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A b s t r a c t .  For the polynomial regression model on the interval [a, b] the op- 
timal design problem with respect to Elfving's minimax criterion is considered. 
It  is shown that  the minimax problem is related to the problem of determin- 
ing optimal designs for the estimation of the individual parameters.  Sufficient 
conditions are given guaranteeing that an optimal design for an individual pa- 
rameter in the polynomial regression is also minimax optimal for a subset of 
the parameters. The results are applied to polynomial regression on symmetric 
intervals [-b, b] (b ~ 1) and on nonnegative or nonpositive intervals where the 
conditions reduce to very simple inequalities, involving the degree of the under- 
lying regression and the index of the maximum of the absolute coefficients of 
the Chebyshev polynomial of the first kind on the given interval. In the most 
cases the minimax optimal design can be found explicitly. 

Key words and phrases: Approximate design theory, scalar optimality, mini- 
max criterion, polynomial regression. 

1. Introduction 

Consider  the polynomia l  regression model  of degree d (d _ 1) 

d 

y ( x )  = E ~ix i '  X E [a,b] 
i=0 

where ~ -- ( ~ 0 , . . . ,  ?~d)' is the vector  of unknown p a r a m e t e r s  and  the  controlled 
variable x varies between a and b (a < b). In  order  to  e s t ima te  the  unknown pa-  
ramete rs  0i n uncorrela ted observat ions Y1,. �9  Yn are t aken  at  points  x l , .  �9 : xn  C 
[a, b] with expec ta t ion  y (x i )  (i -- 1 , . . . ,  n) and  variance cr 2 > 0. An app rox ima te  
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design ~ is a probability measure on [a, b]. If ( has finite support { x l , . . . , x k }  
with corresponding weights ~ ] , . . . ,  ~k, then ~ represents the proportion of all n 
observations that have to be taken at xi. The information matrix of 4 is defined 
by 

/ ,  b 

M(4 ) = /~  f(x)f '(x)d~(x) 

where f(x) = (1 ,x , , . . , xd )  ~ denotes the vector of monomials up to the degree 
d. For a design 4 with finite support and masses 4i = ni/n (i =- 1, . . . ,  k) the 
inverse of the information matrix M -1 (4) is proportional to the covariance matrix 
of the least squares estimator for 0. For a more detailed discussion of the statistical 
context of this setup we refer the reader to the textbooks of Fedorov (1972), Silvey 
(1980), Pazman (1986) and Pukelsheim (1993). 

An optimal design maxi- or minimizes an appropriate functional depending on 
the information matrix or its inverse. In this paper we are interested in optimal 
designs with respect to Elfving's partial minimax criterion (Elfving (1959)). More 
precisely, let I = { i l , . . . , i k}  denote a fixed subset of {0 , . . . , d}  corresponding 
to the parameters of interest and define e~ = (0 , . . . ,  0, 1, 0 , . . . ,  0) ~ E Nd+l as the 
(i + 1)-th unit vector (i = 0 , . . . , d ) .  Following the work of Elfving (1959) we 
will call a design ~ minimax optimal for the parameters {0i}iel if 4" allows the 
estimability of 0i for all i e I (that is, ei C range(M(4)) ) and 4" minimizes the 
function 

�9 (4) = 

(here M - ( 4  ) denotes an arbitrary generalized inverse of M(4)). In contrary to 
the commonly used optimality criteria (e.g. D-, A- and E-optimality) the criterion 
�9 ~ allows a very easy interpretation for the experimenter who is using minimax 
designs in practice. The variance of the least squares estimate for the individual 
parameter 0i is proportional to e~M-(~)ei. Thus the minimax design minimizes 
the worst variance of the estimates for the parameters {0i}i~i and guarantees 
precise estimates for all parameters of interest. Unfortunately, the determination 
of minimax designs is a very hard problem. The criterion function is not necessarily 
differentiable and therefore even numerical procedures are difficult to implement in 
practice. A general discussion of minimax designs (including the above criterion) 
can be found in Wong (1992) and Dette and Studden (1992). Some numerical 
results for polynomial regression of lower degree and the full parameter subset 
I = {0, . . . ,  d} are given in Murty (1971). 

In the present paper we show that the minimax problem for the parameters 
{0i}iei is intimitately related to the problem of constructing optimal designs for 
the individual parameters 0i (i E I). More precisely, in Section 3 sufficient condi- 
tions are stated guaranteeing that  an optimal design for the individual parameter 
0~. (i.e. the design 4 that minimizes e~.M-(4)ei .  ) is also minimax optimal. The 
results are used in Sections 4 and 5 to determine optimal minimax designs on 
symmetric intervals I-b, b] (b < 1) and on nonnegative or nonpositive intervals. 
A motivating example is given in Section 2 which also shows that a conjecture 
(concerning minimax design on the interval [-1, 1]) stated by Murty (1971) is not 
true in general. 
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2. A conjecture for the interval I - l ,  i] 

For the full parameter system d {tgi}i=0 and the interval [-1, I] minimax optimal 
designs for polynomial regression were calculated numerically by Murty (1971) for 
degree d _< 12 excluding 4 and II. Based on these calculations Murty (1971) stated 
the following conjecture. 

Let 

(2.1) 
Ld/2j 

Td(X) := E td-2jxd-2J --- cos(darccosx) 
j -0  

denote the Chebyshev polynomial of the first kind on the interval [-i, i] and ~ the 
optimal design for the individual coefficient ~)j. If there exists a unique maximum 
in the set {Itd_2jI I J ---- 0,..., [d/2J}, say ]td-2kl, then the optimal design for 
the individual coefficient ~)d-2k, namely ~-2k, is also minimax optimal. In the 
case that the maximum is not unique and attained for two indices, say Itd_2kl and 
Itd_2k+21, a convex combination of ~-2k and ~-2k+2 is minimax optimal. 

The optimal designs for the individual coefficients are well known and were 
determined by Studden (1968). In that paper it was shown that the support points 
of ~ - 2 j  are the so called Chebyshev points s~ = cos(((d - ~)/d)fc) (~ = 0 , . . . ,  d) 
which are the points where the polynomial [Td(X)l 2 attains its maximum in [-1, 1]. 
The masses of ~ - 2 j  at the support  points s~ are given by Ig,,d_2jI/Itd_2j] where 
g.,j are the coefficients of the Lagrange interpolation polynomials L,(x) at the 
knots So, . . . ,  Sd, defined by 

d 

L,(x) = E ~,JXJ and L,(s#) = 5,,~ 
j=O 

(v,# = O, . . . ,d ) .  

The second part of the conjecture applies for polynomial regression of degree 4 
where the Chebyshev polynomial is given by T4(x) -- 8x 4 - 8x 2 + 1. Averaging 
the designs ~ and ~ Murty (1971) claims that  the design ~ ---- ( ~  + ~) /2  which 
puts masses 3/32, 8/32, 10/32, 8/32, 3/32 at the points - 1 ,  - l_ /v~ ,  0, 1 /v~ ,  

4 1 is minimax optimal for the full parameter set { i}i=0 with (I)i(~) = 992/15 
66.1333. We applied a numerical procedure of Remez type (see Studden and 
Tsay (1976)) in order to determine the optimal minimax design for polynomial 
regression of degree 4. Our calculations showed that  the minimax optimal design 
~* is supported at the points - 1 ,  -0.7086, 0, 0.7086, 1 with masses 0.0958, 0.246, 
0.3164, 0.246, 0.0958, respectively. The value of the criterion (I)~ at the point ~* is 
given by (I)i(~*) ~ 66.1137 < ~I(~) which shows that  the design ~ = ( ~  + ~ ) / 2  
cannot be the minimax optimal design. Moreover, we see that  the minimax optimal 
design ~* can never be represented as a convex combination 'of ~ and ~ because 
all these designs must  have support  { - 1 , - 1 / v ~ ,  0, 1/V~, 1} (in fact ~ is minimax 
optimal among all designs supported at these points). This disproves the second 
part of Murty's conjecture (even the numerical calculations which led Murty to his 
conjecture seem to be incorrect). Although we cannot present a counterexample 
to the first part of the conjecture stated in Murty (1971) it fails to carry over to 
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arbitrary intervals I-b, b] with b _< 1 if the maximum coefficient of Ta(x) is unique. 
This is indicated by the following example. 

Consider a polynomial regression model of degree 4 on the interval I-b, b] 
where b < 1. The Chebyshev polynomials on this interval are easily obtained from 
(2.1) 

(2.2) 
d d 

Tb(x ) ~ tb zd_2j td-2j xd_2j 

j=0 j=0 

and the maximum coefficient of Tb4(x) is unique and given by tb4 = t4/b 4 = 8/b 4. 
By Murty's conjecture the optimal design for the highest coefficient ~ which puts 
masses proportional to 1:2:2:2:1 at the points -b,  - b / v ~ ,  O, b/x~2, b should be 
optimal, at least when b is very close to i (note that the design for the highest 
coefficient is the Dl-optimal design which can easily be transferred from the inter- 
val [-1, 1] to arbitrary intervals (see e.g. Studden (1982))). Straightforward but 
tedious calculations show that  the inverse of the information matrix of (~ is given 
by 

M - t ( ~ )  = b  -s  

4b s 0 -12b 6 0 8b 4 ) 
0 20b 6 0 -24b 4 0 

-12b 6 0 72b 4 0 -64b 2 . 
0 -24b 4 0 32b 2 0 

8b 4 0 -64b 2 0 64 

If ~ / ~  < b < 1, then the maximum of the diagonal elements mii of M- I (~ I )  
is unique and attained for rn 33 -~ 72b -4. To check if ~ is minimax optimal for 

0 4 { i}i=0 we apply the equivalence theorem for minimax optimality (see e.g. Wong 
(1992) or Dette and Studden (1992)). In the case of optimality ~ has to satisfy 

(e~aM-l(~)f(x))2 = b-lO(64b2x4 _ 72b4x 2 + 12b6)2 < 72b-4 = e3 M ,  -i(~4)e3. 

for all x e [-b,b] (~-8-~ < b < 1), which is obviously not fulfilled for x -- 0. 
Therefore ~ cannot be minimax optimal whenever ~/8/9 < b < 1 (note that  ~ 
is in fact minimax optimal if b < ~ because in this case the maximum of the 
diagonal elements of M -1 ( ~ )  is m55). Thus, Murty's mathematical description 
of the optimal minimax design seems to be not appropriate. Nevertheless, the 
results of the following sections show that  in many cases the optimal designs for the 
individual coefficients play a particular role in the determination of the minimax 
optimal design. 

3. Preliminary results 

Intuitively, one of the optimal designs ~ for estimating the individual param- 
eters 0~ (i E I) should be a good candidate for the minimax optimal design for 
the parameter system {~}ieI .  In this section we will discuss some general as- 
pects of the relationship between these two optimality criteria. Throughout this 
paper it is assumed that there exists an index k E I such that the optimal de- 
sign ~ for estimating the individual coefficient 0k (i.e. the designs that  minimizes 
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e~M-(~)ek) has a nonsingular information matrix M ( ~ ) .  In this case it follows 
by standard results of optimal design theory (see e.g. Kiefer (1959)) that there 
exists an optimal design ~ for estimating Ok supported at exactly d + 1 points, 
say so < Sl < "-- < Sd. This property will usually depend on the index set 
I C {0, . . . ,  d} and on the underlying interval [a, b]. It is obviously fulfilled for the 
full index set I = {0 , . . . ,  d} and arbitrary intervals [a, b]. In the following sections 
two other cases which guarantee the existence of an index k E I such that  M ( ~ )  
is nonsingular are discussed in more detail: In the first case assume that  [a, b] is 
a nonnegative or nonpositive interval and that I r {0} or 0 r In, b]. In this case 
there exists an index k E I\{0} such that ~ is supported at exactly d + 1 points 
(see Heiligers (1992)). Secondly, if [a, b] is symmetric (i.e. a = -b,  b > 0) and 
I r {0} contains at least one of the integers d - 2 i  (i E {0 , . . . ,  Ld/2]}), then there 
exists an index k = d -  2j E I, such that ~ is symmetric and supported at exactly 
d + 1 points (see Studden (1968) and Heiligers (1992)). 

In the following we want to state a condition guaranteeing that the design 
~ is also minimax optimal for estimating the parameter system {~)~}iex. To this 
end we introduce the two (d + 1) • (d + 1) matrices F = I f ( so) , . . . ,  f(sd)] and 
L d = F - 1  = (~v,j)v,j=o . Let 

( { )  ( 0  . . .  j - 1  j + l  . . .  d )  
F : = F  0 -.. u - 1  r , + l  . . .  

denote the determinant of the matrix which is obtained from F by deleting the 
j - th  row and the u-th column, then the elements of L can be represented as 

(3.1) g~,,j = (-1)'+Y " F ( J ) / I F I  

(here IF I denotes the determinant of F).  Moreover the elements of L are the co- 
efficients of the Lagrange interpolation polynomials L~,(x) d = }-'~-j=O g~,,jxJ (defined 
by L~(su) = 5~,). 

THEOREM 3.1. Let ~ (k E I) denote an optimal design for estimating the 
individual coefficient Ok supported at d + 1 points a = so < sl < . . .  < Sd-1 < 
Sd = b. I f  the coefficients of the Lagrange interpolation polynomials L , (x )  = 

d ~-'~j=0 gv,J xj  at these points satisfy for all i E I 

(3.2) ,,--o le,,,kl -< le, ,kl, 
v=O 

then the design ~ is also minimax optimal for the parameter system {v~i}iei. 

PROOF. By an application of Elfving's theorem (Elfving (1952)) we obtain 
for the weights of ~ at the support points So < �9 �9 �9 < Sd 

. 14,k[ 
(3.3) p~ := ~k({s.}) = 

E.=o 14,k] 
u = O , . . . , d .  
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Let P = diag(p0,.. .  ,Pd), then the inverse of the information matrix of ~ can be 
written as M - I ( ~ )  = L r P - 1 L  and the diagonal elements are given by 

d d 

M - 1  �9 ( ( ~ k ) ) i ~ = e ~ L ' P - 1 L e i  = E le, k I " ~ -~le',kl" 
l . '=O ' ~ ' = 0  

From the assumption (3.2) we have ~1(~;) = ( M - l ( ~ ; ) ) k k  and the optimality of 
~ now implies its minimax optimality. 

Theorem 3.1 directs our interests to the coefficients I~.,jl of the Lagrange 
interpolation polynomials corresponding to the support points So < s~ < ..- < Sd 
of the optimal design ~ for estimating the individual coefficient Ck. In general 
these coefficients can only be calculated by numerical methods. Nevertheless, we 
can show some monotonicity properties of the ratios of these coefficients, which 
turn out to be extremely useful for the determination of minimax designs in the 
following sections. The proof of the following result is deferred to the Appendix, 
the proof of Lemma 3.2 is similar and therefore omitted. 

LEMMA 3.1. Let {s0, . . . ,Sd} = {--s0, . . . , - -Sd},  then the ratio I~,,d_2~_21/ 
is an increasing function i n ,  e {0,..., [d/2J} (for every fixed i {0,..., 

[d/2j - 1}). 

LEMMA 3.2. a) Let 0 < so < . . -  < Sd, then the ratio tg,#l/Ig,,i+ll is a 
decreasing funct ion in • E {0 , . . . ,  d} (for every fixed i E {0 , . . . ,  d - 1}). 

b) Let So < " .  < Sd ~ 0, then the ratio Igv#+ll/lg~#l is a decreasing funct ion 
i n ,  e {0 , . . . , d}  (for every fixed i e { 0 , . . . , d -  1}). 

4. Minimax designs on symmetric intervals 

Throughout this section we assume a symmetric interval [-b, b] for the con- 
trolled variable x where 0 < b < 1. For the index set I we require the assumption 

(4.1) d - 2 i - l  C I  ~ d - 2 i E I  

which will become essential in the proof of the following theorem. Note that  
(4.1) was also assumed by Heiligers (1992) and Pukelsheim and Studden (1993) 
who determined the E-optimal design for parameter subsystems. If I ~ {0} then 
there exists an index d - 2k E I and the results of Studden (1968) show, that  
the optimal design ~ -2k  for estimating the individual coefficient is supported at 
the transformed Chebyshev points s~ = b. cos(((d - ~,)/d)~) (y = 0 , . . . ,  d) with 
masses ~-2~(s~) = Itv,d_2kl/Ed=o I~v,d_2k[ where tv,d_2k denotes the coefficient 
of x d-2k in the y-th Lagrange interpolation polynomial with knots so, �9 �9 sa. In 
the following td_2j denotes the coefficient of X d-2j  in the Chebyshev polynomial 
of the first kind on the interval [-1, 1] defined in (2.1) (see e.g. Rivlin (1990)). 
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THEOREM 4.1. I f  the index set I # {0} satisfies (4.1) and there exists an 
index 0 # d - 2k E I such that 

(4.2) 

and 

(4.3) 

d - 2 i  < td-2k 2 b 4(k-i) 
d -  2k - td_2i 

for all d -  2i E I with i < k 

d(d + l) - 2i d -  2k + l < td-2k 2 

for all d -  2i �9 I with i >_ k 

holds, then the optimal design ~ - 2 k  for estimating the individual coefficient Od_2k 
of a polynomial regression on the interval [-b, b] (0 < b <_ 1) is also minimax 
optimal for the parameter subset {di}ir  Moreover, the only index d - 2k �9 I, 
where (4.2) and (4.3) could be satisfied, is the index where the maximum in the 
set {]td_2il/b d-2i I d - 2i �9 I}  is attained. 

PROOF. We will show that  the conditions (4.2) and (4.3) imply the assump- 
tion of Theorem 3.1. In a first step we note tha t  it is sufficient to prove 

d d / ,d-2il2 
(4.4) E le~,d_2k I <- E le~'d-2kl if d -  2i �9 I. 

v=O v~O 

To show that  (4.4) implies condition (3.2) of Theorem 3.1 we have to prove that  
(3.2) holds also for the remaining indices d -  2i - 1 E I which differ from d by an 
odd number. To this end we use assumption (4.1) and the fact tha t  ]i, ,d-2i-1] = 
ISvll~v,d_2it <_ blgv,d_2i I <_ lgv,d_2it which is an immediate  consequence of the 
definition of the Lagrange interpolation polynomials  (see e.g. Cantor  (1977)). Thus 
we obtain from (4.4) for all d - 2i - 1 �9 I tha t  

d d ]2 d 

v=O v-----O ~-'=0 

In a second step we will now prove tha t  (4.4) (and therefore (3.2)) follows from 
the assertions s tated in the theorem. To this end we note tha t  every polynomial  
of degree d Pd(X) d d = Ej=O ad - j  x d - j  c a n  be wri t ten  as Pd(x) = ~ = o  Lv(x)Pd(S~) 
which yields for the coefficients ad-2j-1 

d d 

b'=O v=O 

Inserting for Pd(X) the Chebyshev polynomial  of the second kind (of degree d - 1) 

d - 1  

j=0 ---- sin(arccos(x/b)) (x E [-b,b]) 
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(see Szeg5 (1976)) we obtain 

Ud- 2j - 1 
b d - 2 j -  1 - ~ Ua-l(S~,)s.e~,a-2j 

u = 0  

= 2bd.  ( -1)  d- s 

= bd.  {(--1)dgO,d_2j + gd,d-2j} 

where we have used in the last equality that 

u d _ ~ ( ~ )  = o ( .  = 1 , . . . , d -  1), 

ud-,(sa) = (--1)d-~Ud-,(So) = g, 

go,d-2j = (-1)dQ,~-25. 

An application of the well known relationship T~(x)  = d. Ud-1 (x)  yields ud_2j_  1 = 

( ( d -  2 j ) / d ) t d - 2 j  and for the coefficients of the Lagrange interpolation polynomial 
Lo(x) 

Assume now that  i 5 k then Lemma 3.1 and (4.5) yield that  

k [g0,d-2~+21 [e0,d-2~[ 
le~,d-~t _ k le~,d-2j+21_< 1-I -rt0,d-2k{ (4.6) le~,~-2kl I-[ le~,~-~jl le0,~-~jl 

j=i+l j = i + l  

d -  2i Itd_2il b2(~_k) 
_____ ~ �9 

d -  2k  Itd_2kl 

for all ~ e {0 , . . . ,  Ld/2J } and i < k. Applying this inequality, the assumption (4.2) 
and the "symmetry" Igu,a_2j] = ]Q-u,d-2j l  (see e.g. Cantor (1977)) we obtain (for 
i ___ k, d -  2i ~ I) 

d d 
Igv,d_2i[ 2 d - 2i td-2i  . b2(i_k) . E Ig~,d-2il 
Ig~,e-2kl <-d 2k" te-2k 

v = O  ~ ' = 0  

td-2k  I b2(k-i) d d 
<_ �9 le ,d_< = Z le ,d-2kl 

~,=0 ~ = 0  

d where we have used the identity Y~.~=o Is = Itd-2yl " b - (d -2 j )  (for j = i, k) 
which follows by similar arguments as given in Pukelsheim and Studden (1993) 
for the case b = 1. This shows that  (4.2) implies (4.4) if i <_ k and d - 2i E I. 
Using similar arguments it can be proved that  in the case i > k the inequality (4.4) 
follows from the assumption (4.3), which completes the proof of the first part of the 
theorem. For the remaining part observe that  the left hand sides of (4.2) and (4.3) 
are always greater or equal than 1 while this is only possible for all terms appearing 
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on the right hand sides if the maximum in the  set {ltd_2il/b d-2i I d - 2i E I}  is 
a t ta ined for the index d - 2k. [] 

COROLLARY 4.1. I f  I = { 0 , . . . ,  d} and there exists an index d - 2 k  E I such 
that 

(4.7) 

and 

(4.s) 

16(d - k)2k ~ < b 4 
( d - 2 k ) ( d - 2 k + 2 ) ( d - 2 k §  2 - 

16(k + 1 ) 2 ( d -  k -  1) 2 d ( d + l ) - 2 k  
> b 4 

(d - 2k - 1)(d - 2k + 1)(d - 2k) 2 " d(d + 1) - 2k - 2 - 

then the optimal design ~ -2k  for estimating the individual coefficient ?~d--2k of a 
polynomial regression on the interval [-b, b] is also minimax optimal for the full 

{~)~}i=0. Moreover, the only index d - 2k, where (4.7) and (4.8) parameter set d 
could be satisfied, is the index where the maximum in the set {Itd_2il/b d-2~ I i E 
{ 0 , . . . ,  [d/2] } is attained. 

PROOF. Using a similar argument  as given in (4.6) it can be seen tha t  (4.2) 
and (4.3) in Theorem 4.1 follow from 

(4.9) d - 2 i + 2 < b 4 I  td-2i 2 d - 2 i  ~ = b4" [ ( d - 2 i + 1 ) ( d - 2 i + 2 ) ]  2 

if i < k, and 

d(d+ 1) - 2 i -  2 
(4.10) d-~ -~- "1~ --- ~ 

d -  2i + 1 < b_ 4 I td-2i 2 

= b _  4 [ 4(i --~ 1 ) ( d -  i - 1) ]2  
J 

if i > k. Here we used the well known representation 

(4.11) Itd_2il  = d .  2 d- l -2i  ( d -  i -  1)! 
i!(d - 2i)! 

for the coefficients of the Chebyshev polynomial of the first kind (see e.g. Rivlin 
(1990)). Observing tha t  the left hand sides of (4.7) and (4.8) are increasing func- 
tions in k we obtain tha t  (4.9) and (4.10) are implied by (4.7) and (4.8) and the 
assertion of the Corollary follows by an application of Theorem 4.1. [] 

Remark 4.1. Note tha t  a similar argument  as given in the proof of Theorem 
4.1 shows tha t  the conditions (4.2) and (4.3) will never be fulfilled if the maximum 
of the absolute values of the coefficients ttd_2jl/b d-2j is obtained for two indices 
d - 2kl, d - 2k2 E I.  It is also worthwhile to mention tha t  the index d - 2k where 
the maximum is a t ta ined will depend heavily on the size of the interval I-b, b]. 
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Finally, if the index set I consists only of indices that (lifter from d by an even 
number, then a detailed investigation of the proof of Theorem 4.1 shows that the 
assertion of this theorem holds for all b > 0. 

Example 4.1. Let [a,b] = [-1,1],  I = { 0 , . . . , d }  and 1 < d < 15. Straight- 
forward calculations show that the conditions of Corollary 4.1 are satisfied except 
in the cases d = 4, 5, 11 (note that  for d = 4 and 11 the maximum of the absolute 
values of the coefficients of Td(x) occurs at two positions (see e.g. Davis (1963)). 
Corollary 4.1 yields that for d -- 1,2,3 the design ~ ,  for d = 6 ,7 ,8 ,9 ,10  the 
design ~ - 2  and for d = 12, 13, 14, 15 the design ~ - a  is minimax optimal for the 
full parameter set d {0i}i=0. By the results of Studden (1968) all these designs are 
supported at the Chebyshev points s ,  = cos(((d - ,)/d)Tr) (~ = 0 , . . . ,  d) and the 
masses are given by (3.3). Finally in the case d = 5 we obtain by direct calcula- 
tions that  ~ is minimax optimal which shows that the conditions in Theorem 4.1 
and Corollary 4.1 are only sufficient but  not necessary. 

To give an example for the application of Theorem 4.1 consider the case d = 6 
and the interval [-1, 1]. Here T6(x) = 32x 6 - 48x 4 + 18x 2 - 1 and we obtain 
that  for the index sets {0, 4}, {2, 4} {4, 6}, {0, 2, 4}, {0, 4, 6}, {2, 4, 6}, {0, 2, 4, 6} 
the minimax optimal design for the parameter subsystem {di}ic/ is given by (~ 
while for the index sets {0, 6} and {2, 6}, {0, 2, 6} the optimal design for the highest 
coefficient ~ is minimax optimal. Finally, for the parameter {00, r the minimax 
optimal designs is given by ~ .  All minimax optimal designs for these subsets are 
supported at the Chebyshev points - 1 ,  - 3V/~,  -0.5,  0, 0.5, 3~/r~ and 1 while 
the masses will depend on the particular index set I and are given by (3.3). The 
results still hold if the index sets I contain also indices d - 2i - 1 according to 
condition (4. i). 

5. Minimax designs on nonnegative or nonpositive intervals 

Throughout this section we will assume that 0 <_ a < b. The case a < b < 0 
can be treated in exactly the same way and is omitted for the sake of brevity. The 
arguments are essentially the same as in Section 4 (involving more complicated 
algebra) and we will only sketch the main steps. In what follows let 

d 

( x )  = T (2x - 1) = t* _jx x [0, 1] 
j=0  

denote the Chebyshev polynomial of the first kind on the interval [0, 1] (orthogonal 
with respect to the measure dx/x/- ~ - x) with T~(1) = 1) and let 

s•= ( b - a )  c o s ( ( ( d - 2 , ) / d ) ~ r ) + ( b + a )  (u=O,. .  ,. m) 

be the transformed Chebyshev points on the interval [a, b]. It is well known (see 
e.g. Abramowitz and Stegun (1964), p. 775, 22.3.3) that 

v~dF(2d  - J) (j = 0 , . . . ,  d) 
(5.1) t~_j = (-1)5 r ( j  + 1)r (d  - j + 1)r (d  - j + 1/2) 
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(e.g. T~(x)  8x 2 8x + 1) If Lv(x)  d - -  - -  ' = E j = 0  ~'*,j x j  denotes the Lagrange inter- 
* * = b, then we polat ion polynomial  corresponding to a = s~ < s~ < . . .  < Sd_ 1 < s d 

d j 
obtain in the same way as in Section 4 for every polynomial  Pal(x) = }-~-j=o a jx  
of degree d that  

d 

(5.2) at = E Pd(S*)F,j (j  = 0 , . . . ,  d). 

Consider the interval [0, 1] and insert in (5.2) the  two polynomials (1 - x ) U ~ _  1 (x) 
and xU~_ 1 (x), where 

U* d_l(X) = U d - l ( 2 X  - -  i) 
d - - 1  d - 1  

= Z = Z ( - i V  
j=O j=O 

r(3/2)r(d + 1 + j) xj 
r ( j  + 3/2)r(j + 1)r(d - j) 

is the Chebyshev polynomial of the second kind transformed to the interval [0, I]. 
Thus a straighforward calculation yields that the Lagrange interpolation polyno- 

mials L~~ and L[d~ with knots s* = (cos(((d - v)/d)Tr) + 1)/2 on the 
U *  interval [0, 1] have coefficients ( -1 = u~ = 0) 

~I0,11 ( -1p  (u~ - u;_l) = ( -1p r(3/2)r(d + j) { 
o,j = d d r(j+3/2--)-~--jj1)F(j+l) d2 

g[d0,~] _ (--1) d - j  . (--1) d - j  r ( 3 / 2 ) r ( d  + ~) 
uJ-1 = d r ( j  + 1/2)r(j)r(d- j + 1) 

The coefficients of the Lagrange interpolation polynomials Lo(x) and Ld(x) with 
knots s~ < - . .  < s~ for an arbi t rary interval [a, b] can now easily be obta ined by a 
linear t ransformation 

(5.3) 
%,i- d (~-a)J  r ( j  + 3/2---)-)-)-)-)-)-)-)-)~-~ j l ) r ( j  + l ) d2 + ' 

d y=i (6--ap r ( j ) r ( j  + 1 /2) r (d-  + 1) ~ / , i  - -  - -  

d t~a,b] and for the coefficients of the Chebyshev polynomial  T d ( X - a ) / ( b - a )  = ~-~-j=o " 
xJ we have 

d (;) (5.4) ~k = Z (b-~)~ It;l (k e 5 .  
j=k 

We are now in a position to state a result analogous to Theorem 4.1. The proof 
uses the same arguments as the proof of the corresponding result in Section 4 
(where Lemma 3.1 has to be replaced by Lemma 3.2) and is therefore omitted. 
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THEOREM 5.1. If  I r {0} and there exists an index k E I such that 

le;,kl 
and 

(5.6) 

] § 

§ 
_< 

for alI i < k with i E I 

for all i > k with i ~ I 

hold, where the quantities g;,i, t*d,i and t~ 'b] are defined in (5.3) and (5.4), then 
the optimal design ~ for estimating the individual coefficient t9 k is also minimax 
optimal for the parameter system {~i}iez. 

Remark 5.1. As in Section 4, the only appropriate candidate k in Theorem 
5.1 is the index k E I where the absolute value of the coefficients of the Chebyshev 
polynomial Td(X -- a ) / ( b -  a) = ~j=od t~,b]xj is maximal. The conditions (5.5) and 
(5.6) are easy to verify on a computer using the representation for the l~,j and 

t~ ~'b] given in (5.3) and (5.4), respectively. 

Example 5.1. Consider the interval [a,b] = [1,2], I -- {0 , . . . , d}  and poly- 
nomial regression models of degree 1 _< d < 20. Then it can easily be shown 
that the conditions (5.5) and (5.6) are satisfied except for d = 1 and d = 4. In 
these cases a direct calculation shows that the minimax optimal designs are given 
by {~ and ~ ,  respectively. All other cases are covered by Theorem 5.1, and we 

d . obtain the following minimax optimal designs for the full parameter set {Oi}i=o, 
for d = 2,3 the design {G-l, for d = 4,5,6 the design {G-2, for d = 7,8 the de- 
sign {~-3, for d = 9, 10, 11 the design ~G-4, for d = 12, 13 the design {G-5, for 
d = 14, 15, 16 the design {G-a, for d = 17, 18 the design {d-7 and for d = 19, 20 
the design {G-s. All these designs are supported at the Chebyshev points on [1, 2], 
s* = (cos( ( (d-u) /d)Tr)+3) /2  (~ = 0 , . . . ,  d) and the masses of {~_j at the support 
points s ,  are proportional to le;,d_jl (see Studden (1968)). 

The situation in Theorem 5.1 becomes more transparent in the case a ---- 0, 
d . where • j=e  ({)(aJ-e/(  b - a)J)l t ;I  (e = i, k) reduces to the term It e I" b-* and the 

conditions (5.5) and (5.6) have the same form as the corresponding conditions in 
Theorem 4.1. For the full parameter set I = {0 , . . . ,  d} we obtain in this case an 
analogue of Corollary 4.1 which is stated here for the sake of completeness. 

COROLLARY 5.1. I f  I = {0 , . . . ,  d} and there exists an index k such that 

(5.7) 

and 

(5.8) 

( d -  k)2(d+ k) 2 < b 2 
k(k + 1)(k + 1/2)  - 

( d +  k -  1 ) 2 ( d -  k + 1) 2 2d 2 + k > b 2 
k2(k 2 - 1 / 4 )  2d 2 + k - 1  - 
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holds, then the optimal design ~ for estimating the individual coefficient of a 
polynomial regression on the interval [0, b] is also minimax optimal for the full 
parameter set { ~}~=0- Moreover, the only index k where (5.7) and (5.8) could 
be satisfied, is the index where the maximum in the set {]t~l/tr IN = 0 , . . .  ,d} is 
attained. 
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Appendix 

80 8~--1 8u+l 

s d _ l  d 
�9 . . S u +  1 �9 . . 

d 

j=O,js~v 

PROOF OF LEMMA 3.1. Observing that  the coefficients of the Lagrange in- 
terpolation polynomials have the sign pat tern sign(gv,d-2i) = (--1) d-v+i (see e.g. 
Pukelsheim and Studden (1993)) we obtain that  the assertion of the lemma is 
equivalent to 

(A.1) ( s g~+l,d-2~ ) > 0 
~u,d- -2 i -2  ~,+1,d--2i- -2  --  

where u E {0 , . . . ,  [d/2J - 1} (here 1AI denotes the determinant of the matrix A). 

Recalling the definition of F ( j )  in (3.1) we see that  (A.1) is equivalent to 

\ . + 1 2  
F ( d -  2 i -  2~ - (A.2) ( -1 )  | F / d _ 2 i _ 2 ,  ~ > 0 .  

u \ u + l  ] 
In the following we will make use of the fact that  

(A.3) F (  d-L, 2i) = c2~(s~ � 9  S ~ - l ,  s v + l , . . .  , s d ) F ( : )  

where cj(so,. . .  ,s~-1, s .+1 , . . .  ,Sd) is the j - th  elementary symmetric function of 
So,.. . ,  s,-1, s~+1,..., Sd, that  is the coefficient of xd-J(--1) d-j in the polynomial 

d 
1-Ij=0,y#.(x - sj). To prove (A.3) observe the identity 

�9 .. 1 1 . . .  i i\ 

) Sd X 

S d X d 

d 

j = 0  
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(both polynomials have the same zeros S o , . . .  , s ~ - 1 , s , + 1 , . . . ,  sa and the same 
leading coefficient) and equate the coefficients of X s - 2 i .  For any symmetric set 
a l  < " .  < ad  we obtain for the corresponding symmetric functions 

C2i+1 ( ( l l ,  . . .  , O~d) ----- O, C 2 i ( 0 / 1 , - . . ,  as) = (-1)%i(a~,  �9  o~ 2) 

if d is even and 

ci(al,..., ad) = c i ( a l , . . . ,  a(d-1)/2, O, a(a+a) /=, .  �9  a s )  

~--- c i ( ~ l , . . .  ,O~(d_l)/2,O~(d+3)/2,...,O~s) 

ifd is odd (here we used that 0!(d+1)/2 = 0) .  This shows that (note that  s~ = --Sd-~, 
and that ~ e {0 , . . . ,  Ld/2] }) 

c2~ ( s o , . . . ,  s~,-1, s ~ + l , .  �9 �9 s s )  

: C 2 i ( 8 0 ,  . �9 . ~ 8 u - - l ,  8 u + l ,  �9 �9 �9 , 8 d - - u - - l ,  8 d - u + 1 ,  �9 �9 �9 , 8 d )  

~ -  8 d - ~ C 2 i - 1 ( 8 0 ~  �9 �9 �9 ~ 8 u - 1 ,  B y + l ,  �9 �9 �9 , 8 d - v - l ,  8 d - ~ 4 - 1 ,  �9 �9 �9 , 8 d )  

- ( - i ) % ( 4 , .  8 = ~ 8 = 
- -  " ~ v--l, 8u+l~ ~ d)" 

Observing the last identity, (A.3), (A.2) and (A.1) the assertion of the theorem 
can now be written as 

�9 . 8 ~  8 u + 2 ,  �9 �9 , d )  ' 8u--l' 8~+I~ . . . . .  ' > 0.  ( a . 4 )  / c ~ ( = l , .  ~ ~ s~ 
t c ~ §  = = =* ~ 8 = �9 , 8 . _ 1 , = . + ~ ,  . ,  s)  c~+~(81,  8 = - �9 . , o ~ ,  t , + 2 : '  "~ d )  

Finally, we remark that 

c d s 2 , . .  2 2 S~d) = c~(s~,.  2 2 SSd) �9 ~8v_1,8~+I~..- ~ .. ,Sv_l,Su+2,... 

2 2 82 82 82 + 8~,+1c~-1(So, . . . ,  , - 1 ,  ~ ,+2, . . . ,  s) 

and straightforward algebra shows that (A.4) and (therefore the assertion of the 
lemma) is equivalent to 

(s~ 2 
- -  8 ~ + 1 )  

�9 " ' ' ~ S u - - l ~ S v + 2 ~ ' ' "  

It c ~ + 1 ( 4 ,  = = . . , 8 8 s )  �9 . . , 8~,--1~ 8~+2~ �9 

c ~ _ 1 ( s 2 , . .  2 2 s2 ~1 �9 ~ S v - l ~  8 u + 2 '  " " " ' d )  > 

~ ( = I , . .  -~ s ~ =~ )1 - ~ ~  v + 2 , ' ' ' ~  d)  
. 

We have s~ - s~+ 1 2  _> 0 (because ~ E {0,. . . ,  [d /2 J  - 1} and the nonnegativity of 
the second factor is a well known result in the theory of symmetric functions (see 
e.g. Beckenbach and Bellman (1965), p. 11). This completes the proof of Lemma 
3.1. 
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