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Abstract. The multiperiod Bayesian forecast under the normal-gamma prior
assumption for univariate AR models with strongly exogenous variables is in-
vestigated. A two-stage approximate method is proposed to provide an estima-
tor of the posterior predictive density for any future observation in a convenient
closed form. Some properties of the proposed method are proven analytically
for a one-step ahead forecast. The precision of the proposed method is exam-
ined by using some simulated data and two sets of real data up to lead-twelve-
ahead forecasts by comparison with a path sampling method. It is found that
most of the results for the two discussed methods are rather close for short
period forecast. Especially when sample size is sufficiently large, the estimated
predictive density provided by the two-stage method asymptotically converges
to the true density. A heuristic proof of this asymptotic property is also pre-
sented.

Key words and phrases: AR model, Bayesian analysis, posterior mean, pre-
dictive density, regression analysis.

1. Introduction

Bayesian analysis of autoregressive-moving average (ARMA) models has been
extensively applied in many fields. Estimation of the parameters in ARMA models
has been investigated since late 1960. However, there are few results for multi-
period forecasting via the Bayesian procedure. Theoretically, in order to obtain
a k-th-step posterior predictive density, a (k — 1)-multiple integration should be
computed. This numerical difficulty limits the applications of the Bayesian pro-
cedure for multiperiod forecasting. Chow (1974) presented formulations for the
estimation of future moments for AR(1) models. Monahan (1983) gave a fully
Bayesian treatment of ARMA models. The percentiles of multiperiod (up to lead-
five-ahead forecasts) predictive densities for AR(1) models were computed with a
numerical method. Geweke (1989) proposed a Monte Carlo integration with an
importance sampling technique to compute the posterior expectation as a function
of unknown vector parameters.

Using a normal-gamma prior assumption for the parameters of an AR(p)

429



430 SHU-ING LIU

model, Broemeling and Land (1984) obtained some theoretical results for the pos-
terior predictive density. The joint predictive density of k£ future observations
is the product of k univariate ¢-distributions. Therefore, to obtain the marginal
predictive density, a multiple integration should be evaluated. This task is very
difficult, especially where a longer future step is concerned. To overcome this
limitation, a reasonable approximation is needed. Thompson and Miller (1986)
suggested a simulation method to estimate the posterior predictive distribution
for any AR(p) model. The future observations are produced by generating the
autoregressive parameters based on their corresponding posterior distributions. A
bundle of 10,000 paths was created to compute the percentiles of the predictive
density. This approach helps to explore the shape of the predictive density for
any future observation in a unified manner. The difficulties of computing the
integration are overcome through the help of the computer via a simulation.

In this paper, we consider AR(p) models with strongly exogenous variables.
From an analytical point of view, a reliable approximation in a closed form is
valuable. It will be helpful to further understand the statistical property of the
predictive density directly. Sometimes, a rough sketch of the density may be
needed analytically, instead dealing with it case by case via simulation. Therefore,
instead of performing a multiple integration or simulation, an explicit approxima-
tion of the desired predictive density is presented. The parameters in the model
are separated into two parts, the first part arising from the AR(p) model and the
second part from the regression model. At first, parameters of the AR(p) model
are replaced by their posterior means. Then the problem is reduced to a regression
model and the predictive result of a regression model can be adapted here. The
proposed two-stage method creates a posterior predictive density for any future
observation through a close formula. Comparisons with the path sampling method
are performed to demonstrate the applicability of the proposed method. Though
the approximate method places some restrictions on the shape and variation of
the estimated predictive density, numerical results indicate that this limitation is
negligible for a short period forecast.

The whole paper is organized as follows: In Section 2, a formal Bayesian
analysis of the discussed model is presented. Most of the results are adapted from
Broemeling and Land (1984). In Section 3, a detailed discussion of the proposed
method is presented, including the development of a transformed regression model
and the two-stage procedure. Some analytical results for the two-stage method
are proven for a one-step-ahead forecast. For further step forecasts, simulated
data and two sets of time series real data are analyzed numerically. The posterior
predictive density is computed respectively by two methods, the path sampling
method and the two-stage method. The results show that the two methods are
rather close to each other for short period forecasts. For a longer period forecast,
the accuracy of the two-stage method increases as the sample size gets larger.
All these evaluations are included in Section 4. Finally, a heuristic proof of the
asymptotic convergence of the proposed method is also investigated.
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2. AR models with exogenous variables

2.1 The model

In this paper, we consider autoregressive models with a regression component.
Let y; denote the ¢-th observation of the dependent variable in the time series
and z; denote the vector of strongly exogenous variables with r components. The
model is represented by

(2.1) yt::ctTﬁ+yt1:pga+et, for t=p+1,p+2,...,n,

where g7 = (81, B2,-- -, Br)s <PT = (¢1,02,...,¢p) and ?Jg:p = (Ye—1,Yt-2,- -+,
Y¢—p). Here, € is a sequence of independent variables with normal distributions
such that E(e;) = 0 and Var(e;) = 7 1v,. Here vy’s are known constants. For
simplicity, we treat x; as known instead of as a random vector and f; is the
parameter corresponding to the constant term.

Formula (2.1) can be rewritten in matrix form as

(2.2) Y, =Z,p+en,
where Y'r? = (yp-‘rla Yp+2s .- 7:{/%)’ Z’rj; = (Zp+la Rp+2s5 s Zn)a Z;r = (xz"’ y]z':p)a
pt = (87, 0") and T = (ep+1,€ptas-- -, €n). Then e, is multivariate normally dis-

tributed with mean zero and covariance matrix (7V) ™!, here V is an (n—p) x (n—p)
diagonal matrix with v; in the diagonal. The likelihood function of (2.2) is ex-
pressed as

o\ ™2 T
p(Yo | p,7) = (7) |V|1/2 eXp {"i(Yn - ZnM)TV(Yn - Znﬂ)} )
where m = n — p. Thus an appropriate prior density is

§wr) =& 7)(r), T>0, peRT,

where £; is a normal density N(ug, (7Q) 1), Q is a positive definite matrix, and
& is a gamma density with parameters a > 0 and b > 0. Finally, the joint density
of (Yp, 1, 7) is

(2m) = 2|V 2 Q) 2ot Lexp {2 (T3 + T+ 20)

where § = (m+p+r1+2a)/2, T1 = (Y, — Znu) 'V (Yy, = Zpp) and T = (u —
10)" Q1 — o)

If one is confident of one’s prior information, one would specify the prior
parameters pg, ¢, a and b. On the contrary, one may use the flat prior density,
E(u,7) x 771, 7 > 0and u € RP*". Then the joint density of (Y, u, 7) is expressed
as

_ T
(2.3) (Y, 1, 7) o 7™/2 L exp {——2—(Yn — Zo)TV (Y, — Zn,u)} .
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2.2 Posterior distributions

In this subsection, we consider the posterior distribution of p, 7 and the pos-
terior predictive density of the observed data. Most of the developments follow
from Broemeling and Lands’ results (1984).

Let F, = ZXVZ,, SSR, = YE(V — VZ,F'ZXV)Y,, i, = F,;1ZIVY,,
An = F + Q and u = A (Quo + ZIVY,), then Ty + Ty = SSR, + (1 —
pT Ap(p — pi) + p¥ Quo + pL Fofin, — T Ay pl.  After algebra, the following
posterior distributions can be obtained directly.

Property 2.1. The posterior density of y is a multivariate ¢-distribution with
(m + 2a) degrees of freedom expressed as

?

* * * ~(m+p+r+2a)/2

(b — )T A (1 = 123,)

Yn 1 n T T

bl o) ox {1+ (28]
where A7 = (m+2a)R; 1A, and R, = SSR,, + ud Quo + L Frfin, — 27 Ap i 4 20.

Property 2.2. The posterior density of 7 is a gamma distribution with pa-
rameters ((m + 2a)/2, R,,/2) expressed as

p(7 | Vy) ox 7(mH2a)/271 oy {—T];n } .

Suppose we have observed a data set {y1,y2,...,yn}, then the predictive den-
sity of a future observation y,,+1 is described as follows:

Property 2.3. The posterior predictive density of 4,11 is a univariate ¢-distri-
bution with m + 2a degrees of freedom expressed as

Sn(Ynt1 — N;Tzn+1)2
m + 2a

b

—(m+2a+1)/2
24 plynss | V) {1 ; }

where s, = (m + 2a)a, Ryt and oy, = (1 4+ vpg122 1 Ay zngr) 70
If the flat prior density is used, that is £(u,7) oc 771, then the above stated
results are simply replaced by 2¢ — —(p+7r), @ — 0 and b — 0. Moreover, under

these conditions, the following relationships hold:

R,=55R,, A,=F, and pu, =/fin.
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3. Multiperiod forecasts

3.1 The exact method

Instead of considering a one-step-ahead forecast, multiperiod forecasts are
investigated in this subsection. Suppose that the data have been observed up to
time n, then the joint predictive density of future observations yn+1, ¥n+2; - - - , Ynsk
is obtained with the following relationship:

k

PUn+1:Unt2s - Yotk | Yo) = p(Ynt1 | Yn) Hp(yn+j | Ynti=1, - Un+1, Ya).
j=2

Each density on the right-hand side is a univariate ¢-distribution described by
Property 2.3. Thus the posterior predictive density of any future observation
Yn+k;s k>0is

P(Yntk | Yn) =/---/p(yn+1,--.,yn+k—1,yn+k | Yo)dynet -+ - dynir—1.

It is very time consuming to evaluate this multiple integration, especially when
further prediction is desired. In this paper, we focus our attention on how to
analytically obtain an explicit and accurate approximation of the above marginal
predictive density, instead of performing multiple integration.

3.2 Path sampling methods

A simulation method proposed by Thompson and Miller (1986) for AR(p)
models is used to estimate the posterior predictive densities for model (2.1). Un-
der the normal-gamma prior assumption, the posterior distribution for the error
precision 7 is gamma and the distribution of 4 conditional on Y;, and 7 is normal.
In detail,

1 1
(3.1) 7| Y, ~ Gamma <§(m + 2a), iRn)
and
(3.2) | Yo, T ~ Normal(pf, (1A,)7Y),

where R, pf and A, are defined in Section 2.

A simulation algorithm utilizing formulae (3.1) and (3.2) to generate joint
k-step-ahead predictions is computed by performing the following three distinct
steps as suggested by Thompson and Miller:

1. Choose a value of 7 from the gamma distribution defined by equation (3.1).

2. From the conditional posterior of i described by equation (3.2), choose a
set of 1 parametersv say (ﬁ17/62a e )ﬂT7 ¢13 ¢27 tety ¢p)

3. Using the selected values of (u,7) in steps 1 and 2, a path k periods long,
SaY {Yn+1, Yn+2, - - -» Yntk ) is simulated based on model (2.1).

After a sufficient number of paths are generated, the posterior predictive den-
sity for any future observation is computed.
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3.3 A two-stage approrimate method

In this subsection, we propose a two-stage method to obtain an estimation of
the posterior predictive density of any future observation y,1%. In the following
discussion, k is treated as a fixed integer. Now

k—1 P
(3.3) Ytk = Z Cj—1,1$$+k_jﬁ + Z Ch—1,5Yt+1—j
j=0 j=1
k—1
+ Z Cj-1,1€4k—j,  for t=p,
7=0

where ¢; j; = ¢;—1,10; + ¢i—1,j+1, for 4 > 0 and j > 1, with the initial condition

o =1,
L3700, otherwise.

Note that ¢; =0, forall j > p+ 1.

The purpose of this representation is to avoid the presence of yi11, 4122, .,
Y¢+k—1 on the right-hand side of (3.4). The same technique was utilized by Chow
(1974) in order to compute the moments of some multiperiod predictions. Fur-
thermore, for ¢ > p + k, define

o
—

P k—1
* ® *
Yi =Y — E Ch—1,jYi—k+1-j, & = E diz;—j and € = ) dje; g,
j=1 Jj=0

.
Il
o

where d; = ¢j_1,1, for j =0,1,...,k — 1.
Then, formula (3.3) can be rewritten as

(3.4) Yirk = TiikB+ €y, for ¢ >p.
And a matrix form is represented as
Yo =X;8+e;,

* *
Yp+k Lotk
Yp+r+1 p+h+1 ptk+1

* . * o
where Y* = . , Xp = and €, =

Yn Ty €n
Here, € is multivariate normally distributed with mean zero and covariance
matrix 771DV DT where D is an (m — k + 1) x m matrix defined as

dg—1 dr—2 -+ di do O o - 0
D 0 dgi - d2 di dg O - 0

0 0 - 0 0 0 dg—1 --- do
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Define

Y, =UY?Y;, X,=UX; & =U"%;

and U= (DV~ D"
then the following representation results:
(3.5) Vo = X0+ En,

here £, is multivariate normally distributed with mean zero and covariance matrix
77I,. That is the components of &, are independent identically distributed. If
we know values of Y, then model (3.5) is a standard multiple regression model.
However, components of Y,, involve the unknown parameters of ¢;’s. To overcome
this disadvantage, we suggest replacing ¢; by its posterior mean, this is the first
stage. Now, model (3.5) is a multiple regression model and the posterior predictive
density of y,1x is derived explicitly as follows:
Along with model (3.5) the predictive model is written as

Yn+k = i'g-f_kﬁ + €ntks

where ik = Ay g Fnik = day,p, Enir = def, and d = (3525 dPvnip—j)
Here &, = U1/26; = UY2De,,, where ¢, is defined by elements of {€p+1, €pt2,- - -,
€n} and €,4 is a linear combination of {€,41,€n+2, ..., €ntx—1}. Therefore, &,
and &, are mutually independent. Now, a Bayesian analysis of a multiple regres-
sion model can be performed and a posterior predictive density for any future
observation y,.r can be explicitly obtained with the following results. Most of
the developments are adapted from Zellner (1971).

Let 8y denote the first 7 components of pg and Qg ! denote the right upper
r x r matrix of Q7. Define

-1/2

V(- X, F;1XTYY,, F,=XIX,,

n

R,
An QO + F, and B: A;l(Qoﬂo +X;1;Yn)

Il

Under the same normal-gamma prior assumption as stated in Subsection 2.1, the
following results are obtained:

Property 3.1. The posterior density of § is a multivariate ¢-distribution with
(m — k + 2a + 1) degrees of freedom expressed as

~ —(m—k+r+2a+1)/2
w5y {143 72200~ )|

Property 3.2. The posterior predictive density of §,.r is a univariate t-
distribution with (m — k + 2a + 1) degrees of freedom which is expressed as

w. k. - ~
= (yn+k - $Z+k5)2

3

~ —(n+1)/2
Plimer | Ta) o {1 . }
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where Wy = Nk Ry, Bk = (1 + 32, A %) and = m —k +2a+ 1.

In order to make the degrees of freedom in Property 3.1 be positive, the
condition (m — k + 2a) > 0 is required. In summary, the above proposed method
involves two stages to obtain the posterior predictive density:

Stage 1. Obtain the posterior mean of ¢ (denoted by ¢) using the Bayesian
method mentioned in Section 2.

Stage 2. Replace ¢ by ¢ and treat model (3.5) as a multiple regression model.

Applying Stages 1 and 2, a posterior predictive density for y,.x is approxi-
mately represented as follows:

Property 3.3. The posterior predictive density of y,4+r is a univariate ¢-
distribution with (m — k + 2a + 1) degrees of freedom,

—(n+1)/2

Wn+k
e (Yntk — mn+k)2} )

P(nsr | ) o {1 T

where m,, 1, = ,BTmn+k + @Tyn+k,p and 7 is defined in Property 3.2.

In the following discussion, we call this method the “two-stage method”.
And the Bayesian procedure discussed in Section 2 is referred to as “the regu-
lar Bayesian method”. Moreover, for a pure AR(p) model, the two-stage method
can still be applied as long as the constant term is included, say

Y =B+ y;f,p@ + €.

In the next section, some comparisons between the exact method and the two-
stage method are investigated analytically for the one-step forecast. For further
step ahead forecasts, numerical comparisons are performed between the two-stage
method and the path sampling method. For simplicity, we restrict our discussion
to the case where V = I and the flat prior is applied.

4. Comparison between methods

4.1 A special case: k=1

In this subsection, we analytically evaluate the performance of the two-stage
method in a special situation: ¥k = 1, V = I and under the flat prior assumption.
A posterior predictive density of y,11 using the regular Bayesian method obtained
from Property 2.3 is expressed as

(4.1) PUnt1 | Ya) = 773 (anR;H)V?T <£;—1) T (%)

AL+ @Ry N (Yngr — 1T 2ngn) 2 CTD/2)
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where ap, = (14 25, ;A7 2,41) 7Y and ¢ = m — p — r. On the other hand, from
Property 3.3 a posterior density of y,+1 obtained by using the two-stage method
is written as

(4.2) P(Ynt1 | Vo) = 7712 (, RH V2D <%> - (%)

AL+ By (Y1 — Mg )2} ETD/2)

where v, = (1+ 2L A7 2, 41) 7" and myyg = 872040 +@TYnt1,p. Here, A, and
R, are defined in Subsection 3.3.

We are interested in comparing the discrepancy between the two densities (4.1)
and (4.2). Before investigating the differences, we summarize some results obtained
from the two-stage method as follows. Their proofs are given in Appendix.

LEmMmaA 4.1. (1) B = B, here B and B are the posterior means of 3 obtained
respectively using the two-stage method and the reqular method.

(2) /ﬁ:LTznﬂ-l = Mny1.

(3) R, =R,.

LEMMA 4.2. A > B, where B, is a (p+71) x (p+ 1) matriz defined by

- i
[Ag SJ, Ay, is defined in Subsection 2.2 and A, is defined in Subsection 3.3.

COROLLARY 4.1. (1) Var(8) < Var(3),
(2) Var(yny1 | Ya) < Var(yn41 | Ya),
that is the two-stage method produces small predictive variance.

The above results show that the posterior mean of 4 and y,,+1 are respectively
the same using both the regular Bayesian method and the two-stage method.
Intuitively, the two-stage method treats ¢ as a constant, therefore the variation
of the predictive density will be small. In fact, the above results prove that the
two densities both follow the t-distribution with the same degrees of freedom,
but expression (4.2) has smaller variance. However, some numerical examples
discussed in the next section show that the shrinkages of variance are almost
negligible when forecasting periods are not too far or sample sizes are moderate.

4.2  Applications
In this subsection, some numerical results are investigated to demonstrate the
accuracy of the two-stage method, with both simulated data and real data. For
the simulated data, AR(1) models with one exogenous variable are applied and
defined by
Y=+ Pri+oy_1+e, t=1,2...,n,

where o = 0.5, 8 = 0.3 and ¢’s are ii.d. normal (0,1). The exogenous variable
z¢’s are independently generated from uniform (0,1). As the discussed model is
not restricted to only a stationary model, values of ¢ are here set to be ¢ = 0.5 and
1, representing a stationary and nonstationary model respectively. Moreover, to
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investigate the influence of sample size, n’s are set as 50, 100 and 300. For obtaining
a reliable impact on sample size, the observations are drawn as follows: For each
model 350 observations are generated, the last n observations then constituting a
sample.

Besides the simulated data, two sets of real data are investigated. One set
consists of the quarterly data of United States unemployment rates, from the first
quarter of 1948 to the second quarter of 1991, a total of 174 observations. The
other includes 179 observations of the United States real GNP (in 1982 dollars),
from the first quarter of 1947 to the third quarter of 1991. These two economic
time series are coded from the Citicrop Database (1991). The latter analyzed
data has been translated by taking a natural logarithm. AR(2) models are fitted
to each series respectively described as:

Ys = Po + P1Ys—1 + Payi—2 + €.

When sample size is small, it seems unreasonable to expect accurate longer
period forecasts. Thus in the following discussion, the length of the forecast period
is adjusted by sample size, ranging from six periods to twelve periods. For each
data set, some specified percentiles for each estimated predictive density are com-
puted via two methods, the path sampling method and the proposed two-stage
method. The percentiles provided by the path sampling technique are estimated
by 10,000 bundles of paths. Besides the comparison of percentiles, four statistics
such as, mean, standard deviation, skewness and kurtosis, of each estimated den-
sity are computed. As discussed in Section 3, the two-stage method provides an
estimated density explicitly, however, the path sampling technique obtains this by
generating the unknown parameters. In order to further investigate the simula-
tion variation of the latter, 200 replications are made. Then the estimation errors
for each estimated percentile and the aforementioned four statistics via the path
sampling method are computed. All these summary statistics could be used to
measure the performance of the two-stage method.

As aresult of Property 2.3 and Lemma 4.1, the one-step predictive densities are
t-distributions, produced both by the regular method and the two-stage method,
except that the degrees of freedom differ. Therefore, the estimated predictive
densities created by these two methods should have the same mean, skewness
and kurtosis. These phenomena are indicated by all the numerical results if the
fluctuation errors are ignored. Moreover, since the two-stage method ignores the
variation of the parameter vector o, intuitively, the predictive density should tend
to be less variant. Also, the symmetric property of the t-distribution may limit
the shape of the predictive density. These two shortages could be examined by
using those summary statistics.

The first phenomenon is examined by the standard deviation of each esti-
mated density. In most case, the results show that the two-stage method tends
to produce a less variant density than the one produced by the path sampling
method. However, the results show that most of the differences between the two
methods are quite small for short period forecasts. Referring to the symmetric
restriction of the two-stage method, the experiments indicate that this limitation
does not cause too serious a discrepancy. Except, for the nonstationary simulated
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data with n = 50, the predictive density tends to skew to the right. In fact, the
predictive medians for each density produced by the two methods are almost the
same. This suggests that the bias of the true predictive mean and median is neg-
ligible. In general, these two disadvantages die out faster for stationary data than
for nonstationary data as sample size gets larger.

The influence of sample size for the two-stage method can be investigated using
results from simulated data. Based on the estimated percentiles, the performances
of the two methods are quite close as long as the sample size is not too small and
when n = 300, the percentage differences are almost negligible. This gives evidence
that the accuracy of the two-stage method increases as sample size increases. In
fact, the posterior mean substituting technique used in the two-stage method has
some optimal property as pointed out by Chow (1974): Considering a one-step
prediction for an AR(p) model, the posterior means of autoregressive parameters
will produce an optimal prediction of y,+1 under the criterion of minimum mean
squared error. Moreover, a heuristic proof of the asymptotic convergence of the
estimated predictive density approached by the two-stage method is presented in
Appendix.

For the discussed real data sets, almost all the precentiles provided by the
two methods are pretty close. Especially, for the GNP data, the two methods
almost create the same estimated density. It is worthy to note that usually when
analyzing GNP data, at least a first order differencing of the logarithm data is
taken. However, without taking a suitable differencing, the existence of “nonsta-
tionarity” is allowed in the model. For this “nonstationary” data set, the result
still shows that the two-stage approximation is quite accurate. All these discussed
numerical results exhibited in Tables 1-8 were done on a VAX9320 computer at
National Central University in Taiwan. The data were generated from the DRN-
NOR, DRNGAM and DRNMVN subroutines of the IMSL package.

For the sake of saving time, computations of the exact method are omitted,
instead the path sampling method is performed for comparison. Presumably, the
path sampling method will create a pretty accurate density if the number of paths
are sufficiently large. Actually, the standard errors for specified percentiles and
four statistics obtained from 200 replications are quite small. Thus 10,000 path
bundles should reasonably be enough to estimate the true density. As the results of
the two methods are close to each other, we can confidently say that the two-stage
method is quite reliable. In fact, the closeness of the two methods is exhibited
when sample sizes are not too small. However, when the sample size is small, the
two-stage method is still applicable for short period forecasts.

According to the path sampling algorithm, once the posterior distributions de-
scribed by (3.1) and (3.2) are obtained, then the computing time is not influenced
by the sample size of the data and is decided by the number of path bundles. On
the other hand, the two-stage method rewrites the model as a standard regression
model. Therefore the computing time of the transformation and analysis of regres-
sion model increases as the sample size increases. In these simulation experiences,
when n = 50, the two-stage method is far faster than the path sampling method.
As n = 100, the former is still faster than the latter. However, when n = 300,
the computing speed is reversed. Nevertheless, it is worthy to note that the path
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sampling method samples future observations sequentially one by one. In order
to obtaining any future observations y, .k, all the future observations before that,
say Yn+i, 1 <4 <k — 1, should meanwhile be simulated. However, the two-stage
method provides a closed form for any future step. Thus the predictive density
for each specified future step is computed independently.

The purpose of this paper is to explore the multiperiod predictive density
analytically. Since an exact expression is impossible for more than a one-step
forecast, then we try to approximate this predictive density by a suitable and
commonly used explicit density. At least, we have a rough idea what this density
looks like. Speaking overall, the results show that under the normal-gamma, prior
assumption, the multiperiod predictive density can almost be approached by a
suitable ¢-distribution. Though the true density is slightly skewed and has a slight
heavier tail when the sample size is small, this discrepancy is not too serious for
short period forecasts and disappears as the sample size increases. In practical
usage, it will be convenient and reliable to treat the predictive density as a t-
distribution when statistical properties of this density are needed analytically.

5. Conclusions

This article investigates the multiperiod forecasting problem of AR(p) mod-
els with strongly exogenous variables via the Bayesian approach using a normal-
gamma prior assumhption. A convenient and explicit method is proposed to pro-
duce an estimation of the posterior predictive density for any future observation.
The accuracy of the proposed method has been examined by some simulated and
real data. Some percentiles of the posterior predictive densities up to twelve-step-
ahead forecasting are calculated for each series. For each forecasting step, per-
centiles and some statistics related to moments are computed using two methods
respectively, the proposed two-stage method and the path sampling method.

Though the two-stage method provides a symmetrical and less variant density,
it seems these restrictions do not cause too serious a discrepancy. The results show
that the two methods almost produce the same estimate for short period forecast.
When the sample size gets larger, a longer period forecast based on the two-stage
method becomes more accurate. More precisely, when the sample size is large, the
two-stage method provides an estimated density which converges asymptotically
to the true one. A heuristic proof of this asymptotic property is shown analytically.
In general, the forecasting experiments reveal that the proposed method is rather
reliable and could be used explicitly to produce a posterior predictive density.

Meanwhile, the proposed two-stage method can be applied if the AR(p) com-
ponent is extended by an ARMA(p,q) component. In this situation, just replace
the exact likelihood function of the AR(p) component by an approximate likeli-
hood function which is proportional to

2

» q
- T
7™/ exp 3 ye — xf B — E PiYr—i — E 0€—;
i—1 =1

From the routine Bayesian approach for an ARMA model (Broemeling and
Shaarawy (1988)), the posterior means of ¢;’s and 6;’s are substituted into the
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model. Thus, an estimated predictive density is produced by a standard regression
analysis as discussed in this paper.
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Appendix
1. Proofs of lemmas and corollary

In the following proofs, n is fixed and for simplicity the lower subscript n is
sometimes appropriately dropped. Matrix Z, is decomposed as Z,, = (X7 | Xa),
where X is an m X r matrix and X, is an m x p matrix. Again, the underlying
assumptions are k = 1, V = I and the flat prior is utilized.

Al B=3
pf): Let 3 be the posterior mean of § using regular Bayesian analysis under
the flat prior, then after algebra

Al B=(XITwx)'XTWy, where W =1I— X5(XJX,)"*x7.
1 1 2

On the other hand, the posterior mean of § by the two-stage method under
these assumptions is

8= (XFX) XTI + Xo(XF X)) XT X (XTW X)) T XTIWY.

Let Xo = (X{ X1)~Y2XT, then X{ WX, = (X] X)V2(XeWXT)(XTX1)Y/? and
Xy (XTWX1) XT = Xo(XoWX{) ™ Xo. Therefore,

B=(XTX)V2X[I + (I - W)XF (XoWXT) " X WY
= (XIx) VY XWX 1 XoWY
= (X{wx) 'X{fwy

o

A2 u:LTszrl = m, R 3

pf): By definition, p3fzni1 = T2Znt1 + @ Ynt1p and my, = BT, +
ST yny1,p. Since B8 = 3, then Wil 201 = my. That is the posterior means of
the predictive density is the same both when using the regular Bayesian method
and the two-stage method.
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A3 R,=R,
pf): Under the flat prior assumption, R, is reduced to

R, =SSR, + YT [I - z(Z* 2y *Z")y.
According to the partitioning of matrix Z, one has
R, =YWy - YTWX (XIwWXx,) ' XTwy,

where W is defined by (A.1).
On the other hand, with the two-stage method

R, =YTI-X(XTX)' X7y =YT(Y - X18) and Y =Y — X5,
where ¢ = (X7 Xo) ' XTI — X1 (X{WX,) "' X{W]Y. After algebra,
Y- X1 8=W[I-Xy(XIWX)'Xfw]y and YW =Y"W.
Therefore, R, = YTW[I — X1 (XTW X)) XTW]Y = R,.

A4 A71>B, . L
pf): By definition, A;! = (X7 X,)™' = (X{ X;)™! and

-1
1 _ T _ | XX XT X
At =(Z"2) _{XQTXl XTX, .
For simplicity, let C, B and X, ; denote A;', B, and X} X, respectively.
For matrices C' and B, there exists matrix G (Basilevsky (1983), p. 235) such
that
GTCG=1 and GTBG=A= Hf 8] ,
where H is an r x r diagonal matrix. Then C — B = (GT)~™1(I — A)G™!, here
I—-A= T _OH }) } , and I is a p X p identity matrix. Therefore, it is sufficient
2
to show that I — H is non-negative definite. By definition of B, it can be shown
that
H=G{X7'Gu,

where (317 is the upper left r x r matrix of G. Moreover, since H is idempotent
and the non-negative property of matrix I — H results.

A5 Var(B) < Var(f)
pf): Under the assumptions and by using Property 3.1,

Var(B):%flglz%(Xle)“l, where v=m—-p—r—2
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and with Property 2.1,
Var(p*) = %A;l and

- R, - _
Var(f) = 7[X1TX1 - X7 Xo(X3 Xo) 7P X7 X7

Since R,, = R,, therefore Var(3) < Var(3) is proved.
A6 Var(yni1 | Yn) < Var(ynr1 | Ya)

pf): By using Property 2.3, the predictive variance using the regular Bayesian
method is

Var(yn+1 | Yn) = %(1 +zp 1A 2041),  where v=m—p—r—2.
On the other hand, the predictive variance with the two-stage method is
Var(yni1 | Va) = %(1 + gy (X] X1) T @),
Then resulting from the use of Lemma 4.2, the inequality is established.

2. Proof of asymptotical convergence of the two-stage method

Let U(B) = Y7~y d; B7, then

k-1 k—1
Toih = D &iZnik—; = U(B)zorx  and €= dienin; = U(B)ensr.
=0 =0

Formula (2.1) can be rewritten as
p .
(A.2) O(B)Yn+k = Ty B+ €nth, where B(B)=1- ¢;B7.
j=1
After algebra, it can be shown that

p
U(B)®(B)=1-Y cp1;B"77".
j=1
Hence, pre-multiplying both sides of formula (A.2) by the operator ¥(B), one has
(A.3) Ynin = V(B)zg 1B+ U(B)entr = Ty 1B + € yp

Therefore, formulae (A.2) and (A.3) are essentially equivalent. And they produce
the same prediction for y,1x, as long as the parameter vector ¢ is known.
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Since the posterior mean of ¢ obtained in the first stage is consistent, therefore
the posterior predictive density of y,+% produced by model (A.3) will asymptoti-
cally converge to that produced by model (A.2).
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