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Abstract. The multiperiod Bayesian forecast under the normal-gamma prior 
assumption for univariate AR models with strongly exogenous variables is in- 
vestigated. A two-stage approximate method is proposed to provide an estima- 
tor of the posterior predictive density for any future observation in a convenient 
closed form. Some properties of the proposed method are proven analytically 
for a one-step ahead forecast. The precision of the proposed method is exam- 
ined by using some simulated data and two sets of real data up to lead-twelve- 
ahead forecasts by comparison with a path sampling method. It is found that 
most of the results for the two discussed methods are rather close for short 
period forecast. Especially when sample size is sufficiently large, the estimated 
predictive density provided by the two-stage method asymptotically converges 
to the true density. A heuristic proof of this asymptotic property is also pre- 
sented. 

Key words and phrases: AR model, Bayesian analysis, posterior mean, pre- 
dictive density, regression analysis. 

i. Introduction 

Bayesian analysis of autoregressive-moving average ( A R M A )  models has been 
extensively applied in many fields. Estimation of the parameters in A R M A  models 
has been investigated since late 1960. However, there are few results for multi- 
period forecasting via the Bayesian procedure. Theoretically, in order to obtain 
a k-th-step posterior predictive density, a (k - 1)-multiple integration should be 
computed. This numerical difficulty limits the applications of the Bayesian pro- 
cedure for multiperiod forecasting. Chow (1974) presented formulations for the 
estimation of future moments for AR(1) models. Monahan (1983) gave a fully 
Bayesian treatment of A R M A  models. The percentiles of multiperiod (up to lead- 
five-ahead forecasts) predictive densities for AR(1) models were computed with a 
numerical method. Geweke (1989) proposed a Monte Carlo integration with an 
importance sampling technique to compute the posterior expectation as a function 
of unknown vector parameters. 

Using a normal-gamma prior assumption for the parameters of an AR(p)  
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model, Broemeling and Land (1984) obtained some theoretical results for the pos- 
terior predictive density. The joint predictive density of k future observations 
is the product of k univariate t-distributions. Therefore, to obtain the marginal 
predictive density, a multiple integration should be evaluated. This task is very 
difficult, especially where a longer future step is concerned. To overcome this 
limitation, a reasonable approximation is needed. Thompson and Miller (1986) 
suggested a simulation method to estimate the posterior predictive distribution 
for any AR(p) model. The future observations are produced by generating the 
autoregressive parameters based on their corresponding posterior distributions. A 
bundle of 10,000 paths was created to compute the percentiles of the predictive 
density. This approach helps to explore the shape of the predictive density for 
any future observation in a unified manner. The difficulties of computing the 
integration are overcome through the help of the computer via a simulation. 

In this paper, we consider AR(p) models with strongly exogenous variables. 
From an analytical point of view, a reliable approximation in a closed form is 
valuable. It will be helpful to further understand the statistical property of the 
predictive density directly. Sometimes, a rough sketch of the density may be 
needed analytically, instead dealing with it case by case via simulation. Therefore, 
instead of performing a multiple integration or simulation, an explicit approxima- 
tion of the desired predictive density is presented. The parameters in the model 
are separated into two parts, the first part arising from the AR(p) model and the 
second part from the regression model. At first, parameters of the AR(p) model 
are replaced by their posterior means. Then the problem is reduced to a regression 
model and the predictive result of a regression model can be adapted here. The 
proposed two-stage method creates a posterior predictive density for any future 
observation through a close formula. Comparisons with the path sampling method 
are performed to demonstrate the applicability of the proposed method. Though 
the approximate method places some restrictions on the shape and variation of 
the estimated predictive density, numerical results indicate that this limitation is 
negligible for a short period forecast. 

The whole paper is organized as follows: In Section 2, a formal Bayesian 
analysis of the discussed model is presented. Most of the results are adapted from 
Broemeling and Land (1984). In Section 3, a detailed discussion of the proposed 
method is presented, including the development of a transformed regression model 
and the two-stage procedure. Some analytical results for the two-stage method 
are proven for a one-step-ahead forecast. For further step forecasts, simulated 
data and two sets of time series real data are analyzed numerically. The posterior 
predictive density is computed respectively by two methods, the path sampling 
method and the two-stage method. The results show that the two methods are 
rather close to each other for short period forecasts. For a longer period forecast, 
the accuracy of the two-stage method increases as the sample size gets larger. 
All these evaluations are included in Section 4. Finally, a heuristic proof of the 
asymptotic convergence of the proposed method is also investigated. 
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2. AR models with exogenous variables 

2.1 The model 
In this paper, we consider autoregressive models with a regression component.  

Let Yt denote the t- th observation of the dependent variable in the time series 
and xt denote the vector of strongly exogenous variables with r components.  The 
model is represented by 

(2.1) T T yt=xt/~+Yt,p~O-t-et ,  for t = p +  l , p +  2 , . . . , n ,  

where /~r (/~1,/32, /3~), qo w (¢1, ¢2, Cp) and 7" . . . .  , . . . .  , Yt,p = ( Y t - l , Y t - 2 , . . . ,  
Y t - p ) .  Here, et is a sequence of independent variables with normal distributions 
such tha t  E(et) = 0 and Var(et) = T - X v t  . Here vt's are known constants. For 
simplicity, we treat  xt as known instead of as a random vector and /3, is the 
parameter  corresponding to the constant  term. 

Formula (2.1) can be rewrit ten in matr ix  form as 

(2.2) Y~ = z n u  + en, 

w h e r e  Yn r = (Yp- -1 ,Yp+2 ,  . . . . .  , Y n ) ,  Z T  = (Zp--1 ,Zp--2 ,  • , Zn)  , z ~  : ( x  T ,  yj,p),T 
T pT = (/~T, ~T) and g~ = (ep+X, ev+2,. . . ,  e~). Then e~ is multivariate normally dis- 

t r ibuted with mean zero and covariance matr ix  (rV) -~, here V is an (n -p )  x (n -p )  
diagonal matr ix  with vt in the diagonal. The likelihood function of (2.2) is ex- 
pressed as 

P(Y~ I#,  r)  = IVI x/2 exp { - 5 (  n -- Z~#)TV(Yn - Z~#)}  

where m = n - p .  Thus an appropriate prior density is 

where ~1 is  a normal density N(#o, (TQ)-*), Q is a positive definite matrix,  and 
~2 is a gamma density with parameters a > 0 and b > 0. Finally, the joint density 
of (Yn, #, r)  is 

(27r)-(~+P+r)/21vIx/21QI1/%~r6-* exp -5(Tx + T2 + 2b) , 

where 5 : (m-l- p ÷ r + 2a)/2,  T1 = (Yn - Z n p ) T v ( y n  -- Z,~#) and T2 = (# - 
#o)rO(~ - m) .  

If one is confident of one's prior information, one would specify the prior 
parameters  #0, Q, a and b. On the contrary, one may use the flat prior density, 
~(#, T) o( r -1, T > 0 and # E R v+r. Then the joint density of (Yn, #, T) is expressed 
a s  

(2.3) T y ~  Z~#) e x p . { - 5  ( - . 
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2.2 Posterior distributions 
In this subsection, we consider the posterior dis tr ibut ion of #, ~- and the pos- 

terior predictive density of the observed data.  Most of the developments  follow 
from Broemeling and Lands '  results (1984). 

Let  Fn = ZTVZ~, SSRn = Y T ( V -  VZ~F~IZT~V)Y~, f~ = F j~ZfVY~,  
An = Fn + Q and #* = Anl(Q#o 4- ZfVYn),  then  T1 + T2 = SSRn 4- (tt - 
lt* ~ T A  ^ T t g  ' ^ *T A * n) n(#  - #*) + #0TQ#0 + #~ ~#~ - #~ ~*n#~. After algebra, the following 
posterior  distr ibutions can be obta ined directly. 

Property 2.1. The  posterior density of # is a mult ivariate  t -dis t r ibut ion with 
(m + 2a) degrees of freedom expressed as 

#n) An(# - #*) } p ( p l Y ~ )  c( 1 +  ( # -  * T • -(,~+p+~+2a)/2 
m + 2 a  

where A~ = (m+ 2a)R~XAn and R~ = SSRn +pTQpo+[~TF~[tn - #n*TAn#n* + 2b. 

Property 2.2. The  posterior  density of T is a gamma distr ibut ion with pa- 
rameters  ((m + 2a) /2 ,  R~/2) expressed as 

 oxp{ 
Suppose we have observed a da t a  set {yl, Y2,.. •, Yn}, then  the predictive den- 

sity of a future observation Yn+l is described as follows: 

Property 2.3. The  posterior  predictive density of Y~+I is a univariate  t-distri- 
but ion with m + 2a degrees of freedom expressed as 

(2.4) 
*T 2 } sn(yn+l - #n Z n ÷ l )  --(m+2a4-1)/2 

P(Yn+I ]Y~) ~: 1 + m~-2-aa 

T --1 --1 where sn = (m + 2a )a~R~  1 and (x~ = (1 + vn+~zn+lA ~ Z n + l )  . 

If the fiat prior density is used, tha t  is ~(#, T) e( T -1, then  the above s ta ted 
results are simply replaced by 2a ~ - (p + r),  Q ~ 0 and b --* 0. Moreover, under  
these conditions, the following relationships hold: 

Rn = SSRn, A~ =- Fn and #n =/2n .  
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3. Multiperiod forecasts 

3.1 The exact method 
Instead of considering a one-step-ahead forecast, multiperiod forecasts are 

investigated in this subsection. Suppose that the data have been observed up to 
time n, then the joint predictive density of future observations Yn+l, Yn+2, • •., Y~+k 
is obtained with the following relationship: 

k 

yn+2,..,  lye)  = p(yn+  IYn)1-Ip(yn+J t yn+l, 
j=2  

Each density on the right-hand side is a univariate t-distribution described by 
Property 2.3. Thus the posterior predictive density of any future observation 
Yn+k, k > 0 is 

It is very time consuming to evaluate this multiple integration, especially when 
further prediction is desired. In this paper, we focus our attention on how to 
analytically obtain an explicit and accurate approximation of the above marginal 
predictive density, instead of performing multiple integration. 

3.2 Path sampling methods" 
A simulation method proposed by Thompson and Miller (1986) for AR(p) 

models is used to estimate the posterior predictive densities for model (2.1). Un- 
der the normal-gamma prior assumption, the posterior distribution for the error 
precision ~- is gamma and the distribution of p conditional on Y~ and ~- is normal. 
In detail, 

(3.1) 

and 

(3.2) 

TIYn~Gamma(~(m+2a),~Rn)  

# I Yn, ~- ~ Normal(#*, @An)- l ) ,  

where -Rn, #~ and An are defined in Section 2. 
A simulation algorithm utilizing formulae (3.1) and (3.2) to generate joint 

k-step-ahead predictions is computed by performing the following three distinct 
steps as suggested by Thompson and Miller: 

1. Choose a value of ~- from the gamma distribution defined by equation (3.1). 
2. From the conditional posterior of # described by equation (3.2), choose a 

set of # parameters, say (ill, f12,...,  fl~, ¢1, ¢2 , - - . ,  Cp). 
3. Using the selected values of (#, ~-) in steps 1 and 2, a path k periods long, 

say {Pn+l, P~+2,. . . ,  Pn+k} is simulated based on model (2.1). 
After a sufficient number of paths are generated, the posterior predictive den- 

sity for any future observation is computed. 
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3.3 A two-s tage  approx ima te  me thod  

In this subsection,  we propose  a two-stage m e t h o d  to obta in  an es t imat ion  of 
the poster ior  predict ive densi ty  of any future  observat ion Yn+k. In the following 
discussion, k is t r ea ted  as a fixed integer. Now 

(3.3) 

k - 1  p 

Yt+k E T E Ck-l,jYt+l-j =- C j _ l , l X t + k _ j f l  q- 
j=O j = l  

k - 1  

-~ E Cj-l,let+k-J' for t _> p, 
j=0 

where ei,j ~- Ci - l , l~ ) j  ~- Ci--l , j+l,  for i _> 0 and j _> 1, wi th  the  initial condit ion 

1, i f j  = 1, 
e _ l , j  = O, otherwise. 

Note  t ha t  Cj = 0, for all j > p + t .  

The  purpose  of this representa t ion  is to avoid the  presence of Y t + l , Y t + 2 , . . . ,  

Y t+k-1  on the r ight -hand side of (3.4). The  same technique was utilized by Chow 
(1974) in order to compute  the m om en t s  of some mul t iper iod  predictions.  Fur- 
thermore ,  for i > p + k, define 

p k--1 k--1 

* E * E d j x i _ j  and * E d j e i - j ,  Yi - - - -Y i -  Ck-- l , jYi - -k+l-- j ,  Xi : 5i = 
j= l  j=0 j=o 

where dj  = Cj-l,1, for j = 0, 1 , . . . ,  k - 1. 
Then,  formula  (3.3) can be rewri t ten  as 

(3.4) • *T • for t > Yt+k = Xt+kf l  + et+k, -- P" 

And a ma t r ix  form is represented as 

where Y~* = 

= x *9 + c ; ,  

( I  I I I 1  " 
Yp+k+l Xp+k+l  g p + k + l  

. , X~ = . and ¢~ = . . 

\ y* / x* \ e* 
Here, ~ is mul t ivar ia te  normal ly  d is t r ibuted  with  mean  zero and  covariance 

ma t r ix  ~ - - 1 D V - 1 D T ,  where D is an (m - k + 1) x m ma t r ix  defined as 

D = 

dk -1  dk -2  . • • dl  do 0 0 

0 dk -1  " • • d2 dl  do 0 

0 0 • • • 0 0 0 dk -1  

"'" 0 

" • " 0 

• " do 



M U L T I P E R I O D  B A Y E S I A N  F O R E C A S T S  F O R  AR M O D E L S  435 

Define 

Yn = U1/2Y~*n, Xn  = g 1/2X*n, gn = U1/2c; a n d  U = ( D V - 1 D T )  -1, 

then the following representation results: 

(3 .5)  L = + 

here g~ is multivariate normally distributed with mean zero and covariance matrix 
T-1In. That is the components of g~ are independent identically distributed. If 
we know values of Y~, then model (3.5) is a standard multiple regression model. 
However, components of Y~ involve the unknown parameters  of ¢i's. To overcome 
this disadvantage, we suggest replacing ¢i by its posterior mean, this is the first 
stage. Now, model (3.5) is a multiple regression model and the posterior predictive 
density of Y~+k is derived explicitly as follows: 

Along with model (3.5) the predictive model is written as 

~]n4-k -T ~- Xn+k~ -t- En÷k, 

where Y~+k = dYe+k, 2~+k = dx*+k, en+k = den+k and d [K ''~k-1 A2 , "~--1/2 ~-- k / ~ j = 0  c~jCJn+k-J) 
Here g~ = U1/2e~ = U1/2De~, where e~ is defined by elements of {ep+l, ep+2,. •., 
e~} and en+k is a linear combination of {e~+l, e~+2, . . . ,  e~+k-1}. Therefore, ~+k  
and g~ are mutually independent. Now, a Bayesian analysis of a multiple regres- 
sion model can be performed and a posterior predictive density for any future 
observation Y~+k can be explicitly obtained with the following results. Most of 
the developments are adapted from Zellner (1971). 

Let /3o denote the first r components of #o and Qo 1 denote the right upper 
r x r matrix of Q-1. Define 

= f [ ( ±  _ L = 

A~ Q0 + F~ and /3 ---1 .,~nTL). = = An (Ooflo + 

Under the same normal-gamma prior assumption as stated in Subsection 2.1, the 
following results are obtained: 

Property 3.1. The posterior density of/3 is a multivariate t-distribution with 
(rn - k + 2a + 1) degrees of freedom expressed as 

p(/3 [3~) o( 1 + ( /3 -  ~)T ~ (/3- ~)}-(m-k~r~-2aq-1)/2. 

Property 3.2. The posterior predictive density of Y~+k is a univariate t- 
distribution with (m - k + 2a + 1) degrees of freedom which is expressed as 

:r - 2 ~-(~+1)/2 
P(~]n+k [ Yn) o( 1 + ~Yn+k 
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where w~+k = ~h~+k/{< 1, h~+k = ( l + x  T ~--12~ ~--1 andr; m - k + 2 a + l .  n + k  n n + k }  

In order to make the degrees of freedom in Property 3.1 be positive, the 
condition (m - k + 2a) _> 0 is required. In summary, the above proposed method 
involves two stages to obtain the posterior predictive density: 

Stage 1. Obtain the posterior mean of ~ (denoted by ~) using the Bayesian 
method mentioned in Section 2. 

Stage 2. Replace ~ by ~ and treat model (3.5) as a multiple regression model. 

Applying Stages 1 and 2, a posterior predictive density for y~+k is approxi- 
mately represented as follows: 

Property 3.3. The posterior predictive density of Yn+k is a univariate t- 
distribution with (m - k + 2a + 1) degrees of freedom, 

+ 
2]-(v+~)/2 

(y +k - m +k) I 

where rnn+k = ~Tx~+k + @Tyn+k,p and rl is defined in Property 3.2. 

In the following discussion, we call this method the "two-stage method". 
And the Bayesian procedure discussed in Section 2 is referred to as "the regu- 
lar Bayesian method". Moreover, for a pure AR(p) model, the two-stage method 
can still be applied as long as the constant term is included, say 

Yt =/31 + y~p~ + ct. 

In the next section, some comparisons between the exact method and the two- 
stage method are investigated analytically for the one-step forecast. For further 
step ahead forecasts, numerical comparisons are performed between the two-stage 
method and the path sampling method. For simplicity, we restrict our discussion 
to the case where V = I and the flat prior is applied. 

4. Comparison between methods 

4.1 A special case: k = 1 
In this subsection, we analytically evaluate the performance of the two-stage 

method in a special situation: k = 1, V = [ and under the flat prior assumption. 
A posterior predictive density of Yn+l using the regular Bayesian method obtained 
from Property 2.3 is expressed as 

(4.1) 

• {1 ~- OLn~<l(yn+l -- ~t;TZn+l)2}--((--l)/2 
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T -1 -1 where an = (1 + Zn+lA n Zn+l) and ~ = m - p - r. On the other hand, from 
Property 3.3 a posterior density of Y~+I obtained by using the two-stage method 
is written as 

(4.2) p(yn+l I Yn) = 7r-1/2(~/nR~l)l/2~ ( ~ - - 1 )  ~-1 ( ~ )  

• {1 -~- 7n~nl(yn+l - ?Tin+l)2} - (~+1) /2 ,  

T - -1  -1 ~Txn+l  +~Ty~+l,p.  Here, An and where 7~ = ( l + x n + l A  ~ x~+l)  and mn+l = 

/ ~  are defined in Subsection 3•3• 
We are interested in comparing the discrepancy between the two densities (4.1) 

and (4.2). Before investigating the differences, we summarize some results obtained 
from the two-stage method as follows• Their proofs are given in Appendix. 

LEMMA 4.1. (1) ~ ----/3, here ~ and ~ are the posterior means of/3 obtained 
respectively using the two-stage method and the regular method. 

(2) ~tn Zn+l : mn+l. 
(3) ~ n  : -~n • 

LEMMA 4.2. A~ 1 >>_ B~, where B~ is a (p + r) × (p + r) matr ix  defined by 

[A~ 1 0 0 ]  , An is defined in Subsection 2.2 and An is defined in Subsection 3.3. 

COROLLARY 4.1• (1) Var(/3) _< Var(/3), 
(2) Var(yn+l If>n) _< Var(yn+ 1 I Yn), 

that is the two-stage method produces small predictive variance• 

The above results show that the posterior mean of/3 and Yn+l are respectively 
the same using both the regular Bayesian method and the two-stage method. 
Intuitively, the two-stage method treats ~ as a constant, therefore the variation 
of the predictive density will be small. In fact, the above results prove that the 
two densities both follow the t-distribution with the same degrees of freedom, 
but expression (4.2) has smaller variance. However, some numerical examples 
discussed in the next section show that the shrinkages of variance are almost 
negligible when forecasting periods are not too far or sample sizes are moderate. 

4.2 Applications 
In this subsection, some numerical results are investigated to demonstrate the 

accuracy of the two-stage method, with both simulated data and real data. For 
the simulated data, AR(1) models with one exogenous variable are applied and 
defined by 

Yt -~ O~ + ~Xt + ¢Yt-1 ~- Et , t = 1, 2 , . . . ,  n, 

where a = 0.5, /3 = 0.3 and ~t's are i.i.d, normal (0, 1). The exogenous variable 
xt 's  are independently generated from uniform (0, 1). As the discussed model is 
not restricted to only a stationary model, values of ¢ are here set to be ¢ = 0.5 and 
1, representing a stationary and nonstationary model respectively. Moreover, to 
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investigate the influence of sample size, n's are set as 50, 100 and 300. For obtaining 
a reliable impact on sample size, the observations are drawn as follows: For each 
model 350 observations are generated, the last n observations then constituting a 
sample. 

Besides the simulated data, two sets of real data are investigated. One set 
consists of the quarterly data of United States unemployment rates, from the first 
quarter of 1948 to the second quarter of 1991, a total of 174 observations. The 
other includes 179 observations of the United States real GNP (in 1982 dollars), 
from the first quarter of 1947 to the third quarter of 1991. These two economic 
time series are coded from the Citicrop Database (1991). The latter analyzed 
data has been translated by taking a natural logarithm. AR(2) models are fitted 
to each series respectively described as: 

Yt = 40 -~- ~ l Y t - 1  -1- (~2Yt--2 -~- et- 

When sample size is small, it seems unreasonable to expect accurate longer 
period forecasts. Thus in the following discussion, the length of the forecast period 
is adjusted by sample size, ranging from six periods to twelve periods. For each 
data set, some specified percentiles for each estimated predictive density are com- 
puted via two methods, the path sampling method and the proposed two-stage 
method. The percentiles provided by the path sampling technique are estimated 
by 10,000 bundles of paths. Besides the comparison of percentiles, four statistics 
such as, mean, standard deviation, skewness and kurtosis, of each estimated den- 
sity are computed. As discussed in Section 3, the two-stage method provides an 
estimated density explicitly, however, the path sampling technique obtains this by 
generating the unknown parameters. In order to further investigate the simula- 
tion variation of the latter, 200 replications are made. Then the estimation errors 
for each estimated percentile and the aforementioned four statistics via the path 
sampling method are computed. All these summary statistics could be used to 
measure the performance of the two-stage method. 

As a result of Property 2.3 and Lemma 4.1, the one-step predictive densities are 
t-distributions, produced both by the regular method and the two-stage method, 
except that the degrees of freedom differ. Therefore, the estimated predictive 
densities created by these two methods should have the same mean, skewness 
and kurtosis. These phenomena are indicated by all the numerical results if the 
fluctuation errors are ignored. Moreover, since the two-stage method ignores the 
variation of the parameter vector ~, intuitively, the predictive density should tend 
to be less variant. Also, the symmetric property of the t-distribution may limit 
the shape of the predictive density. These two shortages could be examined by 
using those summary statistics. 

The first phenomenon is examined by the standard deviation of each esti- 
mated density. In most case, the results show that the two-stage method tends 
to produce a less variant density than the one produced by the path sampling 
method. However, the results show that most of the differences between the two 
methods are quite small for short period forecasts. Referring to the symmetric 
restriction of the two-stage method, the experiments indicate that this limitation 
does not cause too serious a discrepancy. Except, for the nonstationary simulated 
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data with n = 50, the predictive density tends to skew to the right. In fact, the 
predictive medians for each density produced by the two methods are almost the 
same. This suggests that the bias of the true predictive mean and median is net- 
ligible. In general, these two disadvantages die out faster for stationary data than 
for nonstationary data as sample size gets larger. 

The influence of sample size for the two-stage method can be investigated using 
results from simulated data. Based on the estimated percentiles, the performances 
of the two methods are quite close as long as the sample size is not too small and 
when n = 300, the percentage differences are almost negligible. This gives evidence 
that the accuracy of the two-stage method increases as sample size increases. In 
fact, the posterior mean substituting technique used in the two-stage method has 
some optimal property as pointed out by Chow (1974): Considering a one-step 
prediction for an AR(p) model, the posterior means of autoregressive parameters 
will produce an optimal prediction of Y~+I under the criterion of minimum mean 
squared error. Moreover, a heuristic proof of the asymptotic convergence of the 
estimated predictive density approached by the two-stage method is presented in 
Appendix. 

For the discussed real data sets, almost all the precentiles provided by the 
two methods are pretty close. Especially, for the GNP data, the two methods 
almost create the same estimated density. It is worthy to note that  usually when 
analyzing GNP data, at least a first order differencing of the logarithm data is 
taken. However, without taking a suitable differencing, the existence of "nonsta- 
tionarity" is allowed in the model. For this "nonstationary" data set, the resuIt 
still shows that the two-stage approximation is quite accurate. All these discussed 
numerical results exhibited in Tables 1-8 were done on a VAX9320 computer at 
National Central University in Taiwan. The data were generated from the DRN- 
NOR, DRNGAM and DRNMVN subroutines of the IMSL package. 

For the sake of saving time, computations of the exact method are omitted, 
instead the path sampling method is performed for comparison. Presumably, the 
path sampling method will create a pretty accurate density if the number of paths 
are sufficiently large. Actually, the standard errors for specified percentiles and 
four statistics obtained from 200 replications are quite small. Thus 10,000 path 
bundles should reasonably be enough to estimate the true density. As the results of 
the two methods are close to each other, we can confidently say that the two-stage 
method is quite reliable. In fact, the closeness of the two methods is exhibited 
when sample sizes are not too small. However, when the sample size is small, the 
two-stage method is still applicable for short period forecasts. 

According to the path sampling algorithm, once the posterior distributions de- 
scribed by (3.1) and (3.2) are obtained, then the computing time is not influenced 
by the sample size of the data and is decided by the number of path bundles. On 
the other hand, the two-stage method rewrites the model as a standard regression 
model. Therefore the computing time of the transformation and analysis of regres- 
sion model increases as the sample size increases. In these simulation experiences, 
when n = 50, the two-stage method is far faster than the path sampling method. 
As n = 100, the former is still faster than the latter. However, when n = 300, 
the computing speed is reversed. Nevertheless, it is worthy to note that the path 
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sampling method samples future observations sequentially one by one. In order 
to obtaining any future observations yn+k, all the future observations before that, 
say Yn+i, 1 < i < k - 1, should meanwhile be simulated. However, the two-stage 
method provides a closed form for any future step. Thus the predictive density 
for each specified future step is computed independently. 

The purpose of this paper is to explore the multiperiod predictive density 
analytically. Since an exact expression is impossible for more than a one-step 
forecast, then we try to approximate this predictive density by a suitable and 
commonly used explicit density. At least, we have a rough idea what this density 
looks like. Speaking overall, the results show that under the normal-gamma prior 
assumption, the multiperiod predictive density can almost be approached by a 
suitable t-distribution. Though the true density is slightly skewed and has a slight 
heavier tail when the sample size is small, this discrepancy is not too serious for 
short period forecasts and disappears as the sample size increases. In practical 
usage, it will be convenient and reliable to treat the predictive density as a t- 
distribution when statistical properties of this density are needed analytically. 

5. Conclusions 

This article investigates the multiperiod forecasting problem of A R ( p )  mod- 
els with strongly exogenous variables via the Bayesian approach using a normal- 
gamma prior assumption. A convenient and explicit method is proposed to pro- 
duce an estimation of the posterior predictive density for any future observation. 
The accuracy of the proposed method has been examined by some simulated and 
real data. Some percentiles of the posterior predictive densities up to twelve-step- 
ahead forecasting are calculated for each series. For each forecasting step, per- 
centiles and some statistics related to moments are computed using two methods 
respectively, the proposed two-stage method and the path sampling method. 

Though the two-stage method provides a symmetrical and less variant density, 
it seems these restrictions do not cause too serious a discrepancy. The results show 
that the two methods almost produce the same estimate for short period forecast. 
When the sample size gets larger, a longer period forecast based on the two-stage 
method becomes more accurate. More precisely, when the sample size is large, the 
two-stage method provides an estimated density which converges asymptotically 
to the true one. A heuristic proof of this asymptotic property is shown analytically. 
In general, the forecasting experiments reveal that the proposed method is rather 
reliable and could be used explicitly to produce a posterior predictive density. 

Meanwhile, the proposed two-stage method can be applied if the A R ( p )  com- 
ponent is extended by an A R M A ( p ,  q) component. In this situation, just replace 
the exact likelihood function of the A R ( p )  component by an approximate likeli- 
hood function which is proportional to 

7 -'~/2 exp - ~  Yt - x T ~  -- ¢iYt-~ -- Ojet_j  • 
i=1  

From the routine Bayesian approach for an A R M A  model (Broemeling and 
Shaarawy (1988)), the posterior means of ¢i's and Oj's are substituted into the 
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model. Thus, an estimated predictive density is produced by a standard regression 
analysis as discussed in this paper. 
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Appendix 

1. Proofs of lemmas and corollary 

In the following proofs, n is fixed and for simplicity the lower subscript n is 
sometimes appropriately dropped. Matrix Z~ is decomposed as Z~ = (X1 ] X2), 
where X1 is an m x r matrix and X2 is an m × p matrix. Again, the underlying 
assumptions are k = 1, V = I and the flat prior is utilized. 

A.1 ~=~ 
pf): Let/3 be the posterior mean of fl using regular Bayesian analysis under 

the flat prior, then after algebra 

(A.1) /3 = ( x T w x 1 ) - I x T w y ,  where W = I - X 2 ( x T x 2 ) - I X ~ .  

On the other hand, the posterior mean of fl by the two-stage method under 
these assumptions is 

= (xTx l ) - l x~[±  + x 2 ( x ~ x 2 ) - l x ~ x ~ ( x f w x l ) - l x ~ ] w Y .  

Let X o  = (X~X1)-I/2x~, then x T w x 1  = (xTx1)I/2(XoWXT)(xT1x1)I/2 and 
XI(X'~WX1)-IX~ = Xo(XoWX~)-IXo. Therefore, 

= (xTxo-a/~xo[I  + ( i -  w ) x [ ( x o w x [ ) - ~ X o ] W y  

= (x~xo-x/~(XoWX~o)-lXoWY 
= ( x T w x 1 ) - I x T w y  

=ft .  

A.2 .T ],Ln Z n + l  z m n  

pf): By definition, .T ^ P n  Z n + l  : / 3 T X n + I  -~ @Tyn+I,P and rr~ n = /3Tx77,+1 + 

@Tyn+l,p. Since /3 /3, then .T : ]£n Zn+l : ran. That is the posterior means of 
the predictive density is the same both when using the regular Bayesian method 
and the two-stage method. 



450 SHU-ING LIU 

A.3 /~n = Rn 
pf): Under the flat prior assumption, Rn is reduced to 

I~n = SSl~n + yT[I  - z ( z T z ) - I z T ] Y .  

According to the part i t ioning of matr ix  Z, one has 

R,  = V ~ W Y  - V ~ W X l  (X T WXx)-* X T WY, 

where W is defined by (A.1). 
On the other hand, with the two-stage method  

!~n = yT[I  -- x ( x T x )  X f (T]? = ? Y ( ?  _ -~x~) and lP = y - X2~, 

where ~ = ( x T x 2 ) - X x T [ I -  X x ( x T w x 1 ) - X x T w ] y .  After algebra, 

~/" -- X l ~  : W [ I  -- XI(xTI W X 1 ) - I x T w ] y  and ? T w  ---- y T w .  

Therefore, /~n = y T w [ I  -- X I ( X ~ W X 1 ) - I x ~ w ] Y  = Rn. 

A.4 A~ 1 _> B~ 
pf): By definition, . ~ 1  = \ [ 2 T 2 n  n]'~--X = (x1Tx1)- I  and 

-1  [ x xl x x2 ] 
A~ 1 = ( z T z )  - x  : L x T x x  XT2X2 

For simplicity, let C, B and Xi,j denote A~ x, B~ and x T x j  respectively. 
For matrices C and B, there exists matr ix  G (Basilevsky (1983), p. 235) such 

that 

where H is an r x r diagonal matrix. Then C - B = (GT)-X(I -- A)G -x, here 

I - A =  [ I -HO I20]' andI2 i sap×piden t i t ymat r i x .  Therefore, i t i s suf f ic ien t  

to show tha t  I - H is non-negative definite. By definition of B, it can be shown 
that 

H T --1 = G11211 Gl l ,  

where Gl l  is the upper left r × r matr ix  of G. Moreover, since H is idempotent  
and the non-negative property of matr ix  I - H results. 

A.5 Var(/3) _< Var(/3) 
pf): Under the assumptions and by using Proper ty  3.1, 

V a r ( ~ )  = f ~ n ~ j _  _ f~n (x ITX1)_I  where /2 = m - p -- r - 2, 
/2 12 
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and with Property 2.1, 

Var(#*) = R n A ~ I  and 
/# 

Var(¢)) = I~n [XT X l  -- x T  x 2 ( x T  x 2 ) - I x T  xI] -1 
l# 

S i n c e / ~  = R~, therefore Var(/3) < Var(/~) is proved. 

A.6 Var(~n+l t?~) _< Var(y~+l rye) 
pf): By using Property 2.3, the predictive variance using the regular Bayesian 

method is 

-Rn T -1 
Var(yn+l ] Yn) = ~ - ( 1  + Zn+lA n Zn+l), where , = m p r - -  2. 

On the other hand, the predictive variance with the two-stage method is 

_ _  T V a r ( y n + l  [ Yn) = /~n (1 + Xn+I(XT1X1)-lXn+I). 
/2 

Then resulting from the use of Lemma 4.2, the inequality is established. 

2. Proof of asymptotical convergence of the two-stage method 

Let q~(B) k-1 = ~ j=o  djBJ, then 

k-1  

* E Xn+ k = djXn+k- j -= kB(B)Xn+k 
j=0 

Formula (2.1) can be rewritten as 

and 

~(B)yn+k T = Xn÷k/~ + en+k, where 

After algebra, it can be shown that 

k-1 

* Z en+ k ---- djcn+k-j = kO(B)~n+k. 
j=0 

(A.2) 
P 

¢(B) = 1 - Z CjBJ. 
j = l  

Therefore, formulae (A.2) and (A.3) are essentially equivalent. And they produce 
the same prediction for Yn+k, as long as the parameter vector ~ is known. 

(A.3) * ~ ( B ) x ~ + k 9  + ' ~ ( B ) ~ ÷ k  ,T  , Yn+k = = Xn+k/3 + en+k" 

Hence, pre-multiplying both sides of formula (A.2) by the operator k~(B), one has 

P 
q~(B)(I)(B) : 1-- ~ Ck_l,jB k+j-1. 

j = l  
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Since the posterior mean of ~ obtained in the first stage is consistent, therefore 
the posterior predictive density of Yn+k produced by model (A.3) will asymptoti- 
cally converge to that produced by model (A.2). 
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