 and spec-

tral density f(w), and given a sample X1, ..., X of size T, consider the following
statistics:
(11) Aw)C(Ir (w))do,

—T7

where ( is a certain non-linear function, I'r(w) denotes the periodogram of X1, ...,
X7 and A(w) is a bounded function of bounded variation, possibly depending on
the sample size T. Note that this allows to consider both kernel estimators and
integrated ((I7(w)) (i.e. Alw) = 1 or A(w) = 1{_rj(w) for fixed A € (—7,7]).
Then it is known that, under mild conditions on {, a central limit theorem holds
for these statistics (1.1) if the non-tapered periodogram Ir(w) is used. In par-
ticular, Taniguchi (1980) gave a consistent and asymptotic normal estimator of
[ Aw)®(f(w))dw, choosing { to be a suitable transform (inverse Laplace) of an
appropriate given function @ (to introduce asymptotic unbiasedness of the result-
ing estimator).

In this work we shall generalize this result to statistics of the form (1.1) where
a taper modified periodogram is used (cf. Dahlhaus (1985), for linear statistics).
Again, as mentioned above, the resulting estimator will profit from reduced leak-
age, e.g. leading to a faster decay of the bias for spectra with high peaks (see in
particular Dahlhaus (1988)). Concerning the proof of this central limit theorem
(CLT), introducing data-tapers essentially changes the covariance structure of the
periodogram ordinates, such that, e.g., the proof of Taniguchi (1980) does not
work any longer without essential modifications (cf. also Remark 5.1 in Section 5).

As application, we give the proof of asymptotic normality (including con-
sistency) of the tapered peak-insensitive nonparametric spectral estimator, in-
troduced in von Sachs (1994), henceforth referred to as vS. There, a particular
choice of ¢ (related to non-linear bounded ¥-functions, which typically occur in
M-estimation theory) yields a spectral density estimator that is insensitive to out-
liers in the frequency domain. In vS it was shown that the performance of this
estimator is substantially improved by the use of a taper (and the proof of the
central limit theorem, i.e. Theorem 3.2 of that reference, was postponed to this
work).

Note that the proofs in both situations (tapered and non-tapered) only work
with Gaussian time series data as they heavily depend on the use of the normal
distribution function. (It is still an open problem how to treat the non-Gaussian
case though it might be possible to carry over some of these ideas.)

Our paper is organized as follows: In the next section we introduce the notation
for tapered nonparametric spectrum estimation and state the assumptions which
are to hold throughout this work. Section 3 gives the main line for proving the
central limit theorem, where lemmas and auxiliary results as well as their proofs
are postponed to the appendix, which is Section 5. Section 4 finally deals with
applying our results to the specific problems as in Taniguchi (1980), henceforth
referred to as TG, and in vS.



NON-LINEAR TAPERED SPECTRAL ESTIMATES 455
2. Preliminaries

Let Xi,..., X7 be a sample of a stationary real-valued Gaussian process { X;}
with EX; = 0 and continuous spectral density f(w) which is bounded away from
zero. Let

T 2

Z hy - Xte-'iwt

t=1

Ir(w) = (Hyp) ™"

—r<w<T

) — —_ ?

denote the periodogram of the sample based on the tapered data (h; - X¢)s=1,. 7.
Note that Ir(w) = (Hap) ™" - dr(w)dp(~w), where dr(w) = Y,_, by - Xpe it
denotes the finite Fourier transform of the tapered data. Here hy = h(t/T), t =
1,...,T, with a bounded real function h(x) of bounded variation and h(z) = 0 for
z ¢ (0,1). Hyr = Zle h? denotes the appropriate normalizing factor, for which
we assume Hyp ~ T (we follow the notation of Dahlhaus (1988)).

In order to restrict the dependence structure of the process X we impose

AsSUMPTION 1. Y |uc(u)| < oo, where c(u) = E[X ()X (t + u)] denotes the
autocovariance function of X. Let further Hr := [7 Ap(w)((Ir(w))dw, with
Ar(w) = nrA(w), where 77 is a sequence of positive numbers with 77" — oo, as
T — oo, and where A(w), w € Tl := (—n, 7], is a real-valued bounded function of
bounded variation.

For the function ((z) on the real line we impose the following assumptions:
AsSUMPTION 2. ((x) is a continuous function for z € (0, 00).

ASSUMPTION 3. For every positive integer m, [ |((z)|™ exp{—uz}dz exists
and is continuous on (0, co) with respect to u.

Note that Assumption 3 is met if we impose boundedness of ¢ (which will be
done in the context of peak-insensitive spectrum estimation, in vS).

Finally, only for technical reasons of proving the CLT by the chosen method
of cumulants, we need an additional assumption on the taper function h(x), for
which we give a more general definition:

Let 0 < p < 1 denote the proportion of the data which are going to be tapered.
In order to introduce a suitable kind of symmetry property of h(z), let

(21)  ho(z) = u(®/p)Ljo,0/2)(x) + 1[ps2,1-p/2)(®) + 0((1 = @) /)1 (1= pr2,1)(2),

where u and v are some real-valued functions of bounded variation on [0, 1] that are
symmetric around 1/2; with u(1/2) = v(1/2) = 1. Note that, with this definition
(2.1), h(x) := h1(x), and that with p tending to zero h,(z) converges to 1jg ()

ASsUMPTION 4. Let p depend on T like pr = ¢I'"# with 0 < 8 and some
constant ¢ which we set to unity without loss of generality.
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So we assume the taper to vanish asymptotically with rate 7-%. Note that
for 3 > 1 it is not necessary to give a new proof of asymptotic normality in the
tapered case: we can immediately proceed as in TG, as in this case, in the resulting
covariance matrix Y, (see Section 3), the covariances are of order O(T~1), as
it is in TG. Thus the only situation of interest is 0 < 8 < 1 (cf. also Remark
5.1). However, here no further assumption on the rate of decay will be needed
for the proofs such that 3 is allowed to be arbitrarily small! So Assumption 4
is not restrictive at all. Moreover, an asymptotically vanishing taper reflects the
practical situation where, with an increasing number T' of observations, it is less
important to taper the series.

3. Asymptotic normality

Let H :=limp_, o EHp and vp := Tn;l. Then the considered CLT states as
follows:

THEOREM 3.1. Under Assumptions 1 to 4,
v 2(Hp - H) B N(0,V),
where V' denotes the appropriate asymptotic variance.

Note that, by the asymptotic unbiasedness, this CLT includes consistency of
the statistical estimation functional Hy. Note also that the precise form of both H
and V depends on the kind of considered problem, i.e. the choice of the functions
¢ and Ar (cf. Remark 3.1): Examples are our two concrete applications, which
can be found in Section 4.

For proving the CLT 3.1 we shall approximate the integral Hr by the respec-
tive integral approximation zg of Hp: Let

N
ar =Ty Ar(we)SIr(wr)),
k=—N

where wy, = 2—;‘,—’9, k=-N,...,N,N=[T/2].
Then the following approximation holds:

LEMMA 3.1. |27 — Hr| = op(7;1/2).

With this lemma, we prove Theorem 3.1 by showing

THEOREM 3.2. Under the assumptions of Theorem 3.1,
W2 (e = H) 2 N(O,V),

In the following we give the main lines of the proof of this theorem. The
following propositions immediately yield Theorem 3.2 by the method of cumulants:
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PROPOSITION 3.1. limy_.e0 72! 2(Ezp — H) = 0.

PROPOSITION 3.2. limp_, o yr Var{zr} = V.
PROPOSITION 3.3. lim7_eo 71]—1/2 cump{zr} =0 for all L > 3.

To show these propositions we introduce the following setup: Let

Aj o= Ar(wy) = flw;) /222 (Har) ™2  Re(dr(wy))
and
B; := Br(wj) i= f(w;)"/?2"2(Har) ™% - Im(dr(w;)).

Then 1/2(4% 4+ B?) = f(w;) *Ir(w;), and we describe the m-th cumulants of
¢(Ir(wg)), for fixed order m > 1, by means of integrals of { w.r.t. the joint probabil-
ity density function (p.d.f.) of the Gaussian vector (Ar(wj,), Br(wy,))i=1,...,m With
wj, = 2r5;/T, j; = —N,...,N: it is distributed as N (02, Zom) with 2m x 2m-
matrix Yom = (X7 (wj,, wsi))ik=1,...,m, Where

o = [CovlAr(w;,), Ar(wj,)) Cov(Ar(ws,), Br(w;))
Prlso i) (COV(BT(WJ‘J, Ar(wj,)) Cov(Br(wj,), BT(wjk))) '

The corresponding p.d.f. writes as ¢om(y) = (27) ™(det Yom) /2 exp —(y,

Somy)/2dy, where y = (y1,¥2,. ., Um) = (Y11, Y125 Y21, Y225 - -} Ym1, Ym2) €
R? with y; = (yi1,y:2) € R?. The basic estimates for the elements of ¥ := Xy,
are Lemmas 5.1 and 5.2 in the Appendix, which yield that limy_, o Yo, = Io, and
limr_ o det o, = 1. (To be more precise the rates of convergence of det Xy, are
of the same order as those which will be derived in the sequel for the convergence
of the matrix elements of ¥3,,.) Hence, in the sequel, we shall omit (det Xy, )~ /2
in all occurring Gaussian p.d.f.’s (cf. equation (3.8)).

Now we introduce the characteristic function x(t), t = (¢1,t2,...,t1), of a ran-
dom vector that consists of L components with elements in {{(Ir(wj,))}i=1,... ms
with j; # +j for i # k, and with 1 < m < L (see Definition 3.1 below):

L L
x(t)=FE {exp {ZZtQH = /Rm Hexp{iti@}cbzm(g)dy,

where {; = C(f(wi)|lwill?/2) = ¢(f(wy,) (¥4 + y5)/2). Moreover, for 1 < m < L,
define the set I1,,, of indices j; as follows:

DEFINITION 3.1. (j1,...,jz) €& I p1, .o, pm > 0withpr +- - +py, =
Land 0 <j1 = - =Jp <Jp+1 = = Jpiips < " < JLopnt1 = " =JL <
N, where in the last line j; stands for |j;|, i.e. we do not distinguish between j;
and —j;!
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With this separation introduced

N

(3.1) cump{zr} =cump S 771 Y Ar(w;)¢(Ir(w)))
J=—N

L
= Z A(L’ m) Z Qjy - Qe Cum{le, o G }Tm

m=1 (1y---s JL)EM,
where a; ;= T~ Ar(w;), with a; = O(fy;l), uniformly in 7, and where

Cum{le, ey CjL}m = i"LaL/(E)tl ce GtL) log X(tl,tg, . ,tL)|t1:---=tL:O

L
=i~ Lol /otlog </ Hexp{itz‘@}@m(ﬂ)dﬂ) '
REm G2y

(In the sequel, we omit in the notation that the logarithmic derivative is always
taken at the point t = 0!) Note that {(j,,...,(; }m is used for {¢;,,..., ¢, }if
(jla s ajL) € Hm

Finally A(L,m) is used as a constant not depending on T, to give the right
number of terms of the sum for each m.

We proceed proving Theorem 3.2 by first presenting the proof of Proposition
3.3 which includes part of the proof of Proposition 3.2, where L = 2, namely the
one with m = 2 in cuma{z7}:

ProrositTioN 3.4. For L>3,1<m< L, and for L=2=m

L/2
lim ~p / Z oy, oy -eum{ Gy, .., Gy b = 0.

T—o00 . -
(J1se-sdp)Elm

3.1 Proof of Proposition 3.4

Let, for given 8 > 0, L > 2 be fixed. We consider the respective terms of (3.1)
labeled by m. The simplest case occurs for L >3, m =1 (i.e. j1 = --- = j): By
(5.6) in Lemma 5.4, with

GGy = ()20 /ot o ([ explitsYoatu)am ) = 0()

Z Qjy c o Qg - Cum{le, e ’CjL}l = 0('7’1_"L/2) for L>3.

(J1,-Jr )€l
For all the other cases we proceed, for each fixed L (> 2) and for any m (1 < m <
L), as follows:
For given L choose K = K(L, 3) such that ’yL/zT_Kﬁ — 0. Let A:=1T-%Y =
I, — Yo.. Then
K-1
(3.2) ST =(I-A)t =T+ AF+Rg
k=1

K—1
(3.3) = I+ > (De+Ni)+Bx = H+ N + R,
k=1
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where Dy 1s the part of A* which consists only in 2 x 2-diagonal blocks and
H: =1+ Zk 1 Dk, Ny, is the remaining matrix part of A* consisting only in the

off-diagonal blocks and N := 2{:11 Ni. Finally Rk = >, A* denotes the
remainder of order K. a

LEMMA 3.2, (y,Rky) = O(||y|PT—5P).
With the expansion (3.3),

(34)  exp—(y,T5ny) =exp—(y, Hy)exp —(y, Ny) exp —(y, Rxy),

where exp —(y, Hy) = [~ exp —(ys, H;y;), with H; being the i-th 2 x 2-diagonal
block, exp —(y, Ny) = 1 + Zf;l aly, Ny)' + 0k (y, Ny)¥, with ¢ := (—1)//1!
and fx = 0k (y) and (g ) = O(||lyl** T~¥7) (see Lemma 5.3(a)), and where
finally exp —(y, Rxy) = 14+ O((y, Rxy)) = 1 + O(||y||*T~%5). Now, given fixed
m, we introduce

L m p1t+-+p; m
HeXp{itiQ} = HeXpi Gi Z tn ¢ = HQi(t(i);Ci) = QL Q)
1=1 =1 n=pi+-+p;-1+1 i=1

where, for 1 < ¢ < m, t) = (tpytotpi_st1- - bpytotp, ), and where  :=

(¢1,---,€r). With (omitting the determinant det 3s,,),
L
x(t) = / Hexp{itici}qﬁzm(y)dy and expansion (3.4)
R -
= /RZ H Qi(t); Gi) exp —(y, Hy)/2exp —(y, Ny)/2exp —(y,Rry)/2dy
™ i=1

K-1
= |, QEOer—(yHy)/2 |1+ > aly, Ny) + 0k (y, Ny)¥
=1

[1+0((y, Rxy))ldy.

As both Ok (y, Ny)¥ and (y, Rxy) are bounded by some M7 #7 with an inte-
grable constant M = M(||y||?),

(3.5) log(x(t)) = log(Lo(t)) + log(1 + z(t)) + O(T~X5),

where

= H (/ Q t(z) Cz)(exp (yza iYq /2 dy1> HLD t(l)

i=1

K-1 K-1
QEQ Y aly, Ny) exp—(y, Hy)/2dy = > LI (1)
=1

=1

L1 (ﬁ) : 2

and



460 RAINER VON SACHS

z(t) == Lo(t) "' L1(2).
We have the following two lemmas:

LEMMA 3.3. 9%/d8tlog(Lo(t)) = 0. Moreover,

cum{le Yoo 7CjL }m = i_LaL/ai log(l + x(_t_)) + O(T_Kﬂ).

Expanding further,

K-1

(3.6) log(1 + z(t)) = Z(—l)"“x(t)"/n = Z (=1)"T2()"/n + RL;.

n>1 n=1

LEMMA 3.4. In expansion (3.6) RLx = O(z(t)¥) with ()X = O(T—%5).

Now it remains to deal with the derivative w.r.t. ¢t of the first K — 1 terms
of the expansion (3.6) of log(1 + z(t)). We first consider (n = 1) 8%/0t(z(t)) =
oL /ot(Lo(t) 1 {i}l Lgl)(ﬁ)) and recall that

L) = o Q(t; Q)a(y, Ny) exp —(y, Hy)/2dy.

LEMMA 3.5. 0L/0t(Lo(t)" Yt LV (1) = o.
With Lemma 3.5 it is sufficient to bound Lgl)(t), 1 > m, from above:

LEMMA 3.6. Forl > m the following estimate for Lgl)(t) is holding:

m m
I
IZOOI< S > Migkyecip a2 (8)

i1#k1 T 27 kmy2

Uiy = G )72 i jp = Tkl 2 AT,
where the sum is over indices iy and ky, 1 < u < m/2, being elements of
{1,...,m}, which are mutually different from each other, and where M = M(t)

denotes the finite integrals depending on these specific permutations of the indices
iw and k.. (Note that for odd m this holds with Il > m+ 1, with a slightly different

upper bound being of similar form.)

As the form of the bound of Lemma 3.6 does not depend on M (¢), this yields
the following estimate, up to terms of higher order:

LEMMA 3.7.

L m/2—L —(m
WY ayay, 90 /0Ka(t) = O TR,
(J1se-sdL)EDm
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Now, to finish the treatment of log(1 + z(¢)), we should consider z(t)™ for
n > 2, cf. expansion (3.6). But these terms have the same behavior as the one
treated by Lemmas 3.6 and 3.7 for n = 1. Hence, with (3.6) we have the following
estimate:

LeMMA 3.8.

VST gy, - 9 /tlog(1+ 2 (1)
(F1seesdL) €y,

= Oy P~ H2r=mID8) 4 O(y7/*T=KP).

Finally, we put together all estimates and remainders of cum{(;,,..., . }m

in Lemma 3.3 and insert them in 'yili/ % cum r{zr}. The proof of Proposition 3.4
ends by considering m = L in the bound of Lemma 3.8, as the convergence of

75/2 cump{zr} is determined by the term cum{(j,,...,{;, }m with m = L (in the
sum (3.1)):

ProposiTION 3.5. Up to terms of higher order,
77" camp{er} = O(T~®/2%) + 0(*T %) = o(1),
by the choice of K = K(L, 8) such that ~~/*T—K8 — 0.

3.2 Proof of Proposition 3.1
We want to show that

Tlim 7;/2(EzT —H)=0.

Noting that this proof will work without using Assumption 4, we first recall that

N

N
Elor] =T7' Y Ar(w;)ElG]= Y oE[¢]  with
j=—N j==-N

E[¢;] = (2m) (et )71/ /RZ Cfw)llyl?/2) exp —(y, B3 (w;)y) /2 dy.

Now, with ¥ := X5(w;), the matrix expansion of £7!, analogously to (3.2), writes
as

(3.7) > ! =IT4+A+R,,
for which the following lemma holds (cf. Remark 5.1):
LEMMA 3.9. In the ezpansion (3.7) the elements of A are bounded from above

by some C; = O(|j| ™). Hence, (y,Ay) = O(||ly*Cy) = O(lyll?lj|™"), and
(y, R2y) = O(lly[*C%) = O(|lyl1*|i|~2)-
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Hence, exp —(y, Y 'y) = exp —||y||? - exp —(y, Ay) - exp —(y, Ray), and ex-
panding further,

exp—(y, 27 'y)/2
= exp—|yl*/2- [1 - (y, Ay)/2 + O((y, Ay))’] - [1 + O((y, Ra9))]-

The leading term of E[(;] equals
(38)  Ej:=B{(f(w)) = (27T)‘1/RQ C(fwillyl?/2) exp ~lly]*/2dy,

as (det $3) /2 = 1+ RDy, with RDy = O(C?) and by (3.10) below. Elementary
calculations show that

(3.9) B ) = [ C(fwa)e e
:/O ¢(2) f(w;) texp{—f(w;) " 2}d2.
Turning to the remainders of E[(;], we proceed as follows:

J
With AH =1- COV(Aj,Aj) = —AQQ and A12 - COV(Aj,Bj) = Agl (see
Lemma 5.1),

| v/t /2 x|yl 2dy
= 81 [ CU@IIP/D0R — )2 exp—ly P 2dy
R2
80 [ UGV ) exp—lyl*/2dy =0,
R2

due to symmetry arguments. Furthermore, with Lemma 3.9, the final remainder
of E[¢;] is bounded from above by

/RQ C(fw)liyl?/2)[(y, Ay)? + (y, Rey)] exp ~llyl*/2dy = O(C) = O(l3] ),

such that any of the remainders of E[zp] = Zj\;- ~ 05 E[(;] can be treated simi-
larly to

(3.10) Z ajC]zS Z aj|j|_2=O('y;1)=o(’y;1/2), as oy = O(yg?).

The leading term of E[z7], finally, which is Z?’:_N a; B(((f(wj))), tends to H with
rate of order O(yz '), where we note that H = ["_limp_.c Ap(w)B(((f(w)))dw:

N
(3.11) T71 3" Ar(w)B(C(fw)) — H = O(vz).

j=—N
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This can be shown by the same arguments as in the proof of Lemma 3.1 for integral
approximations by sums (analogously to Brillinger (1981), Theorem 5.10.1), as B
is a function of bounded variation of w, and so is A. This ends the proof of
Proposition 3.1.

3.3 Proof of Proposition 3.2 (remaining part)
It remains to treat the term of the sum (3.1) with L =2, m = 1:

LEMMA 3.10. lmr o yr e, oF var{(;} = V.

PROOF OF LEMMA 3.10. N
As 3 icm, a]z var{(;} = > ;. _n a?(E[CJZ} —{E[¢;]}?), where

BG]] = (2m) 7 (det £p) /2 /Rz Cfwpllyl?/2) exp —(y, 23 (wy)y)/2dy,

we can proceed quite analogously to the proof of Proposition 3.1, where the only
modification arises from dealing with weights a]2- instead of a;:

Concerning the leading term of E [CJQ] which is
(3.12) Vi :=V(C(flwy) = (27T)_1/R2 Cfw)llyllP/2) exp —llyl* /2 dy
= [ et el ) )

we note that yr >, cq, a7V tends to ST A% (w)V(¢(f(w;)))dw with rate of order
Yr !, analogously to (3.11), whereas, for the leading term of {E[¢;]}? we note that
VT D e, a?E? tends to [T A?(w)B%(((f(w)))dw, again with rate of order y;'.
Concerning the remainders of E [CJQ] everything runs quite similarly to the ones of
E[(;], as they are determined by exactly the same p.d.f. as occurring in (3.12). O

To end this section on the proof of the CLT 3.1, we add the following remark
on the form of both H and V:

Remark 3.1. In Theorem 3.1,

m

H= lim Az (w)B(((f(w)))dw,

—r T—o0

where B(((f(w))) = limr_e E[((Ir(w))] = [~ ((f(w)z)e ®dz (see equation
(3.9)). Note that the limiting value of Ar(w) = n7A(w) depends on the behavior of
nr (e.g. for kernel estimates Ar{(w) = K(w/br)/br, and f:r limp_ oo Ar(w)dw =

[" K(w)dw = const.). Analogously,

V= [ R - BHCw) s,
where V(((f(w))) = limp_o E[¢*(I7(w))] = [;° ¢3(f(w)z)e ®dz (see equation
(3.12)).
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4. Applications

Now we shall apply the CLT 3.1 to our specific situations. First, we recall
the situation of TG, using his notation with Ar(w) = ¥(w) (i.e. yp = T) for any
continuous function ¥, and ¢((z) = L7 {®(1/t)1/t},), for an arbitrary function
®, such that ¢(z) fulfills Assumptions 2 and 3, where £ *{G(u)}{;} denotes the
Laplace inverse transform of G(u) at argument z. Note that

L{F(x)} ) = /000 F(z) exp{—uz}dz,

denotes the Laplace transform of F(z) at argument u, whereas the inverse writes

as .
o+100

L7HG(W)} gy = (27Ti)_1/ G(u) exp{uzx}du,

where o is greater than the abscissa of absolute convergence (cf. TG, p. 75). Note
that this transform is used to introduce asymptotic unbiasedness of the result-
ing estimator: With L[L™H{®(1/t)1/t} 143wy = ®(1/u)1/u, for u € (0,00), and
(Ir(w)) = L7H2(1/)1/t} 1r(w)}

lim_ B{((Tr ()] = / LB/t iy ) exp{—f(w) e}

= f(w) " LILTHRA/ DL/t oy )1y = B(F (W)
(cf. also TG, Lemma 1).

With this, Hy = ffﬂ U(w) L H{®(1/t)1/t}{17(w)}dw is a consistent and asymptotic
normal estimator for H = [ ¥(w)®(f(w))dw, and the resulting CLT (which, for
the non-tapered case, is Taniguchi’s Theorem 2) states as

THEOREM 4.1.

e /W @)L/} 1r )y — D(F(@))]dw SN (0, V)

-7

with asymptotic variance

V= /w T (w)

-7

‘ { / L B0 1y P S () exp{— F(w) Ma}dz — <I>2(f(w))} o,

Some examples for useful ®-functions, which satisfy Assumptions 2 and 3,
are ®(z) = 2", 0 < n < oo, where L7H®(1/t)1/t} sy = (D(n + 1))~ ta™, or
®(z) = logz, where L7H{®(1/t)1/t} (s} = logaw, with o = exp~y (v =~ 0.57721,
Euler’s constant), which are Taniguchi’s examples 1 and 2, respectively (for further
details see therein).
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Second, we turn to the situation of peak-insensitive kernel spectral estimation,
as introduced in vS:

There we are dealing with a nonparametric spectral estimator fr(a) for a
fixed o € II, which is defined as the root, pointwise in «, of the following equation
ins>0

N
Hr(a,s)=T"1 Y Ky(o—w)¥ (IT(S“”“) - 1) =0.

k=—N

Here Ky(9) := b~ K (9/b) with a smooth kernel function K with compact support,
with smoothing parameter (bandwidth) b = by — 0 and Tb — oo, as T' — oo, and
¥ is some smooth bounded function with fooo U(x —1)e *dx = 0.

In order to show asymptotic normality of this estimator fr(a) the main step
is to prove a CLT for Hr(«) = Hr(a, f(e)) (cf. vS, Theorem 3.4) in the tapered
case. Then, it is a standard technique to carry over to fr(a), by e.g. the é-
method (i.e. expanding Hr(w, fr(a)) around Hr(e, f(a)) and using stochastic
convergence of the denominator in the resulting ratio for fr(a)— f(a)). To match
with the notation here, Ar(w) = (27) 'K ((@ — w)/br)/br (i.e. nr = b3' and
~vr = Tbr). Further, ((z) = ¥(z/f(a) — 1), such that, by the above assumption
on ¥, B({(f(a))) =limr_,o E¢(IT(a)) =0. So

ks

Hr = Hr(a) = @n) " [ 5K (@~ ) o) WI () @) - 1)do
and H = limy_, EHT( ) (2m)~ 1 fK(ﬂ)dﬁ [ ¥(z—1)e *dx = 0, as with (3.9),
B(fw))) = [ C(fw)z)e 2dz = [;° ¥(f(w)z/f(a ) — 1)e~%dzx, and because
J7 Ky(a— w)B(C(f(w)))dw tends to [ K( ﬂ)dﬂ J¥(f(a)z/f(e) —1)e %dz =0
(note that K3(1) is an approximate convolution 1dent1ty) We finally end up with
an asymptotically unbiased estimator fr(«), if in addition,

EHz(a) = o(v7"%) = o((Tbr) /2,

For this it is sufficient to assume a kernel K of second order, a twice continuously
differentiable spectrum f and the existence of a Lipschitz ¥’, together with a
common bandwidth condition in kernel estimation theory, namely T6% — 0 (see
vS, Theorem 3.2 and Proposition 3.5).

This leads to the following resulting CLT (which, for the non-tapered case, is
Theorem 3.4 in vS):

THEOREM 4.2. (Tb)Y2 . Hy(a, f(@)) DN(0,V), with asymptotic variance
V=021 [T KX 3)dS- [, ¥z —1)e"dx.

It remains to note that, in vS a slightly different assumption on the underlying
process {X;} was given, where X was assumed to be a general linear process of
the form
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where €, —oo < t < o0, are i.i.d. random variables with mean zero and finite
variance o2, and where Z |kak| < oco. But this is equivalent to Assumption 1,
as, on one hand Assumption 1 is met by any general linear process of this kind,
and on the other hand, under Assumption 1 {X,} admits a representation as a
(one-sided) linear process of the above form. Of course, for the CLT 4.2 to hold,
the e; have to be Gaussian.

5. Appendix: Proofs
ProoOF OF LEMMA 3.1. First, we show that
(5.1) var{zr — Hr} = o(yz1),

which is

T N
Cov{ Gr(NdA=T7' > Gr(w;),
o =

- N
GT(M)d,lL — T_l Z GT(wk)} = 0('7;1)7

- k=—N

with Gr(A) = Apr(A){(Ir(A)). This can be shown by arguments similar to
Dahlhaus ((1983), Lemmas 4 and 6), and making use of the properties of (Ha 1) ™!+
|Hf (a)|? as an approximate identity (see Lemma 3 therein). The main step is to
show that each of the four resulting covariance terms tends to the same limiting
quantity, _

V= [ A{VETW)) - B w))}dw,

which is the asymptotic variance, as in the proof of Proposition 3.2. Secondly,
(5.2) EHp — H = o(v; ).

A continuous analogue to equation (3.10) makes use of the so-called L(*)-function,
introduced by Dahlhaus (1983): Let

T, . T for |w|<T™!
Ly (w) = { w7t for T7!<|w]| <7

Then, with |HI (w)] < KLéT)(w)a

(H2,T)—2 Ar(w)|HE (w))?dw < (szT)—2 - const. nyT = 0(751) _ 0(7;1/2)7

-

as [7 |LS") (w)|2dw < const. T, with Lemma 1 of Dahlhaus (1983). The proof ends

by noting that (5.2), together with Proposition 3.1, yields F|zr — Hr] = o(fyTl/ 2)

and this is, together with (5.1) the assertions of Lemma 3.1. O

9
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.....

Let F(\ p) := fO)™Y2f ()2 fa(\, 1), where fa(A, p) denotes the second
order cumulant spectrum as introduced in Brillinger ((1981), equation (2.6.2)).
Note that for A = £pu, fo()\, 1) equals the common spectral density fa(X). Then,
up to remainders which are of order O((Ha r)™!) = O(T™!), uniformly in j and
k,

Cov(Aj, A) = (Har) ™" - Flwj,wr) Re{H] (wj + wy) + Hy (wj — wi)},
Cov(Aj, By) = (Har) ™ - Flws,wp) In{Hy (w; + wg) — H3 (wj — wi)},
Cov(B;, Ag) = (Ha,r) ™ - Flwj,wi) Im{Hy (w; — wi) + H3 (w; +wi)},
Cov(Bj, Br) = (Hor) ™' - F(wj,wr) Re{HJ (wj — wi) — H (w; +wp)}.

In particular, as F(w;,w;) =1, and H] (0) = Ha,r,

Cov(Aj, Aj) = L+ (Har) ™" - Re{H] (2w;)} + O(T 1),
Cov(B;,B;) =1 — (Hyr)™t - Re{H] (2w;)} + O(T™"), and
Cov(A;, B;) = (Har) ™' - Im{Hj (2w;)} + O(T 1),

where for wy = —w; analogous expressions are holding.
PRrROOF OF LEMMA 5.1. We mainly use Brillinger ((1981), Theorem 4.3.2):
Cov(dr(N), dr(p)) = Hy (A + p) f2(0) + O(1),

where the remainder is uniform in A, u. The assertions of Lemma 5.1 follow
immediately as, e.g.,
Cov(Ar(w;), Ar(wr))
— 2 (w;) V2 f(wr) M2 (Ha,r) ™ - Cov(Re dr(w;), Redr(we)),

and Cov(Redr(wj), Redr(wy)) = Cov(dr(w;), dr(wk)) + Cov(dr(w;), dr(—wk)) +
Cov(dT(—wj), dT(wk)) + COV(dT(—(Uj), dT(—wk)). W]

LEMMA 5.2. (a) |(Hor) "HI(w; —wi)] = O(lj — k|7Y) for j # k and
|(Hz,r) ™" Hy (wj +wi)| = O(lj + k{71) for j # —F,

in particular l(HQ’T)_IHg(Wj” = O(!jrl) for j#£0.

Moreover, with Assumption 4 holding, i.e. pr =T with0 < § < 1:
(b) [(Har) " HY (wj £ wi)| = O(lj £ k|7 AT™F) for j # Fk.

ProoF oF LEMMA 5.2. (a) For all assertions it is sufficient to proceed as
follows: With j # 0,

t

T
[HY (i) < > (b7 —hiy) Y exp{—iwju}|  (with hrys = 0)
t=1

u=1
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T
< D (0 = hiyy) exp{—iw; }(1 — exp{—iw;t})/(1 - exp{—i%‘})’

t=1
< var h%(z) 2|2 sin(w; /2)| 7"

(where var denotes the total Variation>
x

< Cpr/lwj]  (as sin|a| > 2|a|/7 for |of < 7/2)
= TChIQj’_la

and the assertion follows, as Hyr ~ T

(b) As extension of part (a) the modification for the proof of (b), showing
|(Hor) " HY (w;)| = O(|5|" AT=P) for j # 0, runs as follows: Let T := ppT =
T'~B. First we have to show that still Hy 7 = ¢, T (i.e. Hyr ~ T): With (2.1)
and using the symmetry of v,

T
Hyr = Y R2(t/T)
t=1

T/2 T-T'/2
= 3w/ T o) #/T)+ Y Lpp21-p/2(t/T)
t=1 t=T/2+1
/2

+ ZU2(t/T’)1[o,p/2)(t/T)
t=1
=c,T'/2+T-T +¢,T'/2=T+ ¢,T" = T(1 + const. pr) = cT,
with ¢, = 14 O(T7P). Second, again using the symmetry of both v and
exp{—iw;t},

Hj (wj) = Zhi(t/T) exp{—iw;t}

T'/2 T'/2
= Z u?(t/T") exp{—iw;t} + Z (t/T") exp{iw;t}
t=1
T/2
+ Z (exp{—iw;t} + exp{iw;t})
t=T" /241
=1+ (2).
Calculating (2) we proceed with
T/2
Z (exp{—iw;t} + exp{iw;t})
¢=T"/2+1
T T'/2 T'/2

= Zexp{—iwjt} - Z exp{—iw;t} — Z exp{iw;t}.
t=1 t=1
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First, 3.1, exp{—iw;t} = 0, and secondly

T'/2
>~ exp{—iw;t}| < min{(r/4)T',T|2j]""}, as:

T'/2
> " exp{—iw;t} = exp{—iw;}/(1 - exp{—iw;}) - (1 — exp{—iw;T"/2}),
t=1

where |exp{—iw;}/(1 — exp{—iw;})| < T|47|7%, and |(1 — exp{—iw;T"/2})|
min{npr|j|,2}. The same holds for 232/12 exp{iw;t}, such that [(2)]
min{(7/2)T",T|7|71}. For (1) we can use nearly the same estimates which can be
derived analogously to part (a):

IAIA

T'/2 T /2
Z u?(t/T") exp{—iw;t} + Z v2(t/T") exp{iw;t}
t=1 t=1
< var h%(z) - min{(7/2)T", T|j|~'}. O

Remark 5.1. By Lemma 5.2, the off-diagonal elements of the i-th diagonal
block of ¥, i.e., the elements of the i-th diagonal block of A = I — %, are bounded
from above by some C;, = O(|;|~*). Moreover, the bounds for the (3, j)-th off-
diagonal block elements of ¥ are Cj,;, = O(|7; — je|~! + |4; + jx| ™), both up to
terms of order O(T™1).

Summarizing, under the additional Assumption 4, the off-diagonal elements
of ¥ are bounded from above by some C(wj,,w,,) which, for 5,k € {ji}i=1,...,m,
are of order

O[5 + k7M1 = &) + |7 = kT L = G ATP) +O(T 7).

This is, with 8 < 1, the essential difference to the non-tapered situation of TG,
where these elements are of order O(T 1), uniformly in w;,, wj, .

Proor or LEMMA 3.2. We want to show that for the remainder Ry :=
DksK AF of the expansion (3.2), the following estimate holds:

(5.3) |, Rey)| < 97 Pmex (Bx)| < ylI2A7,

where A\ := [Anax(A)| denotes the modulus of the largest eigenvalue Apax of A,
for which, under Assumption 4, A = O(T~?), i.e. \X = O(T~%5). Note that, by
the spectral decomposition for a symmetric matrix A:

Sl;p((m,Aa:)/||z||2) = Amax(4) for xz€ R™

Thus, it is sufficient to show that

(5.4) |Amax(Rr)| < ME.
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This holds due to well-known expansion theory for geometric series, applied to
matrices with eigenvalues bounded above from unity:

Amax (LK) = Amax (I — A)_I{I - - AK)}) = )‘maX(E_l)/\maX(AK):
where Apax (X271 = O(1) and [Amax(AK)| < AE. Finally, A = O(T7), as A2 <
> k=1 Ziszl([A]@k)fs, where [A]; , denotes the (4, k)-th block of dimension 2 of
A, with ([Al; x)rs = O(T77). O

At this place we give an additional estimate for the individual elements of the
matrix N:

LEMMmA 5.3. (a) (y, Ny) = O(|ly|*T 7).
(b) The elements of the (i,k)-th off-diagonal block of N are bounded from
above by

(55)  OW = Myu(B,m) (i — gl ™" + s + 3sl ™) ACT 2 + O(TY),

with a constant M; (K, m) that depends on both K and the dimension (2m) of
the matrices under consideration.

PrROOF OF LEMMA 5.3. (a) is a direct consequence of Lemma 3.2. For part
(b) we first note that the off-diagonal blocks of N; are the ones of ¥ (where we
derived this bounds in Lemmas 5.1 and 5.2). Second, it can be shown by matrix
multiplication and induction on k, that the same kind of bounds holds for each
Ng, k > 2: By Remark 5.1, the elements of the i-th diagonal block of A are
bounded from above by C;, = O(|5;|™!). The bounds for the (4, k)-th off-diagonal
block elements of A are Cj,;, = O(|5; — jk|™' + |7 + jk|™1), both up to terms
of order O(T~1). In addition, both kind of elements are bounded from above by
some O(T?), due to Assumption 4. O

Further, we give some summation properties that help to proceed with the
remainders of cumy {zr}:

LEMMA 5.4.
(56) > e =00FH) (1<m<L).
(J1,seosd L)€
Let 2 <m < L. For even m,

m/2—Lpn—(m
(5.7) Z oy gy (Cﬁljkl)z .. (Cjim/zjka )2 = O(WT/ T—(m/28),
(G1sendL)Edm

where Cj, ;. = i[ﬂcu’ v =1,...,m/2 (see (5.5)), and where i, and k, are
elements of {1,...,m}, which are mutually different from each other, leading to a
sum only over mutually different indices (j1,...,51) € U, For odd m,

(5.8) Do gy (Chg ) (G g )

(Fiseees JL)EIL,
— O(A{m=V/2= L=’ /28
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with m’ := (m +1)/2 and the indices i, and ky, 1 <u <m/, being different from
each other.

PRrROOF OF LEMMA 5.4. First we show (5.6): For m =1 (i.e. j1 =--- = jr),
Y7/2
_ —(L-1
Z Ay + 0 gy, S’YTL Z Mj:O(/YT( ))7
(jlv"‘7jL)€H1 .7‘:_")’T/2

as a; = O(yp 1) uniformly in 5, and where M, denotes a constant which includes
the uniformly bounded parts of the «;, which do not depend onT'. For 1 <m < L
we have ji = -+ = jp, UP t0 Jr—p, 1 = - = jL:

—(p1— — (P — —(L—m
>0 e ey =007 " TY) 00 ) = 06y ),
(J15--J ) Ellm

as we can repeat the same argumentation as for m = 1: In each of the m groups of
p; (1 < i< m) equal indices we proceed with p; instead of L, to derive an upper
bound of order O(y, ® i_l)) for each group of them. Secondly, we restrict to prove
(5.7) for the case of L = m = 2, i.e. we show, with j # +k,

N N
(5.9) Y > ajenlCin)? =0y T,
k=—N

j=—N k=

The assertions for m > 2 can be shown quite analogously.

It remains to show (5.9): Without loss of generality, by Lemma 5.3(b), we
estimate Cj = min{O(|j — k|™1),0(T~P)} up to terms of higher order, due to
reasons of symmetry. For y7 > T% (otherwise (5.9) is fulfilled trivially as the sum
is always of order O(T~24)),

N yr/2 T
o aon(Cipp) < Miyg? Y. Y -k
j#Ek=—N j==v7/2|j~k|>TF
yr/2

-+ MQ’YEQ Z Z Thzﬁ7

Jj=—77/2|j—k|<T?

where My and M are constants used analogously to the proof of (5.6). The first

term of the sum behaves like O(y7') - ST s lul T = O(v7'T~#), where the

second one like O(v71) - O(T?) - O(T~2#). This proves (5.9). O
ProoF or LEMMA 3.3.

it cum{ ¢y - oy Gip m = d" /0t log(x(t))
= 9% /6tlog(Lo(t)) + 0% /dtlog(l + z(t)) + RCK,
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with (3.5) and where, as in (3.5), RCk is bounded by some MT %% with an
integrable constant M = M(|y[?), which does not depend on t. Further, with

L (t;) as in (3.5),

(5.10) 0" /0t log(Lo(t)) = 6* /ot log (ﬁ L (tm))

i=1

=Y 0% /otlog(L{ (1)) = 0.

i=1
(Note that, for m > 1, no L(()i) (t(:)) depends on all of the t;, j =1,...,L.) O

PRrROOF OF LEMMA 3.4. With z(t) = Lo(t)"*Li(¢) and the definition of
L1(t), z(t) = O(T~P) follows immediately by (y, Ny) = O(||y[|*T ) (see Lemma
5.3). 00

Proor oF LEMMA 3.5. Note that in Lq(¢) it is sufficient only to consider
terms with even [ due to symmetry arguments, which can be seen by straightfor-
ward calculations:

(5.11) / HQz(t() )y, Ny)' [ [ (exp —(vi, Hiyi) /2)dy = 0
=1

for all odd I. Now, for even I, each (y, N 'y) leads to terms of a sum where for
| < m, any of the resulting terms of this sum is of one of the following two kinds:
either there is at least one of the {y;}i=1, . m missing, such that factorization leads
to terms which cancel, similarly to the leading term (5.10) of cum{(j,, ...,y tms
i.e. 0% /0tlog(Lo(t)). Or, secondly, if no y; is missing, which may be the case only
for m/2 <1 < m, then the resulting integral expressions are zero due to the same
symmetry arguments as they were given in (5.11) above (i.e. for odd ). O

PROOF OoF LEMMA 3.6. It is sufficient to consider = m (in case of even m).
As in the proof of (5.9) we estimate Zy, = (¥s, [N]i £ Yk )ik=1,..,m, Up to terms of
higher order, using Lemma 5.3(b):

(Za)” < elgi, ) (C13)? = min{O(ljs — 5l ™), O(T )},

with c(y;, ye) = [Zis=1 lyiryrs|)?, and as each |([N)ix)rs| < Ci[fz], by Lemma
5.3(b). By the argumentation in the proof of Lemma 3.5, for (y, Ny)™ we only
have to consider terms which are of the described form

S S (Zaw)? e (Ziy )

i1#k1 tmj2FKm /2
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where the summation is over those indices that fulfill the restrictions of Lemma
3.6:

N
(Ziaka)? - (B b ) < (@) (Ci )2 (C L )P

= O, = a2 s = Ghma| > AT ™),

where c(y) is used to denote a constant that is analogous to the one defined above.
For odd m we have to replace m by m + 1, and, after applying Lemma 3.7,
we end up with the analogous bound (5.8). O

Proor or LEMMA 3.7. We use Lemma 3.6, together with (5.7), i.e., with
Ciiin, = cl ,v=1,...,m/2, as in the proof of Lemma 3.6:

iy,ky

m/2—L—(m
E : Qjy 0 Qg - (Cjiljkl )2 "' (Cjim/szm/z )2 = O(’YT/ 7 /2)'8)' O
(415,52 ) €l

Proor or LEMMA 3.8. For the terms z(¢)”, n =2,..., K — 1, we have the
same behavior of symmetry and factorization as for n = 1. However, now, as
non-vanishing terms we have to consider the following n-th powers of Ly(t), for
which [; + -+ 4+, = m (for even m, and Xl; = m + 1 for odd m):

<L1<z>>"=<KZlL<” ) KZ iL”” ®)-- L™ ().

=1

This is generalizing the case | = m (= m+ 1, resp.) for n = 1, as a product of the
“subcases” Iy = my,...,l, = my,, with m; +--- + m,, = m, again with only even
l;. O

Proor or LEMMA 3.9. For the first assertion note that the elements of A
are bounded from above by C; = O(|j|7!) (by Remark 5.1). For the second part,
let again A := [Anax(A)] denote the modulus of the largest eigenvalue of A (as in
proof of Lemma 3.2). Now

=Y A% with (g, Ray)| < ly)% Amax(R2)| < [ly]222,
k>2

with A = O(C;) = O(|5|™1) (cf. (5.3), (5.4) and the derivations of an upper bound
for A in the proof of Lemma 3.2). O
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