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A b s t r a c t .  Let f (~ )  be the spectral density of a Gaussian stationary pro- 
cess. Consider periodogram-based estimators of integrals of certain non-linear 
functions ¢ of f (~) ,  like HT := j~_~ A(w)4(IT(w))dw, where A(w) is a bounded 
function of bounded variation, possibly depending on the sample size T. Then 
it is known that, under mild conditions on 4, a central limit theorem holds for 
these statistics HT if the non-tapered periodogram IT (w) is used. In particular, 
Taniguchi (1980, J. Appl. Probab., 17, 73-83) gave a consistent and asymptotic 
normal estimator of f~_~ A(w)~(f(w))dw, choosing ~ to be a suitable transform 
of a given function (I). In this work we shall generalize this result to statistics 
HT where a taper-modified periodogram is used. We apply our result to the 
use of data-tapers in nonparametric peak-insensitive spectrum estimation. This 
was introduced in yon Sachs (1994, J. Time Ser. Anal., 15, 429-452) where 
the performance of this estimator was shown to be substantially improved by 
using a taper. 

Key words and phrases: Gaussian stationary process, spectral density, peri- 
odogram, data-taper,  peak-insensitive spectral estimator. 

i. Introduction 

Using data-tapers in periodogram-based spectrum estimation is a well-known 
remedy to reduce leakage effects (see e.g. Tukey (1967), Bloomfield (1976)), in 
particular if the spectrum contains high peaks. The usual asymptotic properties 
which hold for non-tapered statistics carry over to the taper-modified estimates, if 
these depend linearly on the periodogram (like smoothed periodograms, integrated 
periodograms, estimators of the spectral distribution function), see e.g. Brillinger 
(1981) and Dahlhaus (1983, 1985, 1988). So it is of general interest whether this 
is still true for a kind of estimators with a non-linear functional dependence on 
the periodogram ordinates, i.e. like those considered in Taniguchi (1980) for the 
non-tapered case: 

* This work has been supported by the Deutsche Forschungsgemeinschaft.  
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Given a real-valued Gaussian stationary time series X with mean 0 and spec- 
tral density f(aJ), and given a sample X1,..., XT of size T, consider the following 
statistics: 

F (1.1) A(w)( ( lT(W) )dw, 
/ 7  

where ( is a certain non-linear function, IT(Or) denotes the periodogram of X1, . .  •, 
XT and A(~) is a bounded function of bounded variation, possibly depending on 
the sample size T. Note that this allows to consider both kernel estimators and 
integrated ((IT(W)) (i.e. A(a~) = 1 or A(c~) = l[_~,xl(a~) for fixed )~ E (-Tr, lr]). 
Then it is known that, under mild conditions on (, a central limit theorem holds 
for these statistics (1.1) if the non-tapered periodogram IT(W) is used. In par- 
ticular, Taniguchi (1980) gave a consistent and asymptotic normal estimator of 
f a(a~)~5(f(a~))&0, choosing ( to be a suitable transform (inverse Laplace) of an 
appropriate given function a5 (to introduce asymptotic unbiasedness of the result- 
ing estimator). 

In this work we shall generalize this result to statistics of the form (1.1) where 
a taper modified periodogram is used (cf. Dahlhaus (1985), for linear statistics). 
Again, as mentioned above, the resulting estimator will profit from reduced leak- 
age, e.g. leading to a faster decay of the bias for spectra with high peaks (see in 
particular Dahlhaus (1988)). Concerning the proof of this central limit theorem 
(CLT), introducing data-tapers essentially changes the covariance structure of the 
periodogram ordinates, such that, e.g., the proof of Taniguchi (1980) does not 
work any longer without essential modifications (cf. also Remark 5.1 in Section 5). 

As application, we give the proof of asymptotic normality (including con- 
sistency) of the tapered peak-insensitive nonparametric spectral estimator, in- 
troduced in yon Sachs (1994), henceforth referred to as vS. There, a particular 
choice of ( (related to non-linear bounded g-functions, which typically occur in 
M-estimation theory) yields a spectral density estimator that is insensitive to out- 
liers in the frequency domain. In vS it was shown that the performance of this 
estimator is substantially improved by the use of a taper (and the proof of the 
central limit theorem, i.e. Theorem 3.2 of that reference, was postponed to this 
work). 

Note that the proofs in both situations (tapered and non-tapered) only work 
with Gaussian time series data as they heavily depend on the use of the normal 
distribution function. (It is still an open problem how to treat the non-Gaussian 
case though it might be possible to carry over some of these ideas.) 

Our paper is organized as follows: In the next section we introduce the notation 
for tapered nonparametric spectrum estimation and state the assumptions which 
are to hold throughout this work. Section 3 gives the main line for proving the 
central limit theorem, where lemmas and auxiliary results as well as their proofs 
are postponed to the appendix, which is Section 5. Section 4 finally deals with 
applying our results to the specific problems as in Taniguchi (1980), henceforth 
referred to as TG, and in vS. 
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2. Preliminaries 

Let X 1 , . . .  , XT be a sample of a s ta t ionary real-valued Gaussian process { X t }  
with E X t  = 0 and continuous spectral density f (w)  which is bounded away from 
zero. Let 

X t  e zcot 2 
IT(ca) = (H2,T) - 1 .  t=l hr. - , 

denote the periodogram of the sample based on the tapered da ta  (ht .  Xt) t=l  ..... T. 
Note tha t  IT(w) = (H2,T) -1 • dT(w)dT(--ca), where dT(ca) ----- ~-].T 1 ht • X t e  - i~t  
denotes the finite Fourier t ransform of the tapered data.  Here ht = h ( t /T ) ,  t = 
1 , . . . ,  T, with a bounded real function h(x) of bounded variation and h(x) = 0 for 

T 
x ¢ (0, 1). H2,T = ~-~t=~ h2t denotes the appropriate normalizing factor, for which 
we assume H2,T ~ T (we follow the notat ion of Dahlhaus (1988)). 

In order to restrict the dependence structure of the process X we impose 

ASSUMPTION 1. E I~c(~)l < ~ ,  where c(u) = E [ X ( t ) X ( t  + u)] denotes the 
autocovariance function of X.  Let further HT := f~AT(ca)¢(IT(w))dca,  with 

AT(ca) = ~rA(cJ), where rlT is a sequence of positive numbers with T @  1 ~ ec, as 
T -~ 0% and where A(ca), ca E I I  := (-7c, ~r], is a real-valued bounded function of 
bounded variation. 

For the function ~(x) on the real line we impose the following assumptions: 

ASSUMPTION 2. {(x) is a continuous function for x E (0, oc). 

ASSUMPTION 3. For every positive integer rn, f o  IC(x)l ~ e x p { - u x } d z  exists 
and is continuous on (0, oc) with respect to u. 

Note tha t  Assumption 3 is met if we impose boundedness of C (which will be 
done in the context of peak-insensitive spectrum estimation, in vS). 

Finally, only for technical reasons of proving the CLT by the chosen method  
of cumulants,  we need an additional assumption on the taper function h(x),  for 
which we give a more general definition: 

Let 0 < p _< 1 denote the proportion of the da ta  which are going to be tapered. 
In order to introduce a suitable kind of symmet ry  property of h(x),  let 

(2.1) hp(x) := u(x/p)l[o,p/2)(z) + l[p/2,1-p/2](z) ÷ v((1 - z)/p)l(1-p/2,1](z),  

where u and v are some real-valued functions of bounded variation on [0, 1] tha t  are 
symmetric  around 1/2, with u(1/2) = v(1/2) = 1. Note that ,  with this definition 
(2.1), h(x) := h i (z) ,  and tha t  with p tending to zero hp(x) converges to 110,1] (x). 

ASSUMPTION 4. Let p depend on T like fiT = aT -/3 with 0 < ,3 and some 
constant  c which we set to uni ty without  loss of generality. 
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So we assume the taper to vanish asymptotically with rate T -z .  Note that  
for ~ > 1 it is not necessary to give a new proof of asymptotic normality in the 
tapered case: we can immediately proceed as in TG, as in this case, in the resulting 
covariance matrix E2,~ (see Section 3), the covarianees are of order O(T-1) ,  as 
it is in TG. Thus the only situation of interest is 0 < ~ < 1 (cf. also Remark 
5.1). However, here no further assumption on the rate of decay will be needed 
for the proofs such that ~ is allowed to be arbitrarily small[ So Assumption 4 
is not restrictive at all. Moreover, an asymptotically vanishing taper reflects the 
practical situation where, with an increasing number T of observations, it is less 
important to taper the series. 

3. Asymptotic normality 

Let H := limT--+~ EHT and ~/T := Tr/T 1. Then the considered CLT states as 
follows: 

THEOREM 3.1. Under Assumptions 1 to 4, 

') l /2[r -r  -- H)D--+./~f(O, Y ) ,  
T k l I T  

where V denotes the appropriate asymptotic variance. 

Note that, by the asymptotic unbiasedness, this CLT includes consistency of 
the statistical estimation functional HT. Note also that the precise form of both H 
and V depends on the kind of considered problem, i.e. the choice of the functions 

and AT (cf. Remark 3.1): Examples are our two concrete applications, which 
can be found in Section 4. 

For proving the CLT 3.1 we shall approximate the integral HT by the respec- 
tive integral approximation ZT of HT: Let 

N 

z T  : =  T - 1  

k = - N  

2~k k = - N ,  N ,  N = [T/2I where wk = T ,  • • •, • 
Then the following approximation holds: 

LEMMA 3.1. IZT -- HTI = Op("/T1/2). 

With this lemma, we prove Theorem 3.1 by showing 

THEOREM 3.2. Under the assumptions of Theorem 3.1, 

.1/2 T (ZT -- H) DN.(O, V). 

In the following we give the main lines of the proof of this theorem. The 
following propositions immediately yield Theorem 3.2 by the method of cumulants: 
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1/2 
PROPOSITION 3.1. l i m T - ~ ' / r  (EZT -- H)  = O. 

PROPOSITION 3.2. limT-~o~ 7T V a r { z T }  = V. 

L / 2  c 1 
PROPOSITION 3.3. l i m T ~  7T CUmLlZT~ = 0 for all L >_ 3. 

To show these proposit ions we introduce the following setup: Let  

and 

Aj : =  AT(cOy) : =  f(cuj)-l/221/2(H2,T)-l/2 " Re(dT(~j)) 

Bj :~- BT(O2j) := f(a)j)-l/221/2(H2,T) -1/2" Im(dT(wj)). 

Then  1/2(A 2 + B 2) = f (aJ j ) - l IT(wj ) ,  and we describe the m- th  cumulants  of 
~(IT(C~k)), for fixed order m _> 1, by means of integrals of C w.r.t, the  joint  probabil-  
i ty density function (p.d.f.) of the Gaussian vector  (AT (aJj~), BT (c~j~))i=l ..... , ,  with 
czj~ = 2~rji/T, ji = - N , . . . ,  N: it is d is t r ibuted as Af(02m, E2,~) with 2m × 2m- 
mat r ix  E2,~ = (ET(O~j~,wj~))i,k=z ..... ,~, where 

(Coy(AT (a~y~), AT(aJy k )) Cov( AT(aJj~ ), BT(aJjk ) ) ~ 
r,~(~j~, ~j~) = \Cov(B~ (~j~), g~(~j~)) Cov(B~(~j~), B~(~j~))/" 

The  corresponding p.d.f, writes as ¢2m(Y) = ( 2 7 r ) - ' ~ ( d e t E 2 , ~ ) - l / 2 e x p - ( Y ,  

E ~ y ) / 2 d y ,  where y --- (YI ,Y2 , . . . ,Ym)  = (Y11,Y12;Y21,Y22;...;Ym1,Y~2) E 
R 2m, with Yi = (Yil, Yi2) E R 2. The  basic est imates for the elements of E := E2,~ 
are Lemmas  5.1 and 5.2 in the Appendix,  which yield tha t  l i m T ~  ~2rn = /r2m and 
l i m T ~  det E2m = 1. (To be more precise the rates of convergence of det  E2,~ are 
of the same order as those which will be derived in the sequel for the convergence 
of the mat r ix  elements of E2m.) Hence, in the sequel, we shall omit  (det E2m)- l /2  
in all occurring Gaussian p.d.f. 's (cf. equat ion (3.8)). 

Now we introduce the characterist ic  function x(t) ,  t = (t~, t 2 , . . . ,  tn), of a ran- 
dom vector tha t  consists of L components  with elements in {~(IT(CUj~))}i=l ..... ,~, 
with j i  ~ -t-jk for i ~ k, and with 1 < m < L (see Definition 3.1 below): 

;~(t) = E exp i E t i ( i  = I - [exp{ i t i ( i }¢2"~(y)dy '  
i=1 2~ i=1 

where (i := ((f(o~ji)[lyill2/2) = ((f(c~ji)(y21 + y~2)/2). Moreover, for 1 < m < L, 
define the set H,~ of indices j i  as follows: 

DEFINITION 3.1. ( j l ,  -. •, jL) E II,~ :¢=~ S P l , .  - •, P,~ > 0 with Pl + ' "  • +Pro = 
L and 0 < j l  . . . . .  Jpl < Jpl+l . . . . .  Jpl+p2 < "'" < jL-p.~+l . . . . .  jL <_ 
N, where in the last line j i  s tands for ]ji[, i.e. we do not  distinguish between j i  
and - j i !  
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With  this separation introduced 

(3.1) CUmL{ZT} = CUmL T -1 E AT(a3J)C(IT(~J)) 
j=-N 

L 
= ~ A(L,m) ~ OZjl "''O{jL "cum{~jl,.. . ,~jz}rn, 

m=l  (jl,,..,jL )eYI~ 

where a j  := T-~AT(a~j), with a j  = O(0,T1), uniformly in j ,  and where 

cum{Q1, • • •, CjL }-~ = i -CoL/(otl  "'" OtL) log x(tl ,  t2 , . . . ,  tL)Itl . . . . .  tL=0 

= i--Lo r /O~_log  exp{itiCi}¢2,~(y)dy . 
2m i=1 

(In the sequel, we omit in the notat ion tha t  the logarithmic derivative is always 
taken at the point t = 0!) Note tha t  {Q~ , . . . ,Qc} ,~  is used for { Q ~ , . . . , Q c }  if 

( j l , . . . , j L )  E IIm. 
Finally A(L, m) is used as a constant  not depending on T, to give the right 

number of terms of the sum for each m. 
We proceed proving Theorem 3.2 by first presenting the proof of Proposit ion 

3.3 which includes part  of the proof of Proposit ion 3.2, where L = 2, namely the 
one with m = 2 in cum2{zT}: 

PROPOSITION 3.4. For L >_ 3, 1 << m < L, and for L = 2 = m, 
_ L/2 lim 

7__+o4) 
(j~ ..... jL)~IIr~ 

Proof of Proposition 3.4 
Let, for given/~ > 0, L _> 2 be fixed. We consider the respective terms of (3.1) 

• = j L ) :  By 

3.1 

labeled by m. The simplest case occurs for L >_ 3, m = 1 (i.e. j l  = • 
(5.6) in Lemma 5.4, with 

eum{~Jl''' ' '~jL}I =(--i)LoL/otLlog(/R2 exp{it~l}¢2(Yl)dyl) = O(1), 

E a j l . . . a j c ,  c u m { Q 1 , . . . ,  ~JL }1 = O(~T L/2) for L > 3. 
(jl,...,jL)EII1 

For all the other cases we proceed, for each fixed L (_> 2) and for any m (1 < m < 
L), as follows: 

For given L choose K = K(L, ~) such tha t  ~/T/2T - K ~ -  ~ O. Let A := I -  E = 
I2~ - E2~. Then 

K--1 

(3.2) ~--1 = ( f _  A ) - I  ~__ f_}_ E Ak -}-'~K 

k=l 
K--1 

(3.3) =: I + E (Ok + Nk) + / ~ K  : :  g + N + •K,  
k=l 
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where Dk is the part of A k which consists only in 2 x 2-diagonal blocks and 
v~K- 1 D H := I + ?-,k=l k, Nk is the remaining matrix part of A k consisting only in the 

K - - 1  off-diagonal blocks and N := ~ k = l  Nk. Finally RK := ~ k > N  Ak denotes the 
remainder of order K. 

LEMMA 3.2. (y, RKy)  = O(IlYlpT-KZ). 

With the expansion (3.3), 

(3.4) exp - ( y ,  E~-I y) = exp - ( y ,  H y) exp -(y, Ny) exp - ( y ,  RKy),  

where exp - ( y ,  H_y) = Eim=l exp --(Yi, H~yl), with Hi being the i-th 2 x 2-diagonal 
K - - 1  block, exp - (y ,N_y)  = 1 + }-~-1=1 cI(y, Ny) t +OK(y, Ny) K, with cz := ( -1)I / l !  

and OK = OK(y_) and (_y, N_y) K = O(Ily_II2KT -Kz) (see Lemma 5.3(a)), and where 
finally exp - ( y ,  RKy) = 1 + O((y, RKy))  = 1 + O(IIy_H2T-Kg). Now, given fixed 
m, we introduce 

L ~I I Pl+'"+Pi 
E exp{i~i(i} = exp i ~i E 
i=1 i=1 n=pl-t-...4-pi_ l--1 

where, for 1 _< i _< m, t(i) : =  (tpl+...+pi_l+l,...,@l+...+p~) , and where ~ := 
(~1,. . . ,  ~L). With (omitting the determinant det E2~), 

L 

x(t-) = ~ E exp{iti~i}¢2m(y)dy and expansion (3.4) 
i = l  

= £ II  @(t(i); ¢i) exp-(~, Hy)/2 exp-(y, Ny)/2 exp-(y, R~y)/2 dy 
2m i = 1  . . . . . . .  

I K--1 1 = [,~2~,~ Q(t_;~)exp-(y, Hy)/2 1+ E cl(y'Ny)l +OK(y, Ny) K 
J 1 %  

/ = 1  

• [1 + O((y, R~y))]dy. 

As both OK(y, Ny) K and (y, RK_y) are bounded by some MT KZ with an inte- 
grable constant M = M(ll_Yll2), 

(3.5) log(x(£)) : log(L0(t)) + log(1 + x(t)) + O(T-KZ), 

where 

L0(t) := Qi( t ( i ) ;~i)(exp-(yi ,  Hiyi)/2)dyi =: I I  L~/)(t(i))' 
i = 1  2 i = 1  

K - - 1  K - - 1  

Ll(t)  : = / R 2 .  Q(t;_~) E cl(y'Ny)l exp-(y, Hy)/2dy=: E L[5(t-) 
/ = 1  / = 1  

and 
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x(t_) := Lo (t)-lLl(t_). 

We have the following two lemmas: 

LEMMA 3.3. o L / O t l o g ( L o ( t ) )  = O. Moreover, 

c u m { Q ~ , . . . ,  QL}m = i -LoL /Ot log( 1 + x(t) ) + O(T-KZ).  

Expanding further,  

(3.6) 
K-1 

log(1 + x(t)) = E(--1)n+lx(t_)n/Tt = E ( -1)~+lx( t )~/n  + RLk. 
n ~ l  n = l  

LEMMA 3.4. In expansion (3.6) RLK = O(x(t) K) with x(t_) K = O(T-KZ) .  

Now it remains to deal with the derivative w.r.t, t of the first K - 1 terms 
of the expansion (3.6) of log(1 + x(t)).  We first consider (n = 1) OL/Ot(x(t)) = 
OL/Ot_(Lo(t) -1 E ~  ~ L[~)(_t)) and recall that 

L~ l) (t) = JR2m Q(t; ~_)el(y, N y )  z exp - ( y ,  Hy) /2dy .  

LEMMA 3.5. or/Ot(Lo(t) -1 }-]F~lL~l)(t)) = 0. 

With  Lemma 3.5 it is sufficient to bound L~t)(t), l > m, from above: 

LEMMA 3.6. For I > m the following estimate for L~ l) (t) is holding: 

IL~ ~)(t)l -< 
m m 

E E 
il~kl i.~/2¢km/2 

(]ji~ jk~ 1-2 I Jim/2 " -2 T - . ~ ) ,  . . . . . .  3k.~/~l A 

where the sum is over indices i~ and k~, 1 <_ u <_ m/2,  being elements of 
{ 1 , . . . , m } ,  which are mutually different from each other, and where M = M(t)  
denotes the finite integrals depending on these specific permutations of the indices 
iu and ku. (Note that for odd m this holds with 1 ~ m + 1, with a slightly different 
upper bound being of similar form.) 

As the form of the bound of Lemma 3.6 does not depend on M(t ) ,  this yields 
the following estimate, up to terms of higher order: 

L E M M A  3 .7 .  

y5/2 
T E 

(j~ ..... jL)eH~ 

ajl . .ajL O5/Ot(x(t)) O(7"~/2-L/2T -('V2)~) 
" " - - ~ T 
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Now, to finish the treatment of log(1 + x(t_)), we should consider x(t_) ~ for 
n _> 2, ef. expansion (3.6). But these terms have the same behavior as the one 
treated by Lemmas 3.6 and 3.7 for n = 1. Hence, with (3.6) we have the following 
estimate: 

LEMMA 3.8. 

,~T L / 2  Z °% ' " "cUL ' oL/O~-log(1 + x(t)) 

Finally, we put together all estimates and remainders of cum{¢j l , . . .  , CJL }m 
L / 2  

in Lemma 3.3 and insert them in 7T CUmL{ZT}. The proof of Proposition 3.4 
ends by considering m = L in the bound of Lemma 3.8, as the convergence of 

L/2 
7T CUmL{ZT} is determined by the term cum{¢j~, . . . ,  {]L}-~ with m = L (in the 
sum (3.1)): 

PROPOSITION 3.5. Up to terms of higher order, 

L/~ r ~ O ( T - ( L / ~ ) , )  O %  T ~ ~T CUmL ~ ZT.[ : -~- ~- O(1), 

by the choice of K = K(L,/3) such that "/L/2T--KZ ~ O. 

3.2 Proof of Proposition 3.1 
We want to show that 

1/2 
lim ~/T (EzT -- H) = O. 

T----+ oo 

Noting that this proof will work without using Assumption 4, we first recall that  

N N 

E[ZT]= T -1 Z AT(wj)E[~j]= E c~jE[~j] with 
j = - N  j = - N  

E[~j] = (27r)-1(det E2) - 1 / 2 / R  2 ¢(f(wj)1[Y112/2) exp - ( y ,  E21(wj)y)/2 dy. 

Now, with E := E2(wj), the matrix expansion of E -1, analogously to (3.2), writes 
as 

(3.7) E -1 = I + A + R2, 

for which the following lemma holds (cf. Remark 5.1): 

LEMMA 3.9. In the expansion (3.7) the elements of A are bounded from above 
by some c~ = o ( IJ l -1 ) .  Hence, (U,Z~y) = O(IlulI2Cj/ = O(llull21Jl-1), and 
(U, R~y)  = O(llvli2C~) = O(llYll~lJl-~). 
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Hence, e x p - ( y ,  E - l y )  = exp-Ilyll  2 .  e x p - ( y ,  A y ) -  exp - (y ,  R2y), and ex- 
panding further, 

exp - ( y ,  ~ - 1 y ) / 2  

= exp - I l y 1 1 2 / 2  • [1 - (y, Ay) /2  + O((y, Ay))2] - [1 + O((y, R2y))]. 

The leading term of E[Q] equals 

(3.8) Ej := B(((f(wj))) := (27r) -1 fR 2 ¢(f(a;j)llyll2/2) exp-llyll2/2dy, 

as (act E2) -1/2 = 1 + RDT, with RDT = O(C~.) and by (3.10) below. Elementary 
calculations show that 

(3.9) 'O (2'~ B(((f(wj))) = ((f(wj)x)e-Xdx 

= ~(z)f(wj) -1 exp{-f(wj)-lz}dz.  

Turning to the remainders of E[Q], we proceed as follows: 
With A l l  = 1 --  Cov(Aj,A~) = -A22 and A12 = Cov(Aj,Bj)  = A21 (see 

Lemma 5.1), 

~2 ~(f(wj)llyll2/2)(y, Ay)/2 -Ilyll2/2 dy e x p  

=/x~a ./~2 C(f(c~J)llYl12/2)(y21~ - y~2)/2 exp-[ lYll2/2dy 

+ A12 [ C(f(wj)llyl12/2)(yny12)exp-HYll2/2dy = O, 
J R 2 

due to symmetry arguments. Furthermore, with Lemma 3.9, the final remainder 
of E[Q] is bounded from above by 

~ ¢(/(wj)l[ ll2/2) [(y, Ay)  2 + (y, R2y)] -11 llh/2 dy = O(C]) = o(Ijl-2), Y exp Y 

N E such that any of the remainders of E[ZT] = ~"~j=-Y aj [¢j] can be treated simi- 
larly to 

N N 

(3 .10 )  E ajC~. << ~ c~j[j1-2 = O ( " / T  1) = O( ' ) 'T1/2) ,  aS O~j ~--- O ( ~ T 1 ) .  

j : - - N  j = - N  

The leading term of E[zr], finally, which is }-~jN___ x c~jB(~(f(wj))), tends to H with 

rate of order O(771), where we note that H = f_~ limr__.~ AT(w)B(~(f(w)))dw: 

N 

(3.11) T-1 E Ay(wj)B(~(f(wj))) - H = O(3,T1). 
j = - - N  
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This can be shown by the same arguments as in the proof of Lemma 3.1 for integral 
approximations by sums (analogously to Brillinger (1981), Theorem 5.10.1), as B 
is a function of bounded variation of cO, and so is A. This ends the proof of 
Proposition 3.1. 

3.3 Proof of Proposition 3.2 (remaining part) 
It remains to treat the term of the sum (3.1) with L = 2, m : 1: 

L E M M a  3.10.  limT-+oo 7T ~ j e l h  a~var{Q} = V. 

PROOF OF LEMMA 3.10. 

As E j ~ r h  aj  = E y : - N  a~(E[~]  - {E[Q]}2), where 

E[¢]] = (2rc)-l(det E2) -1 /2 /R 2 ¢2(f(cOj)llyll2/2)exp -(y,  y]21(coj)y)/2 dy, 

we can proceed quite analogously to the proof of Proposition 3.1, where the only 
2 instead of c~j: modification arises from dealing with weights aj  

Concerning the leading term of E[¢]] which is 

(3.12) Vj := V(¢(f(coj))) := (27r) -1 ~ 2  C2(f(coJ)[lyl]2/2)exp-[lYl[2/2dy 

= C~(z)I(COj) -1 exp{-f(wj)-lz}dz, 

we note that 7T 2 joE1 a~Vj tends to ff_,~ t2(cO)V(¢(f(coj))dcO with rate of order 

7T 1, analogously to (3.11), whereas, for the leading term of {E[Q]} 2 we note that 
~/T ~ j E I I ~  2 2 %Ej tends to ff~ n2(cO)B2(C(f(cO)))dcO, again with rate of order ~y~l. 
Concerning the remainders of E[C~] everything runs quite similarly to the ones of 
E[Q], as they are determined by exactly the same p.d.f, as occurring in (3.12). [] 

To end this section on the proof of the CLT 3.1, we add the following remark 
on the form of both H and V: 

Remark 3.1. In Theorem 3.1, 

ff imA ()me(f()))6 H: TO2 CO CO, 

where B(¢(f(w))) : l i m z ~  E[¢(IT(w))] = f~,o ¢(f(w)x)e_Xd x (see equation 
(3.9)). Note that the limiting value of AT(cO) = ~TA(co) depends on the behavior of 
r/T (e.g. for kernel estimates AT(W) = K(co/bT)/bT, and f ~  limr__+~ Ar(w)dw = 
f ~  K(cO)dco = const.). Analogously, 

V = AZ(co){V(¢(f(w))) - B2(¢(f(w)))}dw, 
N- 

where V(C(f(w))) = limT-+oo E[¢2(Ir(w))] = f ~  ¢2(f(w)x)e-Xdx (see equation 
(3.12)). 
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4. Applications 

Now we shall apply the CLT 3.1 to our specific situations. First, we recall 
the si tuation of TG, using his notat ion with AT(W) = ~(w) (i.e. 7T = T) for any 
continuous function 9 ,  and ~(x) = £-l{a2(1/t)l/t}{x}, for an arbi t rary function 
• , such tha t  ~(x) fulfills Assumptions 2 and 3, where £-l{G(u)}{x} denotes the 
Laplace inverse transform of G(u) at argument  x. Note tha t  

~0 °° 
g{F(x)}{u} -- F(x) exp{-ux}dx,  

denotes the Laplace t ransform of F(x) at argument  u, whereas the inverse writes 
as 

£-1{G(~) }£x } (27ri) - 1L°_~i~ = exp{ x}d , 

where cr is greater than  the abscissa of absolute convergence (cf. TG, p. 75). Note 
tha t  this t ransform is used to introduce asymptot ic  unbiasedness of the result- 
ing estimator: Wi th  f~[~-l{~(1/t)l/t}{z}]{u} = ~(1/u)l /u,  for u e (0, cxD), and 
~(IT(w)) = IZ--l {~(1/t)l/t}{1T(W)}, 

~0 °~ lim E[((IT(w))] = £- l {~(1 / t ) l / t } {~} f (w)- i  e xp{ - f (w) - l x }dx  
T---+ o o  

= f(w) -1-  £[E-l{~2(1/t)l/t}{x}]{f(w)-l} = a2(f(w)) 
(cf. also TG, Lemma 1). 

Wi th  this, HT = f~_~ q2(w)£-l{~(1/t)l/t}UT(~)}dw is a consistent and asymptot ic  

normal est imator for H = f ~(w)~(f(w))dw, and the resulting CLT (which, for 
the non-tapered case, is Taniguchi's Theorem 2) states as 

THEOREM 4.1. 

F T 1/2 ~(w)[g-l{a)(1/t)l/t}{1T(~)} - 42(f(w))]dw DAy(0, V) 
~r 

with asymptotic variance 

V = 
7r 

• oxp  dw. 

Some examples for useful ~-functions, which satisfy Assumptions 2 and 3, 
are ~(x)  = x n, 0 < n < oc, where £-l{~(1/ t ) l / t }{x}  = (F(n + 1 ) ) - i x  ~, or 
• (x) = logx, where £- l{~(1/ t ) l / t }{x}  = logax ,  with a = exp7  ('y ~ 0.57721, 
Euler's constant),  which are Taniguchi's examples 1 and 2, respectively (for further 
details see therein). 
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Second, we turn to the situation of peak-insensitive kernel spectral estimation, 
as introduced in vS: 

There we are dealing with a nonparametric spectral estimator fr(o 0 for a 
fixed a E H, which is defined as the root, pointwise in c~, of the following equation 
i n s > O  

N 

HT(a , s ) :=T-1  E Kb(Ot--Wk)q2(IT~ k) 1 ) = 0 .  
k=--N 

Here Kb(V ~) :---- b-IK(~/b) with a smooth kernel function K with compact support, 
with smoothing parameter (bandwidth) b = bT --+ 0 and Tb ~ oo, as T ~ e~, and 

is some smooth bounded function with f ~  ~(x - 1)e-~dx = O. 
In order to show asymptotic normality of this estimator fT (a) the main step 

is to prove a CLT for g T ( a )  = HT(a,  f(c~)) (cf. vS, Theorem 3.4) in the tapered 
case. Then, it is a standard technique to carry over to fT((~), by e.g. the 5- 
method (i.e. expanding HT(o~, fT(a)) around HT((~, f(oO) and using stochastic 
convergence of the denominator in the resulting ratio for fT(a) -- f((~)). To match 
with the notation here, AT(W) = (27r)- lK((a  - w ) / b T ) / b T  (i.e. ?~T = bT 1 and 
7T = TbT). Further, C(x) = ~(x / f ( a )  - 1), such that, by the above assumption 
on ~, B(~( f (a ) ) )  = l imT~o  E¢(IT(a)) = 0. So 

H T  = = - - 1 ) a w  

and H = limT__.~ EHT(a) = (27r) -1 f K(3)d/3.f ~(x-1)e-Xdx = 0, as with (3.9), 
B(¢(f(w)))  = f ~  ~(f(w)x)e-Xdx = f ~  q2(f(w)x/f(c~) - 1)e-Xdx, and because 
fE~ gb(o~ -- w)B(~(f(~)))dw tends to f K(/3)d/3. f q2(f(c~)x/f(a) - 1)e-~dx = 0 
(note that Kb(~)) is an approximate convolution identity). We finally end up with 
an asymptotically unbiased estimator fT (a), if in addition, 

EHT(c~) = O ( ~ T  1 /2 )  : o ( ( T D T ) - I / 2 ) .  

For this it is sufficient to assume a kernel K of second order, a twice continuously 
differentiable spectrum f and the existence of a Lipschitz ~t, together with a 
common bandwidth condition in kernel estimation theory, namely Tb 5 --~ 0 (see 
vS, Theorem 3.2 and Proposition 3.5). 

This leads to the following resulting CLT (which, for the non-tapered case, is 
Theorem 3.4 in vS): 

D 
THEOREM 4.2. (Tb) 1/2. HT(a,f(a))--~ Af(O, V), with asymptotic variance 

V ~- (271") - 1  ff~v K2(/3) d/3" f ~  ~2( x - 1) e-~dx" 

It remains to note that, in vS a slightly different assumption on the underlying 
process {Xt} was given, where X was assumed to be a general linear process of 
the form 

( X )  

X t  = E ak~t -k ,  --oo < t < (x:), 
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where e~, - o c  < t < oe, are i.i.d, random variables with mean zero and finite 
2 and where ~ Ikakl < oc. But  this is equivalent to Assumption 1, variance cre , 

as, on one hand, Assumption 1 is met by any general linear process of this kind, 
and on the other hand, under Assumption 1 {Xt} admits  a representation as a 
(one-sided) linear process of the above form. Of course, for the CLT 4.2 to hold, 
the et have to be Gaussian. 

5. Appendix: Proofs 

PROOF OF LEMMA 3.1. First, we show that 

(5.1) var{zT -- HT} = O(~'T1), 

which is 

COV a T ( / ~ ) d / ~ - r - 1  E aT(°dJ)' 
vr j=-  N 

C T ( ~ ) d ~  - T -~ c T ( ~ k  = o(~,7.1), 
~r k=- N 

with GT(A) := AT(A)#(IT(A)). This can be shown by arguments similar to 
Dahlhaus ((1983), Lemmas 4 and 6), and making use of the properties of (//2,7) -1- 
IH~(~) I  2 as an approximate identi ty (see Lemma 3 therein). The main step is to 
show tha t  each of the four resulting covariance terms tends to the same limiting 
quantity, 

/; V = a2(~){V(((f(a3)))  - B2(~(f(a~)))}da~, 
T~ 

which is the asymptotic  variance, as in the proof of Proposit ion 3.2. Secondly, 

(5.2) ~-JHT -- U = O("~T1/2). 

A continuous analogue to equation (3.10) makes use of the so-called L(r)-function,  
introduced by Dahlhaus (1983): Let 

T for Iwl < T -1 
L~T)(~) := I~1-1 for T - l - <  I~1-< ~- 

Then, with IH~(~)I _< KL(oT)(a~), 

(HN,T) -2 AT(~)IH~(~)I2d:o <_ (H2,T) -2-  eonst. ~TT = O('y~ 1) = o(7~1/~), 
- 7 1 -  

a s  f ~  IL(oT)(~)12d~ <_ const. T, with Lemma 1 of Dahlhaus (1983). The proof ends 

by noting tha t  (5.2), together with Proposit ion 3.1, yields E[zr - HT] = O(7T1/2), 
and this is, together with (5.1) the assertions of Lemma 3.1. [] 
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LEMMA 5.1. Let j,  k E {ji}i=l ..... ,~ and let HT(a~) := EtT__lh2exp{--iwt}. 

Let F(A,p) := f (A) -U2f (p) - l /2 f2 (A ,p) ,  where f2(A,P) denotes the second 
order cumulant spectrum as introduced in Brillinger ((1981), equation (2.6.2)). 
Note that for A = +p,  f2(),, P) equals the common spectral density f2(),). Then, 
up to remainders which are of order O((H2,T) -~) = O(T-~),  uniformly in j and 
k, 

Cov(Aj, Ak) = (H2,T) -1" r(aJj, a.Jk) Re{H2T(03j -}- O.)k) -~- H:(03j - 02k)}, 
Cov(Aj, Bk) = (H2,T) -1" F(wj, wk ) Im{ HT (wj + a~k ) -- HT (a~j -- cok)}, 
Cov(Bj, Ak) = ( H2,T ) -1" F(c~j, a~k ) Im{ HT (wj -- a~k ) + HT (wj + a~k)}, 
Cov(Bj, Bk) = (H2,T) -1" F(aJj, wk) Re{g~(wj - cvk) - HT(cvj + czk)}. 

In particular, as F(wj, czj) = 1, and HT(0) = H2,T, 

Cov(Aj, Aj) = 1 + (H2,T) -1. Re{HT(203j)} -~- O(T-1), 
Cov(Bj, Bj) = 1 - (H2,T) -1 .  Re{H~(2wj)}  + o(r-1) ,  
Cov(Aj, By) = (H2,T) -1 .  Im{HT(2wj)} + O(T-1),  

and 

where for a~k = -c~j analogous expressions are holding. 

PROOF OF LEMMA 5.1. We mainly use Brillinger ((1981), Theorem 4.3.2): 

Coy(dr(A), dT(#) )= HT(A + #)/2(A) + O(1), 

where the remainder is uniform in A, #. The assertions of Lemma 5.1 follow 
immediately as, e.g., 

Cov( AT(aJj ), AT(a~k ) ) 
= 2f(wj)- l /2 f (wk)- l /2(H2,T)  -1 .  Coy(Re dT(wj), Re dT(wk)), 

and Cov(Re dT(wj ), Re dT(wk ) ) = Cov( dT(wj ), dT(wk ) ) + Cov( dT(wj ), dT(--Wk ) ) + 
Cov(dr(-~j) ,  dT(~k)) + Cov(d~(-~j), d~(-~k)). [] 

LEMMA 5.2. (a) [(H2,T)-IHT(Wj --Cdk) I = O(I j --k1-1) for j • ]g and 
I(HmT)-IHT(wj +wk)] ---- O(]j + ]g]-l) for j ¢ - k ,  

in particular I(H2,T)-IHT (w5) I = o(IJ l  -*)  for j ¢ o. 

Moreover, with Assumption 4 holding, i.e. PT = T -~ with 0 </3 < 1: 
(b) I(H2,T)-IHT(a~j +c~k)l = OOj + k[ -1 A T  -~) for j ¢ ink. 

PROOF OF LEMMA 5.2. (a) For all assertions it is sufficient to proceed as 
follows: With j # 0, 

r t 
IHT(o2J)I ~-- t~=l (h2 -- ht2d-1) ~=IE exp{--iwju} (with hT+l := O) 
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T 
~_ ~_ (h 2 - h2t+l) exp{-iwj}(1 - exp{-iwjt}) /(1 - exp{-iwj}) 

_< var h 2 (x) 2 I2 sin(wj/2)] -1 
X 

(where var denotes the total variation) x 

ChTr/[O2j[ (as sin ]a] _> 2[a]/Tr for ]a] _< 7r/2) 

= TCh]2j] - i ,  

and the assertion follows, as H~,T ~ T. 
(b) As extension of part (a) the modification for the proof of (b), showing 

](H2,T)-IHT(wj)] = O([j] -1 A T -z) for j # 0, runs as follows: Let T' := pTT = 
T 1-~. First we have to show that still H2,T = chT (i.e. H2,T ~ T): With (2.1) 
and using the symmetry of v, 

T 

H2,T = E h~(t/T) 
t = l  

T/2 T-T'/2 

: E ~2(fc/Tt)l[°'P/2)(t/T) -}- E I[P/2,1-p/2](t/T) 
t = l  t=T/2+l 

T/2 
+ ~ v2(t/T')lEo,p/2)(t/T) 

t = l  
! ! c~T'/2 + T - T' + cvT'/2 = T + ChT = T(1 + const. PT) = chT, 

1 + O(T-~).  Second, again using the symmetry of both v and w i t h  c h = 

exp{-iwjt},  

T 
HT(wj) = E h~(t /T)exp{-iwjt}  

t = l  

T'/2 T'/2 
-- E u2(t /T ' )exp{- iwjt}  + E v2(t/T')exp{iwjt} 

t = l  t = l  

T/2 
+ E (exp{--iwjt} +exp{iwjt}) 

t=T'/2+l 
= (1) + (2 / .  

Calculating (2) we proceed with 

T/2 
E (exp{-iwjt} + exp{iwjt}) 

t=T'/2÷l 
T T'/2 T'/2 

= E exp{-- iwj t}-  E exp{-- iwj t}-  E exp{iwjt}. 
t = l  t : l  t = l  
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First, ~'~T_I exp{--iwjt} = 0, and secondly 

~ 2 e x p { - i c J j t }  < min{(~r/4)T',Tl2j[-1}, as: 
t= l  

T t / 2  

E exp{-ic~jt} = exp{-ia~j}/(1 - exp{-ic0j}). (1 - exp{-iczjT'/2}), 
t= l  

where ]exp{ - iw i } / (1 -  exp{-i~j})]  _< T]4j] -1, and 1 (1 -  exp{-iwjT'/2})] <_ 
v"'~T'/2 r .  ,1 min{~pT]jl,2}. The same holds for 2_,t=1 expluvjrl ,  such that 1(2)] _< 

min{(Tc/2)T', TtjI-1}. For ( i )  we can use nearly the same estimates which can be 
derived analogously to part (a): 

T•2 T' /2 exp{ iwjt } u:(t/T')exp{-ic~jt} + E v2(t/T') 
t= l  t=l  

_< var h2(x) • min{ (Tr/2)T', rljl-l}. 
X 

[] 

Remark 5.1. By Lemma 5.2, the off-diagonal elements of the i-th diagonal 
block of E, i.e., the elements of the i-th diagonal block of A = I -  E, are bounded 
from above by some Cj, = O(Ijil-1). Moreover, the bounds for the ( i , j ) - th  off- 
diagonal block elements of E are C j i j k  ~- O(]ji - jk1-1 + IJi-t-jkl-1), both up to 
terms of order O(T-1).  

Summarizing, under the additional Assumption 4, the off-diagonal elements 
of E are bounded from above by some C(wj~,wjk ) which, for j ,k  E { j i } i = l  ..... m ,  

are of order 

O([]j + kl- l (1  - 5j,-k) + [j -- k1-1(1 -- ~j,k)] A T -f~) -1- O(T-1).  

This is, with/3 < 1, the essential difference to the non-tapered situation of TG, 
where these elements are of order O(T-1),  uniformly in aJj~, wj~. 

PROOF OF LEMMA 3.2. We want to show that for the remainder R K  := 
}-~-k>K Ak of the expansion (3.2), the following estimate holds: 

(5.a) I(y,R _y)I _< Ilyll J   x(R )l _< II_yll   

where ), := I~m~x(A)l denotes the modulus of the largest eigenvalue ~max of  /N, 
for which, under Assumption 4, A = O(T-~) ,  i.e. ~K = O(T-K~). Note that, by 
the spectral decomposition for a symmetric matrix A: 

sup((x, Ax)/llxll 2) = Amax(A) for x e R n. 
X 

Thus, it is sufficient to show that 

(5.4) i~max(RK)l _< )~K. 
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This holds due to well-known expansion theory for geometric series, applied to 
matrices with eigenvalues bounded above from unity: 

.~max(-/~K) = /~max((]- -- A ) - I { ]  - -- ( I  -- A/f)})  = ~max(Y]-l)/\ma,x(AK), 

where  /~max(Y] -1)  = O(1) and [Amax(AK)I < A K. Finally, A = O(T-f l) ,  as A2 _< 
Y~i,~=l Y~,~=l([A]i,k)~, where [A]i,k denotes the (i, k)-th block of dimension 2 of 

A, with ([A]i,k)~s = O ( T - ~ ) .  [] 

At this place we give an additional est imate for the individual elements of the 
matr ix N: 

LEMMA 5.3. ( a ) ( y ,  N y ) =  o(llyII2T-~). 
(b) The elements of the (i, k)-th off-diagonal block of N are bounded from 

above by 

(5.5) c[N] M~,k(K,m)(IJ~ --Jk1-1 + tJ~ + Jk[ -1) A C T  - z  + O(T-1) .  i,k :~ 

with a constant M~,k(K,m) that depends on both K and the dimension (2m) of 
the matrices under consideration. 

PROOF OF LEMMA 5.3. (a) is a direct consequence of Lemma 3.2. For par t  
(b) we first note tha t  the off-diagonal blocks of N1 are the ones of E (where we 
derived this bounds  in Lemmas 5.1 and 5.2). Second, it can be shown by matr ix  
multiplication and induction on k, tha t  the same kind of bounds  holds for each 
Nk, k >_ 2: By Remark  5.1, the elements of the i-th diagonal block of A are 
bounded  from above by Cj~ = O(]j i l -1) .  The bounds  for the (i, k)-th off-diagonal 
block elements of A are C j j  k = O(Iji - jk[ -1 + IJi + Jkl-1),  bo th  up to terms 
of order O(T-1) .  In addition, both  kind of elements are bounded  from above by 
some O(T-~) ,  due to Assumption 4. [] 

Further, we give some summat ion  propert ies tha t  help to proceed with the 
remainders of CUmL{ZT}: 

LEMMA 5.4. 

(5.6) E a ] l . . - a i r  : 0(~/~ -L)  (1 < m _< L). 
(jl ..... jL)~rI,~ 

Let 2 << m < L. For even m, 

(5.7) 
(j~,...,jc)~n.~ 

where Cj~.jk. :=  ,~[N] " . . . , m / 2  (see (5.5)), and where i ,  and k~ are 
elements of { 1 , . . . ,  m}, which are mutually different from each other, leading to a 
sum only over mutually different indices ( j l , . . .  , jL) E rim. For odd m, 

(5.s) o jl • .  • • (cj lj  )2 . . .  (c5  

(j~ ..... jL)eri.~ 

= O ( , ~ ( f f - ~ ) / 2 - L T - ( . ~ ' / 2 ) 9 )  
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with m' := (m + 1)/2 and the indices i~ and k~, 1 < u <_ m', being different from 
each other. 

PROOF OF LEMMA 5.4. First  we show (5.6): For m = 1 (i.e. j l  . . . . .  jL), 

~/T /2 

(jl ..... jL )CII1 j=--'TT /2 

as a j  = O(TT 1) uniformly in j ,  and where My denotes a constant  which includes 
the uniformly bounded  par ts  of the a j, which do not depend on T. For i < m _< L 
we have j l  . . . . .  Jpl up to jL-p,~+l . . . . .  jL: 

2 O~jl"''O~jL = O(0/T(pl--1))' "" O(")/T(Pm--1)) = O(~/T(L--m)) '  

(jl ..... jL )6II~ 

as we can repeat  the same argumenta t ion  as for m = 1: In each of the m groups of 
Pi (1 < i < m) equal indices we proceed with Pi instead of L, to derive an upper  

bound of order O(~/T (p~-I)) for each group of them. Secondly, we restrict  to prove 
(5.7) for the case of L = m = 2, i.e. we show, with j # +k,  

(5.9) 
N N 

EE 
j = - N k = - N  

~ ( c j ~ )  ~ = O(v~T-9). 

The  assertions for m > 2 can be shown quite analogously. 
It remains to show (5.9): Wi thou t  loss of generality, by Lem m a  5.3(b), we 

est imate  Cjk = min{O( l j  - kl-1) ,  o ( r - ~ ) }  up to terms of higher order, due to 
reasons of symmetry.  For ~/T _> T ~ (otherwise (5.9) is fulfilled trivially as the sum 
is always of order O(T-2/~)),  

N 

E 
j :fi k= -- N 

"~T/2 7T 

OZjCtk(Cjk)2 <-- MI~T2 E E IJ-  k1-2 
j=--"/T /2 ]j-kl'> T¢~ 

"7T/2 

j:--~'T /2 I j - k l<T~ 

where M1 and M2 are constants used analogously to the proof of (5.6). The first 
t e rm of the sum behaves like O(O,T l) -yr " }--~,>T~ ]u1-2 = O(~/T1T-/~), where the 

second one like O(%71) • O(T~) • O(T-2a). This proves (5.9). [] 

PROOF OF LEMMA 3.3. 

i L c u m K j l ,  • • •, CjL },~ = O L / o - t  log(x(_~)) 

= oL/Otlog(Lo(t))+ oL/Otlog(1 + x(t_))+ RCK, 
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with (3.5) and where, as in (3.5), RCK is bounded by some MT -Kz with an 
integrable constant  M = M(llyll2), which does not depend on t. Further,  with 

L~i)(t(i)) as in (3.5), 

(5.10) oL /Ot log(Lo(t) ) = oL /Ot log (~=~ll L~i) (t(i) ) ) 

m 

= ~ oL/Otlog(L(oi)(t(i)) ) = 0 .  
i = l  

(Note that ,  for m > 1, no L(oi)(t(~)) depends on all of the tj, j = 1,... ,L.) [] 

PROOF OF LEMMA 3.4. Wi th  x(t) = L0(t)-lLl(t_) and the definition of 
Ll(t_), x(t) = O(T-#) follows immediately by (y, Ny)  = O(llyll2T -~) (see Lemma 
5.3). [] 

PROOF OF LEMMA 3.5. Note tha t  in Ll(_t) it is sufficient only to consider 
terms with even 1 due to symmetry  arguments,  which can be seen by straightfor- 
ward calculations: 

m m 

(5.11) ~ IIQi(t(i);~i)(y, Ny)Z r I (exp-(y i ,Hiy i ) /2)dy  = 0 
2m i ~ l  i =1  

for all odd 1. Now, for even l, each (y, N y )  l leads to terms of a sum where for 
I < m, any of the resulting terms of this sum is of one of the following two kinds: 
either there is at least one of the {Yi}i=l ..... ,~ missing, such tha t  factorization leads 
to terms which cancel, similarly to the leading te rm (5.10) of cum{~j~ , . . . ,  ~YL }m, 
i.e. OL/Ot_log(Lo(t_)). Or, secondly, if no y~ is missing, which may be the case only 
for m / 2  _< I < m, then the resulting integral expressions are zero due to the same 
symmetry  arguments as they  were given in (5.11) above (i.e. for odd l). [] 

PROOF OF LEMMA 3.6. It is sufficient to consider l = m (in case of even m). 
As in the proof of (5.9) we est imate Zik := (Yi, [N]{,kyk)i,k=l ..... m, up to terms of 
higher order, using Lemma 5.3(b): 

< c(y, ,  : min{O(Ij{  - 

E2 with c(yi, Yk) := [ r,s=l lYirYksl] 2, and as each I([N]i,k)rsl <_ c~N,k ], by Lemma 
5.3(b). By the argumentat ion in the proof of Lemma 3.5, for (y, Ny)  "~ we only 
have to consider terms which are of the described form 

m 

• - ( z i lk l )  2(z  j2kmj ) 2, 
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where  the  s u m m a t i o n  is over  those  indices  t h a t  fulfill t he  res t r i c t ions  of  L e m m a  

3.6: 

- -  \ ~ i m / 2 , ] ~ m / 2  ] 

= O(Iji~ - J h  ]-2""lJi ,~/~ - jk~/~ 1-2 A T - " m ) ,  

where  c (y )  is used  to  deno t e  a c o n s t a n t  t h a t  is ana logous  to  t he  one def ined  above .  
For  o d d  m we have  to  rep lace  m by  m + 1, and ,  a f te r  a p p l y i n g  L e m m a  3.7, 

we end  up  w i th  t he  ana logous  b o u n d  (5.8). [] 

PROOF OF LEMMA 3.7. We use L e m m a  3.6, t o g e t h e r  w i th  (5.7), i.e., w i th  
:=  C IN] , CA.J~. i . ,k .  u = 1 , . . . , m / 2 ,  as in the  p r o o f  of  L e m m a  3.6: 

( j l  ..... jL  )CIIm 

PROOF OF LEMMA 3.8. For  the  t e r m s  x(t_) n, n = 2, . . . ,  K - 1, we have  the  
s a m e  b e h a v i o r  of  s y m m e t r y  a n d  f ac to r i za t i on  as for n = 1. However ,  now, as 
non -van i sh ing  t e r m s  we have  to  cons ider  t he  fol lowing n - t h  powers  of  L l ( t ) ,  for 
which  11 + " "  + In = m (for even  m,  and  Eli  = m + 1 for o d d  m) :  

K-1 )) n K--I K--I 

: Z 
/1 :1  l n : l  

This  is genera l i z ing  the  case l = m ( =  m + 1, resp.)  for n = 1, as a p r o d u c t  of  t he  
" subcases"  11 --  m l , . . . ,  I~ = ran,  w i th  m l  + . . .  + m n  = m,  aga in  w i t h  on ly  even  
li. [] 

PROOF OF LEMMA 3.9. For the first assertion note that the elements of A 
are bounded from above by Cj = O(lj] -I) (by Remark 5.1). For the second part, 
let again A := IAmax(A)I denote the modulus of the largest eigenvalue of A (as in 
proof of Lemma 3.2). Now 

R2 ---- E Ak 
k>2 

wi th  I(y,R =y)i IlYlI21 m x(R2)I IlYlI2  2, 

wi th  A -- O(Cj )  -- o(Ij1-1) (cf. <5.3), <5.4) a n d  the  de r iva t ions  of  an  u p p e r  b o u n d  
for A in t he  p r o o f  of  L e m m a  3.2). [] 
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