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A b s t r a c t .  In the measurements of VLF electric fields with the Pioneer Venus 
spacecraft in sunlight, spin synchronized signals often dominate over the natu- 
rally generated emissions. We present a method to separate natural emissions 
from the several possible sources of noise. Our major objective by this method 
is not to remove all spin modulation, but to effectively subtract the background 
noise caused by the identifiable noise sources. Examination of the data shows 
that  the background spin synchronized noise is quite sensitive to O(n), the angle 
between the sense axis and the solar direction. We model the observed data 
as y(n) = w(n)t(n)f(O(n)) + x(n), where f(O) represents the phase response 
of the background noise and x(n) is the estimated natural emissions, t(n) and 
w(n) are the long-term trend component and time- and phase-independent 
component of the intensity of the background noise, respectively. The method 
to decompose y(n) is based on the Bayesian approach which has been recently 
applied to various inversion problems such as nonstationary time series mod- 
eling and image reconstruction. In this procedure, the estimated parameters 
w(n), t(n), f(O), and x(n) can be determined automatically. We will describe 
the Bayesian scheme and its application to the Pioneer Venus VLF electric field 
data. 

Key words and phrases: Time series, Bayesian approach, outlier detection, 
smoothing, nonlinear modeling. 

1. Introduction 

D a t a  taken  aboa rd  a spinning spacecraf t  f requently suffers f rom an unwanted  
signals synchronized with the ro ta t ion  of the spacecraft .  If  there  is a s t rong noise 
source along some view direction, a result ing s t rong periodic noise appears  in 
the measurements .  We frequent ly  face s i tuat ions such t ha t  we cannot  s tudy  the  
observed da t a  wi thout  el iminat ing this periodic noise f rom the original data .  I t  
is therefore i m p o r t a n t  to develop me thods  t ha t  can sufficiently separa te  the  noise 
closely associated with  spacecraf t  spin. Fur thermore ,  an el iminat ion of the  noise is 
inevi tably  necessary in a case wi th  an inversion involved in an analysis procedure,  
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because the periodic noise due to the spacecraft rotation is easily amplified by a 
simple inversion technique such as the direct differentiation of the observed data 
(Higuchi et al. (1988)). Hence we cannot avoid the problem of noise reduction 
when we examine data measured by a spacecraft. 

Rocket observations to measure the altitude profile of the airglow are some- 
times contaminated with a spurious modulation as well as noisy fluctuations 
(Higuchi et al. (1988), Zi ta  et aI. (1989)). Higuchi et aI. (1988) had proposed 
a method to remove the spurious modulation as well as the noisy fluctuation by 
incorporating prior notions such that the spurious modulation could be locally ap- 
proximated by a sinusoidal wave. Their scheme to incorporate prior information 
into the analysis process is based on the Bayesian approach to time series analysis 
by Akaike (1980). The scheme can be characterized both by explicitly modeling a 
time series in the time domain and by introducing an information criterion A B I C  
(Akaike Bayesian Information Criterion) which enables us to objectively define the 
tradeoff between prior information and goodness of fit of the model to data. 

The Bayesian approach with ABIC has been extensively applied to a variety 
of statistical problems, after Akaike gave an explicit solution to the smoothing 
problem when both the prior and data distributions are Gaussian (Gersch and 
Kitagawa (1988)). Several prior models frequently used for normally disturbance- 
linear-stochastic regression are summarized in Higuchi (1991a). The broad ap- 
plicability and simplicity of the Bayesian approach with ABIC naturally leads its 
application to a reduction of noise observed in satellite data (Higuchi (1991b)). 
Along the line proposed by Akaike, Kitagawa (1987) furthermore has generalized 
the basic Bayesian approach and extended its applicability to both non-Gaussian 
and non-linear time series models. 

In the VLF electric field measurements from the Pioneer Venus spacecraft 
obtained in sunlight, spin-synchronized signals often dominate over naturally gen- 
erated emissions. Consequently, the observed natural emissions are masked by 
sun-synchronous spacecraft noise sources. A method to separate natural emissions 
from the several possible sources of noise would greatly enhance the scientific re- 
turn and help studies of very low frequency waves in the Venus ionopause and 
to test theories of various beam driven instabilities in front of the shock (Russell 
(1991), Strangeway (1991)). Our paper addresses this problem of separating the 
spin-synchronized signals in the Pioneer Venus wave data. A specific problem we 
are considering is the extraction of natural emission signal x (n )  from given data 
of the form 

(y(n), O(n)) (n = 1,..., X), 

where the y(n) are the observed electric fields and 0(n) is the angle between the 
sense axis of the antenna and the solar direction. This sense axis lies in the spin 
plane and joins the 2 cages of the antenna. In short, our purpose in this paper 
is to develop a method to automatically and objectively remove effects caused by 
the background noise which is closely associated with the spin phase 0. With this 

method we will be able to determine the role of plasma waves in the physics of the 
Venus ionosphere in situations in which we cannot now analyze the data because 
of the instrument noise levels. 

The Pioneer Venus VLF instrument employs a short electric antenna with 
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a separation of the antenna cages of only 0.8 [m]. The antenna elements are 
capacitively coupled to the plasma (Scarf et al. (1980)). When the spacecraft is 
in sunlight the antenna rotates through an asymmetric photoelectron cloud and 
through the shadow of the spacecraft. Much of the analysis of VLF signal from 
this instruments has therefore been restricted to the portion of the orbit in which 
the spacecraft is in darkness such as the study of polarization of the VLF signals by 
Scarf and Russell (1988). The spin rate of the Pioneer Venus spacecraft is generally 
close to 13 Is] and the spin axis of the spacecraft is maintained perpendicular to 
the solar direction. Hence every 13 seconds the sensors rotate 360 ° around the 
spacecraft being in full sunlight most of the time but passing into partial, full 
and then partial eclipse again as the body mounted sensors are shadowed by the 
spacecraft. The electric field power in 4 narrow bands centered at 100 [Hz], 730 
[Hz], 5.4 [kHz], and 30 [kHz] is measured at rates of up to 4 times per second, and 
logarithmically compressed before transmitting to Earth. 

In Section 2 we propose a basic model for describing an observation y(n). 
The concept and procedure to estimate the background noise are described in 
Section 3. In Section 4 we present a procedure to define a real signal x(n). Some 
practical examples are shown in Section 5, and the final section discusses our 
results, pointing out some related work. 

2. Observational model 

Spin synchronized signals often dominate over the naturally generated emis- 
sions. As a result, the natural signals are masked by sun-synchronous spacecraft 
noise sources and the observed data are a superposition of the background noise 
and natural emissions. We therefore assume that the background noise B(n) is 
linearly added to the real natural signal x(n). Namely, we decompose the ob- 
served raw data y(n) (n = 1 , 2 , . . . , N )  into B(n) (background noise) and x(n) 
(real signal) as follows: 

(2.1) 

Here it should be noticed that both B(n) and x(n) are positive valued, since they 
represent electric field spectral intensity measurements ((V/m)2/Hz).  

Examination of the data shows that the background noise is quite sensitive 
to the angle between the antenna sense axis and the solar direction, O(n), so we 
assume that the background noise, B(n),  can be described as a function of time, 
n, and phase, 0(n): B(n) = B(n, O(n)). It should be remarked that the phase 
O(n) is known previously. We show a typical example of the observed data y(n), 
and phase O(n), in Figs. l(a) and (b), respectively. The data are the electric field 
spectral density for 5.4 [kHz] during four minutes on 7 Sep. 1986. The data are 
sampled at 0.25 second resolution (At = 0.25), and a time is shown in seconds 
starting from 20:00:00.370. The difference of phase of successive points in time, 
10(n)- O(n-1)], is either 6.90 or 6.91 [deg.] (round off error), and there is no simple 
function to describe a switch from one to another. As a result, a phase O(n) is 
almost uniformly distributed, but irregularly spaced in phase domain from 0 ° to 
360 ° [deg.]. Since the satellite spin provides the variation of phase O(n) shown in 
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Fig. 1. (a) Raw observations of electric field spectral intensity measurements ((V/m)2/ 
Hz) for 5.4 [kHz]. The initial estimate for the long-term trend of the background noise 
intensity, t~0), is indicated by the broken line. (b) Phase variation (degree) as a function 
of time. 

Fig. l (b) ,  the pa t t e rn  associated with the background noise is highly repeti t ive in 
the t ime domain. The  ext remely  large values seen in Fig. l (a)  are due to na tura l  
emissions (B(n) << x(n)). 

A further  complication is tha t  the phase response of B(n) is t ime-varying. 
However, this can be assumed to be gradually changing with time. Accordingly 
we model the observed data,  y(n), as 

(2.2) y(n) = I(n)f(O(n)) +x(n), 

where f(O) is the phase response (s ta t ionary par t  of the background noise) and 
I (n )  is the envelope of the background noise at each t ime n. Namely we assume 
tha t  the background noise is modula ted  by the t ime-varying background noise 
intensity. This assumption is easily examined by plot t ing the observed da ta  in the 
logarithmic scale, because equat ion (2.2) implies tha t  da t a  points wi thout  a na tura l  
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Fig. 2. (a) Observation y(n) for 5.4 [kHz] in phase domain. (b) Histgram of log10 y(n) 
for 100 _< O(n) < 101. 

emission (x(n) = O) should scatter around log f(O) according to the logarithm of 
the time-varying background noise intensity, log I(n): 

(2.3) log = log + log (for = 0). 

We plot in Fig. 2(a) log y(n) during about 90 minutes (N = 20394) from 
20:00:00.370 on the same day shown in Fig. 1, as a function of phase 0. The 
data points shown in Fig. l(a) are also included in this figure. An envelope of 
minimum log y(n) at each 0 roughly corresponds to the form of log f(O). 

In order to confirm the above assumption, a histogram of log10 y(n) for 100 < 
O(n) < 101 is shown in Fig. 2(b). It is clearly seen that the bulk of data points 
center at logl0Y(n) = 12.2 ~ 12.3. The small scatter around the peak of the 
histogram represents the fluctuation of log I(n), because the phase response f(O) 
can be satisfactorily assumed to be constant within this phase range. In other 
words, the observation with the small difference of log y(n) from the peak of the 
histogram is assumed to be described as equation (2.3). In contrast, the data point 
isolated far from the bulk of the distribution of log10 y(n) is identified to contain 
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a real signal (x(n) ¢ 0), because the fluctuation of the background noise intensity 
to provide such a large deviation from the peak is unlikely from a physical point 
of view. 

3. Estimation of background noise 

In this study, we will estimate the unknown form of f(O) and I(n). There is 
a significant problem which arises from the non-linearity of the background noise 
component B(n,O) = I(n)f(O(n)). Several possible treatments to mitigate this 
problem can be considered. The easiest approach is to separate a procedure into 
two steps: one is for estimating the form of f(O) and the other is for I(n). In 
this study, we basically adopt this procedure. First we roughly estimate the form 
of f(O), removing the effect of I(n) as much as possible. After this process, we 
estimate [(n). 

3.1 Long term trend of the background noise intensity 
As mentioned above, we first estimate the form of f(0),  taking care of an 

effect from I(n). If I(n) is almost stationary and its mean is independent of time, 
we simply take an average of log y(n) for data points without the real signal in 
order to obtain the functional form of log f(O). However, our data shows that the 
mean of I(n) sometimes drifts with time. We therefore eliminate this long-term 
trend of I(n) before estimating f(O). Here we further decompose I(n) into two 
factors I(n) = t(n)w(n), where t(n) and w(n) are a long-term trend and stationary 
component, respectively. By stationary component, we mean that the distribution 
can be assumed to be independent of time. Using this decomposition, equation 
(2.3) can be rewritten as follows: 

log y(n) = log t(n) + log w(n) + log f(O) (for x(n) = 0). 

Moreover a variable of log y(n) - log t(n) gives us an opportunity to estimate 
log f(O) without being disturbed by the nonstationarity of I(n). Hence, we first 
calculate t(n) before estimating f(O). 

The process of estimating t(n) begins by determining the minimum back- 
ground noise level for each individual spacecraft period. This provides a rough 
estimate of the variation in the background noise level, t(n), which is denoted by 
dots in Fig. l(a). t(n) without a dot in this figure is treated as a missing value in 
our procedure. We assume that the long-term trend of the background noise in- 
tensity changes slowly with time. Hence an initial estimate for the long-term trend 
of the background noise intensity, t~0 ) (n), is defined by the smoothed t(n), where 

(0) explicitly indicates the estimation based on t(n) t*0) (n) is determined through • ( 

the Bayesian smoothing technique with the simplest model which minimizes 

(3.2) E ( l o g  t(rt) - log t~o ) (n)) 2 + ~ (log t~o ) (n) - log t~o ) (n - 1)) 2 
?Z 

under given T 2 (Higuchi (1991b)). The optimal value of the hyperparameter, T 2, is, 
of course, determined according to the information criterion ABIC. We superpose 
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on Fig. l(a) t~o)(n ) by the broken line. The obtained t~o)(n ) shows a straight line 
during this interval. 

3.2 Phase response function 
To estimate a phase response function of the background noise, we construct 

the following new time sequence 

(3.3) u(n) = log V(n) - log % (n) 

which is little influenced by the long-term trend of the background noise intensity. 
If the observations contain no real signal, u(n) can be rewritten as 

(3.4) u(n) = logw(n) + logf(O(n)) 
= e(n) + logf(O(n)), (for x(n) = O) 

where we define e(n) = log w(n). As seen in Fig. 2(b), a distribution of u(n) 
without real signal will scatter around log f(O) at each 0 in the phase domain, 
according to the distribution of e(n). As for the observations with significantly 
large real signal (as mentioned above, the real signal takes only positive values), 
the value of u(n) is so far separated in value from log f(O) at each 0 that  it appears 
as an outlier in the phase domain. We estimate the form of log f(O) by using u(n) 
derived from the observation y(n) which is assumed to contain no real signal. 

log f(O) takes various forms according to the location of the observations, and 
thereby the method to flexibly represent any functional form should be selected 
to express log f(0). Several methods to represent the form of log f(0) can be 
considered. In this study, we realize this problem to express log f(O) by the zero- 
or first-order spline (piecewise linear) representations. In this approach, log f(O) 
is specified by the number of segments, location of nodes, and the value at each 
node. Specifically, the following notation is used: the nodes are 0i = iAO (i = 
1, 2 , . . . ,  L(A0)), where L(A0) is the number of segments and given by L(A0) = 
360/A0. The values at nodes are log fi. In our study, we set A0 = 1 and thus 
L(A0) = 360. Furthermore, for simplicity, we adopt the zero-order spline function. 
So that  a value of log f(0) within a range of (i - 1)A0 _< 0 < iAO (i-th bin) is 
represented by a single variable fi. 

As previously mentioned, we have to estimate log fl by using only y(n) without 
the real signal x(n). Since it seems that  most of the observations in our study can 
be attributed to only background noise, a limited number within individual bins 
which are so far separated in value from the remainder (bulk) behave as outliers. 
In order to cut out these outliers which probably contain real signal, we order 
the data within each bin according to increasing magnitude and denote the j - th  

1 _< u < . . .  < uM,-1 < u y ,  is the ordered largest within i-th bin by uJ; thus, u~ u~ _ _ • _ 
set of observations within i-th bin, where the number of data points within i-th bin 
is specified by Mi. After rearranging the data in order of increasing magnitude, 
we find Ki values (out of a sample of size Mi) that  are large when compared with 
the remaining Mi - Ki values and define the rough estimate of log fi by taking an 

J average over the Mi - Ki values of u i . 
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This problem, a detection of an unknown number of multiple outliers, has 
received continued at tent ion in the statistical literature. Much work has been 
done within the framework of tradit ional  statistical hypothesis test ing and the test 
proposed by Grubbs (1969) and the improved one based on his test  are frequently 
used (Tietjen and Moore (1972)). Despite the simplicity of their method,  there 
occurs three major  flaws in their methods.  First, we cannot identify even a single 
outlier in a case where several values are closer to each other than  they  are close to 
the bulk of the observations (Tietjen and Moore (1972)). This inability to detect an 
outlier is called "masking effect" of outliers. Second, we sometimes reject two large 
observations when only one outlier is actually present (Tietjen and Moore (1972), 
Kitagawa (1979)). Actually we have tried to apply Tietjen and Moore's method  to 
our da ta  and already confirmed its inability to detect the outliers, mainly due to 
the second reason. Finally, we do not know which significance level, e.g., 10%, 5%, 
or 1%, we should take in a framework of classical procedures (Kitagawa (1979)). 
Thus the procedures cannot be objective. 

To overcome these difficulties, a Bayesian procedure has been proposed 
(Kitagawa and Akaike (1982)) and its practical uti l i ty has been il lustrated by 
numerical examples. In their method,  observations are assumed to obey a par- 
ticular Gaussian distribution with ordered means such tha t  M i  - K i  observations 

~ , . . . ,  are the realization of normally distr ibuted variables with an un- 
2 and Ki observat ions u/Mi-Ki+l  . u/Mi known common mean #i and variance a i , , . .  , 

are obtained from Gaussian distributions with ordered means, / Mi-K~+I _< . . .  _< 

2 Namely, this model means tha t  each outlier, which #Mi, and common variance ai • 
is assumed to contain a real signal, follows the Gaussian distr ibution with each 
mean, whereas the rest which are a t t r ibuted to the background noise are normal 
observations drawn from the common Gaussian distribution. As for prior distribu- 
tion, they  assume tha t  we have no information about  the number of outliers. The 
readers are referred to Kitagawa and Akaike (1982) for the detailed derivations 
described above. 

For a fixed value of Ki, the logarithm of the posterior probability tha t  each 
outlier u i j is obtained from a distr ibution with each #J ( j  = M~ - K i  + 1, . .  . ,  M~),  

J (j = 1,. Mi - Ki) is drawn from a distr ibution with respectively, and tha t  u i 
common #i, is given by 

(3.5) logp(K{ I u{) - Ms loga2 M i ( K {  + 2) 
2 M~ - K ~  - 3  

log Mi! + log(Mi - Ki)!, 

where a common additive constant  is ignored and 

1 M i  - K i  1 M~ -- Ki 
J 

(3.6) ch Mi 
j=l  j= l  

The number of outliers, Ki,  is in their method selected so as to maximize the 
3 ( j  = M i  - K i  + 1 , . . . ,  M i )  being the outliers. It should posterior probability of u i 

be noticed tha t  this posterior probability is defined by summation of the posterior 
J probability of Ki!  possible models, because there are Ki! ways of assigning ui 



SEPARATION OF SPIN SYNCHRONIZED SIGNALS 413 

(j = Mi - Ki + 1 , . . . , M i )  to the Ki distributions specified by the means #~ 
(j = Mi - Ki + 1 , . . . ,  Mi). For example, it is possible to consider the model such 
that u M~-I and u M~ are generated from the distributions with the means of #M~ 

M -I J ( j  = . M -2) and Pi , respectively, whereas the rests of outlier u i .. , 
are of course obtained from a distribution with PJi (J = Mi - Ki + 1 , . . . ,  Mi - 2), 
respectively. To calculate K i ! -  1 posterior probabilities except for equation (3.5) 
requires somewhat complicated numerical solution (Kitagawa and Akaike (1982)). 
Actually, unless there are outliers with nearly equal values, only the posterior 
probability of equation (3.5) takes a significant value among K~! models (Kitagawa 

( j  = + and Akaike (1982)), and thus the posterior probability of u i 
1 , . . . ,  Mi) being the outliers is simply approximated by the posterior probability 
of equation (3.5), neglecting a contribution of the posterior probabilities of K i ! -  1 
models. Since our data, as can be seen in Fig. 2(b), has also few outliers with the 
equal values within individual bins, we find the value of Ki to maximize equation 
(3.5), instead of calculating the definite posterior probabilities. After searching the 
optimal K~, we define the rough estimate of logfi by Pi within individual bins; 
thus 

1 M~ Ki 
J (3.7) l o g ] i =  M i -  Ki E ui" 

j = l  

Since log f(O) is assumed to show a smooth behavior in the phase domain, 
we define log f* by smoothing the obtained log fi. Here we also adopt a Bayesian 
smoothness approach which minimizes 

(3.8) 
360 

1 (log f [  - 2 log f ;  1 + log f * 2 )  2 ~--~,(log ]i - l o g  f [ )  2 + ~ 
i=1 

under given ~-~, where f0 and f -1  correspond to fa60 and f359,  respectively. The 
used smoothing somewhat differs from that frequently used for a time series on 
the point that f(O) is a periodic function, hence f360 should be connected to 
f l  continuously. Naturally the value of ~-~ should be determined by ABIC. The 
obtained log f [  provides us with the phase response function f(*l)(0), where the 
subscript (1) explicitly denotes the first estimate for the phase response function 
f(o). 

3.3 Stationary component of variations of background noise intensity 
The defined t~o)(n ) and fS)(O) provide us with the initial estimate of the sta- 

tionary component of the background noise intensity variation, w(*0.5)(n), defined 
by 

, 
(3.9) W(o.5)(n ) = t(0)* (n)fS)(O(n)) , 

where a subscript (0.5) explicitly indicates the estimate by using t~o ) (n) and f~l)(0). 
Of course, stationary components represent the stationary variation and its distri- 
bution is assumed to be characterized by a time-independent distribution function. 
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However, it sometimes occurs that there still remains in w~0.5 ) (n) an effect from 
the long-term trend of the background noise intensity variation, because t~o ) (n) is 
the initial rough estimate for the long-term trend of the background noise inten- 
sity. Thus far, we adjust this initial estimate further by extracting the long-term 
trend from w~0.5 ) (n) if it exists. 

Before subtracting the long-term trend in w~0.5 ) (n), we have to divide the total 
data set into two groups: candidates for w~0.5 ) (n) without the real signal and that  
which consists of the real signal and background noise. In short, we distinguish 
between the candidate for a pure background noise (designated hereafter by group- 
B) and that for a background noise + real signal (designated hereafter by group- 
B + x). While the sequences of W~o 5) (n) for the group-B almost show a stationary 
behavior in the time domain which can be characterized by a time-independent 
noise distribution function, w~0.5 ) (n) for the group-B+x is much larger and behaves 

as an abrupt positive change in the sequences of w~0.5 ) (n). Therefore we extract 
the long-term trend in W~o 5)(n) by using only data from group-B. ( .  

The selection of the candidate data for group-B can be realized in this study 
by examining the distribution function of 

(3.10) e~0.5 ) (n) = log w(*0.5)(n), 

because, as mentioned above, e~0.5 ) (n) for the group-B + x appears as an outlier 

in a distribution function. The reason why we adopt e~0.5 ) (n) instead of w~0.5 ) (n) 
for selection is based on the fact that a distribution function of el0.5 ) (n) for the 
group-B (hereafter we specify e* P((0.5))) can be satisfactorily approximated by the 
normal (i.e., Gaussian) distribution which favors the smoothing by a linear Gaus- 
sian Bayesian approach. When e* (0.5)(n) is less than the threshold emax, y(n) is 
classified as a candidate for the group-B. On the contrary, y(n) with e~o.5)(n ) 
larger than emax is considered to be an outlier and classified as the candidate for 
the group-B + x. 

To divide the data into two groups, it still remains a problem to choose emax. 
As previously mentioned, the real value (i.e., natural emission) takes only positive 
value, and thus y(n) with the smallest e~o.5)(n), emin, can be definitely attributed 
to the group-B. Of course, if the data with the smallest value of e* 0 5 (n) is ( . )  
obviously attributed to the local and occasional artificial noise, we define emin 
among the rest by excluding it. Furthermore, many examinations of data show 
that p(e~0.5)) appears to be symmetric with respect to its peak. Hence, we define 

the threshold emax by emax = e m i n - ~ - 2 ( e p e a k  --emin), where epeak is determined by 
* e* e(0.5 ) at which p((o.5)) shows a sharp peak. The value of epeak is easily determined 

by searching the peak of histogram of e*o(.)5 (n), because the number of e~o.5)(n ) is 
large enough in our study to approximate its distribution by the histogram. 

An extraction of the long-term trend component can be realized by simply 
smoothing e~0.5 ) (n) of the candidate for the group-B. The slowly changing vari- 
ation obtained by this smoothing is also considered to be the long-term trend 
component. In the smoothing procedure, e~0.5 ) (n) for the group-B + x is treated 
as missing value. Of course, the linear Bayesian approach is adopted for smooth- 
ing once again and the long-term trend is objectively and automatically estimated 
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Basic Procedure 

Model: y(n) = w(n) t(n) f(o (n)) + x(n) 
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Fig. 3. Illustrating the flow of the algorithm. 

according to ABIC. In this case, we adopt the simplest model as in equation (3.2) 
(Higuchi (1991a)). The smoothed e* (0.5)(n), hereafter denoted by ~0.5)(n), is at- 
tr ibuted to the long-term trend. Hence we correct the initial estimate for the 
long-term trend, t~o ) (n), by 

(3.11) logt~l)(n ) = logt~0)(n ) + e~0.5)(n) 
= log % (n) + log ~(*0 5)(~), 

where @~0 5) is given by exp(g~o 5))" Accordingly, the corrected stationary compo- 
nent of the background noise in'tensity variation is given by 

(3.12) log % ) ( n )  = ~05 ) (~ )  - ~ 05 ) ( ~ )  

= log ~ 0 5 ) ( ~ )  - log e~05)(~)-  

It should be noticed that  no estimate of logw~l )(n) is given as for the candidate 
for the group-B + x, because the value of e~0.5 )(n) = log w~0.5 )(n) is treated as 
missing in smoothing process. Even when log w~0.5 ) (n) is from the g roup-B+x,  the 
corrected long-term trend t~l ) (n) can be defined due to an automatic interpolation 
of the missing value; i.e., g* (0.5) (n) is defined at all n. 

3.4 Iterative optimization 
By using the corrected long-term trend component, t~l)(n), we can further 

adjust the phase response function form by returning to the procedure explained 
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in Subsection 3.2. In short, we replace/@) (n) in equation (3.3) with t~l > (n) and 
successively continue the following procedures shown in Subsections 3.2 and 3.3. 
Consequently, we can get the second estimate for the phase response function 
f(*2) (0) and the third estimate for the long-term trend component t~2 ) (n). We 

repeat these iterative improvements for t~k ) (n) and f(*k)(0) until the distribution 

function of log w~k ) (n) can be satisfactorily assumed to obey the time-independent 
noise distribution, where k designates the number of iteration. Practically, this 

* * 0 iteration is stopped at proper k. We specify the estimate of t(k )(n) and f(k)( ) at 

this chosen k by t*(n) and if(O), respectively. In the actual application to our 
data, we need only a few iterations and can get the satisfactory estimation for 
t*(n) and f*(O) at one or two iterations. The proposed approach is illustrated 
diagrammatically in Fig. 3. 

4. Estimation of real signal 

Based on the final estimates of t*(n) and f*(O), the estimation of the real 
signal begins by dividing the observations into two groups: candidates for the 
pure background noise (group-B) and that for the background noise + real signal 
(group-B + x). As in Subsection 3.3, this classification is also realized by examin- 
ing the logarithm of the stationary component in the background noise intensity 
variation, log w* (n), which is defined by 

(4.1) = log 

= logy(n)  - l o g t * ( n )  - l o g  f*(O(n)). 

The observations in our data are highly contaminated with the background noise 
and most of them are assumed to be classified into the group-B. Furthermore, 
the distribution of e* (n) for this candidate has a narrow central peak and seemed 
to be well approximated by the normal distribution. As for the candidate for the 
group-B + x, e* (n) is much larger than the mean of the group-B. Namely, e* (n) 
of the group-B + x is always far from the bulk of the group-B, and appears to 
behave as an outlier. Hence, we classify the observations according to the following 
criteria. If e*(n) is larger than e*ax , y(n) is assumed to be the candidate which 
contains a real signal (group-B + x). y(n) with e* (n) less than e ~  x is classified 
into the candidate for the pure background noise (group-B). 

There also remains a problem to choose e*ax. As previously mentioned, e* (n) 
of the group-B+x is much larger, at least about a few times the standard deviation 
(~B) which is defined by the standard deviation of the group-B. In our study, the 
optimal choice for e 'a× does not require a procedure for the statistical test. We 
simply set e*ax by simply examining the histogram of e* (n) and define its value 
by * * * * e m a  x ~-= emi n -~- 2 ( e p e a k  --  emin) as in Subsection 3.3, where epeak* and emi n *  are 
the peak and minimum value of the distribution of e* (n), respectively. 

According to above criteria, the real signal x(n) is estimated by 

(4.2) x(n) = y(n) - t*(n)f*(O(n)), 
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for e*(n) larger than ema x. This definition of the real signal is based on the 
assumption that w* (n) = 1 for e* (n) larger than e*ax. Here we define the cleaned 
data by 

(4.3) y*(n) = t*(n) + 

which is free both from the phase effect and from the stationary fluctuation of the 
background noise intensity. Obviously, for e*(n) less than e*ax , x(n) should be 
zero. This cleaned data basically represents the long-term trend of the background 
noise intensity, and sometimes shows an additional real signal if one is observed. 

5. Examples 

The electric field spectral intensity y(n) is simultaneously measured in four 
bands: 100 [Hz], 730 [Hz], 5.4 [kHz], and 30 [kHz]. The background noise level of 
observation for the highest band (30 [kHz]) is too low to require a statistical ap- 
proach presented above. We therefore focus on the lowest three bands in this study 
and apply our approach to them. Before showing results of our procedure, we re- 
mark that the ratio of the signal to background noise evidently becomes lower with 
decreasing frequency of the measured electric field intensity. Our demonstration 
begins by showing the result applied to the easiest problem among three bands, 
5.4 [kHz]. 

5.1 5.4 [kHz] 
In Section 2, we explained the basic model for observation by using the data 

set measured for 5.4 [kHz]. The initial estimate of the long-term trend component, 
t~0 ) (n), for this data set has been already shown in Fig. l(a). Accordingly it is 
worth while presenting the initial estimate of the phase response function, f(*l)(0), 
for this data set in order to illustrate an outline of our approach. We show the 
rough estimate for the phase response function, ]i, and its smoothed one, f [ ,  in 
Figs. 4(a) and (b), respectively. It should be noticed that the minimum value of f~ 
(]i ~ 1)is caused by a subtraction of log t~0 ) (n) from log y(n); i.e., fi is dimension- 
less variable. Comparing the top panel with Fig. 2(a) indicates that  our simple 
approach to roughly estimate the phase response function for the background noise 
works very well. In short, we can satisfactorily eliminate an effect of the data point 
with real signal in a process of estimating the phase response of the background 
noise. Seemingly there is no difference between panels (a) and (b). However, f[ 
shows smoother behavior than ]i. In this case, the value of hyperparameter, ~-~, 
is set 1, according to ABIC. 

The obtained t~0 ) (n) and f~l)(0) generate the time series of an initial estimate 
of the stationary component of the background noise intensity variation, w(*0.5) (n). 
If there still remains a long-term trend in w~0.5 ) (n), we furthermore remove it from 
w~0.5 ) (n) and correct the initial estimate of the long-term component, according 
to the procedure explained in Subsection 3.3. Actually we can get a satisfactory 
result for the estimation of the background noise at this stage. As previously 
mentioned, we can pursue an iterative procedure by calculating f(*2)(0) based on 
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Fig. 4. (a) Rough estimate for the phase response function, fi ,  for the data  set shown 
in Fig. 2(a). (b) The smoothed phase response function, f* 

t~l ) (n). This iteration should be continued until the derived stationary component 
can be assumed to obey the time-independent noise distribution function. 

We show in Fig. 5(a) the cleaned data, t*(n) + x(n), in which neither an 
effect of the phase response of the background noise nor that  from a stationary 
component is included. The final estimate for the long-term trend component, 
t*(n), is also demonstrated in the bottom panel, Fig. 5(b). The final estimates 
for all variables are obtained at one iteration: for example, t*(n) = t~l)(n ). The 
demonstrated interval for both panels is the same as that  in Fig. 1. We can see in 
Fig. 5(a) that  the cyclic pattern identified in the original time series y(n), which 
is closely associated with the phase change, is clearly removed in the cleaned data. 
A slight difference of t* (n) from ti0 ) (n) stems from quite minor correction for the 
long-term component estimation. 

Plotting the cleaned data t*(n) + x(n) in the phase domain greatly enhances 
the understanding of our procedure to eliminate an effect of the background noise 
on phase in the phase domain. Figure 6 shows the cleaned data for data points 
shown in Fig. 2(a). We can no longer see in this figure the dependence of the 
background noise on phase, which appears in the phase domain as the change 
in minimum level of y(n) as a function of phase. By our formulation to extract 
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Fig. 5. (a) The cleaned data, t * ( n )  4-  x ( n ) ,  for the data  set shown in Fig. 1 in t ime 
domain. (b) The final estimate for the long-term component of the background noise 
intensity variation, t* (n). 
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Fig. 6. The cleaned data, t * ( n )  + x ( n ) ,  for the data  set shown in Fig. 2(a) in phase 
domain. 
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the effect of f*(O) from y(n), the cleaned data without real signal (i.e., t*(n)) 
is defined so as to represent a minimum background noise intensity level. The 
estimated F(n)  shows an almost constant pattern during an interval (about one 
hour) in which this data set PVHE 2833 was obtained, but slowly changes as time 
goes. This change in t* (n) leads a very small fluctuation of the cleaned data with 
x(n) = 0 in phase domain, around an average of ~*(n) with x(n) = 0, as seen 
in figure. Naturally the variance of this fluctuation is smaller than that of y(n) 
without real signal which is seen in Fig. 2(a), because the cleaned data contain no 
stationary component of the variation of the background noise intensity. 

5.2 730 [Hz 1 
To extract the phase dependence of the background noise for 730 [Hz] becomes 

more difficult than that for 5.4 [kHz], because of its reduced signal to noise ratio 
compared with that for 5.4 [kHz]. In addition, the more complicated form of the 
background noise as a function of phase makes it more difficult to remove an effect 
of the background noise associated with phase. We demonstrate in Fig. 7(a) the 
observation y(n) for 730 [Hz] in the phase domain. This data set was measured 
during the same interval as that for 5.4 [kHz] shown in Fig. 2(a). An envelope of 
the minimum observation as a function of phase corresponds to the dependency 
of the background noise on phase. We demonstrate in Fig. 7(b) the estimated 
phase response function f*(O) which is obtained at an iteration number k = 1: 
f*(0) -- f(*1)(0)" The good performance of our procedure to estimate f*(0) even 

for 730 IHz] can be easily understood by superposing panel (b) onto panel (a). 
Before showing the cleaned data, we notice in panel (a) a rapid rise of y(n) 

within the limited phase range between 160 and 190 [deg.], in particular between 
178 and 190 [deg.]. Because of slight valiability in the onset of the rapid rise, 
it cannot be adequately represented as the background noise by equation (2.3). 
We have examined in detail both the time- and phase-dependence of this scatter 
within this phase range, but no dependency was found. Thus, the following special 
treatment is required: no data within this phase range is used to determine the 
stationary component of the background noise as discussed in Subsection 3.3, even 
though it is classified as the group-B. In addition, the cleaned data within this 
phase range is a priori defined to contain no real signal and is excluded from our 
analysis. We demonstrate the cleaned data in Fig. 7(c). As mentioned above, only 
data points without x(n) can be seen within the range from 160 to 190 [deg.]. It 
should be emphasized that the special treatment like this is seldom applied and 
that our model expressed by equation (2.3) is basically appropriate for representing 
the background noise. 

We show a part of this cleaned data in time domain. Figures 8(a) and (b) are 
the original observation and the cleaned data, respectively. In this case, it is nearly 
impossible to extract useful information without removing the background noise 
from y(n). Panel (b) suggests that the cleaned data provide us an opportunity 
to examine the data set strongly contaminated with spin synchronized noise. It 
is interesting that the final estimate for the long-term component t*(n) is almost 
constant during this interval. 
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Fig. 7. (a) Observation y(n) for 730 [Hz] in phase domain. (b) The smoothed phase 
response function, f~" (c) The cleaned data, t*(n) + x(n). 

5.3 100 [Hz] 
Final ly  we show a result  of our procedure  applied to the  mos t  difficult prob-  

lem, 100 [Hz]. The  applied da t a  set was ob ta ined  dur ing abou t  24 minutes  f rom 
20:00:00:370 to  20:23:20:382 on 14 May, 1979 and the  number  of d a t a  points  is 
N ---- 5600. The  sampl ing  t ime  At  is also 0.25 second. We plot  the  original obser- 
vat ions f rom 20:00:00:370 to 20:21:39:391 in the  phase  domain  in Fig. 9(a). The  
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(a) Observation y(n) for 730 [Hz] in time domain. (b) The cleaned data, t* (n)+ 

data points obtained after 20:21:39.391 are not shown in this figure, because an 
effort to visually grasp the characteristics of the background noise in phase domain 
is hampered by a large increase in the background noise level after this time, which 
is shown in Fig. 10(a). We plot the observations in the time domain in Fig. 10(a) 
from 20:19:20:379 through 20:23:20:382. The time is indicated in seconds starting 
from time of 20:00:00:370. An enhancement of the background noise level is clearly 
seen in this figure after about t -- 1370 [sec.]. We therefore plot no data point after 
this time in Fig. 9(a) in order to easily capture the basic feature of the background 
noise in phase domain. 

It is seen in Fig. 9(a) that  the ratio of signal to background noise is still lower 
compared with that  for 730 [Hz]. This small ratio makes it difficult to distinguish 
the data points with a real signal from those composed only of the background 
noise. The estimated phase response function is shown in Fig. 9(b). The relatively 
rough behavior of this curve is produced by larger variation of the background noise 
intensity both in time and in phase domains. We show in Fig. 9(c) the cleaned 



SEPARATION OF SPIN SYNCHRONIZED SIGNALS 

PVHE0161 lOOHz 

423 

':•: : : ; : :  •• i .  

0 100  2 0 0  3 0 0  

(a) phase [deg.] 

.'2 

0 1 O0 2 0 0  3 0 0  

(b) phase [deg.] 

i 

A 

~'7," 

" . - . . . . . f l  ." . '  - ~ " .'...:. ' t , ' . : ;  . : : . ' . .  ~?:~ .'.;:: :.':: 

0 1 0 0  2 0 0  3 0 0  

(C) phase [deg.] 

Fig. 9. (a) Observation y(n) for 100 [Hz] in phase domain. (b) The smoothed phase 
response function, fY (e) The cleaned data, t*(n)+ x(n). 

data in the phase domain. Similarly no point after 20:21:39.391 is demonstrated in 
panel (c). Even for this case, we can extract data points seeming to contain a real 
signal, with removing an effect from the background noise. It should be remarked 
here that  the outline of the blank area seen in this panel, which lies between the 
bulk of group-B points and of group-B + x, is obviously related to the signature 
of f*(0). This dependency stems from the definition for classification of data into 
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Fig. 10. (a) Observation y(n) for 100 [Hz] in t ime domain. 
t*(n) + x(n). 

(b) The cleaned data, 

two groups, group-/? and of group-B + x, which is essentially based on the ratio 
of the signal to the background noise intensity at each 0. 

We present in Fig. 10(b) the cleaned data for data points shown in Fig. 10(a). 
The relatively larger fluctuation of t* (n) seen in Fig. 10(b) results in the larger vari- 
ance of t* (n) seen in Fig. 9(c), compared with that seen in Fig. 7(c). Although y(n) 
in Fig. 10(a) appears to prevent us from extracting useful information, Fig. 10(b) 
suggests that our procedure provides us a chance to examine the data strongly 
contaminated with the spin noise. 

6. Discussion 

In the first estimation of the phase response function, log f~i), we separate the 
procedure into two steps: one is to obtain a rough estimate of log fi and the other is 
to smooth it. This separation is needed to remove the data points with a real signal 
(i.e., the group-/3 + x) in a process for obtaining the smooth phase response curve 
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of the background noise. Namely, the smoothing of u(n) (= log y(n) -log t[0 ) (n)) 
in the phase domain requires a rejection of effects from outliers which appear 
in this study as the data points of the group-B + x. This problem has been 
treated in the framework of a time (and space) series analysis as the modeling 
of the "robust filter (smoother)" which is designed to give a good estimate for a 
trend in the presence of outliers. The running median smoother (Tukey (1977)) is 
commonly used for the robust (nonlinear) smoother. In the course of our study, 
we applied this smoother to our data, but we found that  it fails to exclude the 
outliers. The unsuitability of this method for our data stems from the fact that 
there exist several outliers (corresponding to the data of the group-/? + x) within 
a narrow phase range; i.e., the bulk of natural emissions is often observed within 
a limited phase range. As for another robust filter, the non-Gaussian state-space 
modeling has received much attention, because it can accommodate the outliers 
systematically. The outlier in our problem is referred to in the non-Gaussian state- 
space approach as additive outliers (AO) which are observed in the observation 
noise (Tsay (1986)). Although we assume that  the phase response function shows 
a smooth behavior without discontinuities, the data set for the lowest electric field 
channel such as 100 [Hz] sometimes shows a few abrupt jumps in the trend. In 
this case, we have to consider a more general model of the AO + IO type for the 
nonlinear smoothing, where IO denotes the innovations outlier. Except for the 
special case which sometimes occurs in the lowest channel, we have only to deal 
with the AO model in this study. 

The method proposed by Kitagawa (1987), which is an AO + IO type model, 
has great potential for application to many fields, because of its simplicity which 
can be realized by the direct modeling of an observation scheme as well as by 
the numerical computations necessary for the filtering and smoothing algorithms. 
Furthermore, his model excels in an objective choice of the tradeoff between the 
smoothness and goodness of fit according to the information criterion, ABIC. 
The occurrence of the additive outlier which is in fact the observation with a 
real signal (group-B + z) can be characterized in his model by some appropriate 
noise distribution with a heavy weight on the positive side. Of course, this noise 
distribution is chosen to maximize ABIC. 

In our case, it is not possible to directly apply his method, because, as previ- 
ously mentioned, our data are irregularly spaced in the phase domain and so we 
have to conform the data set to the equispaced format in his model. The easiest 
way is to neglect the fact that the data are not equispaced. Even if we adopt this 
alleviation, another difficulty due to the large data length (104 < N) arises in the 
limited computational memory on the workstation such as a SPARCstation. Of 
course, we can now solve this problem by using a supercomputer, but we intend 
to develop the program for use as part of the data reduction process, which is 
typically carried out with small computers such as workstations. Hence, we do 
not adopt his method for nonlinear smoothing. 

The smooth spline function is extremely useful for fitting the irregularly spaced 
data. Although in our case the treatment of the AO should be included in a 
procedure of estimating the coefficients in spline functions, the most commonly 
used method for a smooth spline function is based on an assumption that data 
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contain no additive outlier (Wahba and Wold (1975), Wahba (1975, 1990), Ishiguro 
and Arahata (1982), Silverman (1984, 1985)). Even if we adopt a spline function 
to represent the phase response while taking care of the presence of the AO, the 
merits of using the spline function at the expense of huge computing time cannot 
be justified in our case where the data points are densely and uniformly scattered 
in phase domain. Moreover, since there are so many data points (Mi ~ 60) within 
a small phase range such as A0 = 1 in which the phase response function is 
assumed to be almost constant, the irregular space between data points in the 
phase domain forces us not to use a spline function. 

The smoothing in phase domain in the presence of the outlier is attributed to 
the AO type modeling. The treatment of the outliers which appears in smoothing 
e~k+l/2 ) (k = 0, 1 , . . . )  also requires the AO type model capable of automatically 
accommodating the outlier in smoothing. As previously mentioned, we smooth 
e~k+l/2 ) in the time domain to extract the slowly changing (trend) component in 
e*k+l 2 • The value of e'k. 1, 2, for the group-/3 + x, which is quite far separated ( / )  ( t l j  
from the bulk composed of the group-/3, significantly affects the estimated trend 
component when we simply apply the linear filter in which the estimate is defined 
by a weighted linear combination of e~k+l/2 ). Of course, the smoothing based on 
the Bayesian approach with Gaussian noise is also classified as the linear filter 
(Silverman (1985), Higuchi (1991a)). In addition, an effect of e~k+l/2 ) for the 

group-/7 + x on the optimization of tradeoff parameter (so-called hyperparame- 
ter) becomes serious. The treatment used in our study is implicitly based on an 
assumption that the distribution of e~k+l/2 ) within a range of emin--emax could be 
satisfactorily approximated by a Gaussian. A choice of emin is quite reasonable 
because minimum value of e~k_t_l/2) , emin, is definitely classified into group-/7 from 
a physical point of view. In contrast, a selection of emax is somewhat ad hoc and 
cannot be justified only by the assumption of the Gaussian distribution. 

To solve these problems, the non-Gaussian method proposed by Kitagawa 
(1987) is quite adequate, because any distribution for the observation noise is, 
in his method, realized by a piecewise linear function and so the histogram of 
e~k+l/2 ) could be adopted for the most appropriate observation noise model. Un- 
fortunately, the large data length also burdens this approach due to the large 
computational memory required. In order to mitigate this problem, we do not 
apply the smoother algorithm but instead replace the estimate by that obtained 
by the filtering algorithm. However, even if we adopt this approach which requires 
more computational time rather than the normal linear smoothing approach, there 
is substantially little difference in the smoothed e~k+ll2 ) between our method and 

the general one proposed by Kitagawa (1987). The reason is that the distribution 
of e~k+l/2 ) within the range less than emax can be sufficiently approximated by a 
Gaussian. Of course, there still remains a problem of the most reasonable choice 
of emax assigned to the maximum fluctuation of the background noise in positive 
direction. We fully agree with Kitagawa (1987) that both the broad applicability 
and simplicity of his model compensates for the computational costs. Fortunately, 
this problem of a choice of emax is not substantial in our case, because there is no 
point, at most a few points, around emax, for most of cases in our data set. In 
short, the outliers classified into the group-/3 + x are sparsely spaced within the 
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range of much larger than ema×. In addition, our objective in this study is not a 
precise estimate of the background noise intensity, but the automatic and quick 
extraction of the natural emissions (real signal). We therefore do not adopt his 
method. 

In this study, we assume that  the background noise can be described as a 
function of time, n, and phase, O(n), and took the simplest form for its repre- 
sentation: B(n,O) = I(n)f(O(n)) = w(n)t(n)f(O(n)). This simplification can be 
justified from many examinations of data which show that  the logarithm of the 
observations without a natural emission shows a dependency only on phase after 
removing the long-term trend in the background noise intensity. More specifi- 
cally, the form of log f(O) can be assumed to be constant as a function of time. 
This model directly and naturally reflects our knowledge obtained fl'om detailed 
inspection of many data. However, there occasionally occurs a gradual change in 
log f(O), which cannot be described by our models. This inability can be resolved 
by considering more general expressions for the background noise as a function of 
time and phase. Namely, we divide the total data into sub-intervals and assume 
that  the background noise is constant during each interval AP.  In addition, we 
add a prior notion such that B(n + AP, O) ~ B(n, O) and B(n, O) ~ B(n, 0 + A0). 
This approach can be realized by quantizing B(n, O) as B(n, iAO) or by represent- 
ing it in terms of a spline function, in the phase domain. In this approach, the 
major difficulties stem both from the huge computational memory required for 
its numerical realization and from the computing time necessary for obtaining an 
optimal B(n, O) according to ABIC. 
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