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A b s t r a c t .  Any correlation matrix R can be mapped to a graph with edges 
corresponding to the non-vanishing correlations. In particular R is said to be 
of a "tree type" if the corresponding graph is a spanning tree. The tridiago- 
nal correlation matrices belong to this class. If the accompanying correlation 
matrix R or its inverse is of a tree type, then some representations of the mul- 
tivariate gamma distribution are obtained with a much simpler structure than 
the integral or series representations for the general case. 

Key words and phrases: Multivariate gamma distribution, multivariate chi- 
square distribution, multivariate Rayleigh distribution. 

1. Introduction 

The  following notat ions are used for matrices: If A = (aij) is a p x p-matr ix  

then  ~i is defined as A - D i a g ( a l l , . . . ,  app), IIAII is the spectral  norm of A, IAI 
the  de te rminant  of A, (a ij) = A -1 and A > 0 means positive definiteness. A 
unit  mat r ix  is always denoted  by I or Ipxp.  Formulas from the  handbook  of 
mathemat ica l  functions by Abramowitz  and Stegun (1968) are cited by "A.S." 
and their  number.  

There  are several papers  on representat ions of the mult ivariate  gamma distri- 
bu t ion  in the  sense of Kr i shnamoor thy  and Pa r th a sa r a th y  (1951) and the closely 
related mult ivariate  Rayleigh and chi-square distr ibution.  Most of the earlier work 
is found in the book of Miller (1964). Fur ther  papers  are Miller and Sackrowitz 
(1967), Jensen (1970), Kha t r i  et al. (1977) and Royen (1991a, 199tb, 1992). 

An e lementary  formula for the mult ivariate  Rayleigh density with a t r idiagonal  
R -1  = (r i j )  was given by Blumenson and Miller (1963). Wi th  the univariate 
gam m a  density g~(x )  = x ~ - l e - X / F ( a )  (a,  x > 0) and the modified Bessel function 

(1.1) 

I~-i (x) = (x/2)~-loF1 (~; x2/4)lr(~),  
o ~  X n 

0Fl(~; x) = r(~) y:~ r(~ + n)n! 
n ~ 0  
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we obtain from their formula (2.1) the p-variate gamma density 

/__O~ P P 
(1.2) f(Xl, . . . ,Xp;O~,R)= t R ] I I r  ii Hriiga(riixi) .IIoFl(o~;riJ2xixj) ,  

i=1 i=1 i<j 

where 2~ is not restricted to integer values (cf. Section 3). 
No elementary formula is known for the corresponding density with a tridiag- 

onal R. In Jensen (1970), Section 4, some series expansions are found for gener- 
alized multivariate Rayleigh distributions with several different tridiagonal corre- 
lation matrices, but unfortunately they are based on a formula for determinants 
of tridiagonal m • m-matrices which does not hold for m > 3 and leads to incor- 
rect formulas for densities also in case of identical correlation matrices (cf. (4.12), 
(4.13) in Jensen's paper). The correct distribution function (d.f.) is contained in 
(3.9) as a special case. 

For some multivariate simultaneous tests (or more general multiple test proce- 
dures) tail probabilities of max{Xi I 1 < i < p} are required, where ( Z l , . . . ,  Xp) 
has a p-variate x2-distribution (or F-distribution, obtained by studentizing). E.g. 
the tridiagonal correlation structure is encountered in simultaneous comparisons 
of successive difference vectors 0i+1 - 0~. Apart from multiple comparisons with a 
control, exact upper a-percentage points are difficult to compute. However very 
accurate (conservative) approximations are obtained by Bonferroni inequalities of 
third order containing three-variate X2-probabilities. Error bounds for the cor- 
responding tail probabilities are given by sums of four-variate X2-probabilities. 
In particular, tables for the multivariate maximum range test procedure (Royen 
(1989, 1990)), originally obtained by a very large simulation, are computed rather 
accurately and more rapidly by use of analytical representations of multivariate 
x2-distributions. Among other types the tridiagonal correlation structure appears 
here too. 

Besides the correlation matrices R with a tridiagonal R -  1 and the one-factorial 
ones (i.e. R = D + aa ~, diagonal D > 0, real or imaginary column a) in Royen 
(1991a), it should be useful to know further types of R allowing much simpler 
integral or series representations of the multivariate gamma d.f. than the general 
case. In Section 3 such representations are derived for the class of the R with R -1 
or R of a "tree type". Any covariance matrix Cp• -- (c~j) is said to be of a tree 
type if the graph G(C) with the vertices 1 , . . . ,  p is a spanning tree containing the 
edge [i, j] iff cij ~ O. By definition a spanning tree is connected and has no cycles. 
Thus, it contains exactly p - 1 edges and it holds for all "cyclic products" Of C 
that 

(1.3) cili2ci~is �9 �9 �9 cikil = 0 ( { i l , . . . , i k }c_{1 , . . . , p } ,  3 < k < p ) .  

In particular R belongs to this class if R -1 or R is tridiagonal. 
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2. Some prel iminary relations 

Let Rpxp = (rij) be any nonsingular correlation matrix and Q its standardized 
inverse with the elements q~y = r ~ J / ~ .  With T = Diag ( t l , . . . ,  tp) the Laplace 
transform (L.t.) f ( t l , . .  ., tp; c~, R) of the gamma density f ( x l , .  . . ,  Xp; a, R) is 

(2.1) 

(2.2) 

II + R T I - ~  

z~ IZ§ -~, 

- ( z i =  ( l + t i )  -1, u i = l - - z i = t i z i ~  

OL OL " -- 0~ (,o, II , ) I ,  § , 
\ i=l I 

\ Z  = Diag(z l , . . . ,  zp) }" 

(2.8) 
d n  

G ( n )  [X ~ G a §  ) --__ ( n - - l )  ~ 
~ §  ] ---- d - ~  ga+l+n-l('X) ---- 

with the generalized Laguerre polynomials L (~) and 

(2.9) 
IG(n+)n(X)[ _< 2aga+l(X/2) (n >_ 1) (A.S.22.14.13), 
G ( n )  (X'~ ~+n~ j =  0 (n -~/2-1/a) (A.S.13.5.14). 

L (~) (x~ n - - l k  ] ,) 

For any symmetrical C and Y = Diag(y l , . . . ,  yp) the Taylor series of II+CY[ -~ = 
[~-~.n~176 (-n~)(CY)"I is absolutely convergent for all values [Yit -< 1 if IlCll < 1 (cf. 
2.1.17, 2.1.18 in Royen (1991b)). 

We shall need the following function for a, x > 0, y E N: j:x 
(2.3) G,~(x,y) = e -y oFl(a;~y)g~(~)d~ 

o~ 

(2.4) = e-Y E G~+~(x)yn/n! 
n = 0  

(2.5) = ~ a( .~n(x)(-y?/n! 
n----0 

oo 

(2.6) = e-Y E 0Fl(Ot + 1 + n;xy)g~+a+~(x) 
n = 0  

e -x-~ ~ (V~-~)~§247  ~ > 0 
(2.7) = ~g ~ 

e-x-Y E ( ~ ) a + n J a + n ( 2 ~ / ' ~ ' - ~ ) ,  y < 0 .  
n = 0  

The last series are suitable for ]Yl > x (cf. Section 3 in Royen (1991a)). Here 
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The derivative g~(x, y) = aG~(x ,  y) has the L.t. 

(2.10) ~a( t , y )=zae -Yu=e-Yzae  yz ( z = ( l + t )  -1,  u = l - z = t z ) .  

Also 

(2.11) g (x, y) = 
f e - -x- -Y(X~/~)a- l i rc~- l (2V~)  y > 0 

and for y < 0 we have the bounds  (A.S.9.1.60/62) 

(2.12) IJa_z(2x/-L-~)l < 1 (a  _> 1), ]0Fl(a;y)[  _< 1 (a k 1/2) 

and consequently 

(2.13) leYG (x,y)l < 

Since II + RTI-~ is not the  L.t. of a d.f. for all combinations of R > 0, a > 0, 
some remarks on this point are needed. According to Griffiths (1984) the L.t. 
Ifpxp +I:tTI -~ (p > 3) is infinitely divisible (i.d.) iff the elements r ~d of R -~ satisfy 
the condition 

(2.14) (--1) k �9 r i l i 2  . r i2i3 �9 �9 �9 r z k i l  ~ 0 

for all subsets {i1, . . .  , i k }  ~ { l , . . .  ,p} (3 < ~ < p). Thus II+RT1-1 is i.d. for any 
non-singular correlation matr ix  Rpzp (p >_ 3) with R -1 of a tree type  because of 
(1.3). However, as a consequence of the following lemma, II + RT1-1 is not i.d. if 
R itself has a tree type.  In this case a d.f. arises at least for integer values of 2a  or 
a > (p - 1)/2. It should be noticed, tha t  the  multivariate gamma distr ibut ion is 
a marginal distr ibution of a Wp(R, 2a)-Wishar t  distr ibution with a non-singular 
density for any not necessarily integer values 2a  > p -  1 (cf. formula 2.2.6 in 
Siotani et al. (1985)). 

LEMMA 2.1. Let Rpxp be a non-singular correlation matrix containing at 
least one irreducible k z k-principal matrix with k ~ 3 and Tpzp a diagonal matrix 
of variables. Then ]I + RT1-1 and II + R-1T1-1 are not both infinitely divisible. 

PROOF. Wi thou t  loss of generality let R be irreducible and II+R-1T1-1 i.d. 
According to Theorem 1 of Bapa t  (1989) there exist numbers  si = +1 (i = 1 , . . .  ,p) 
with 

(2.15) sirijsj <__ 0 for all i r j .  

If in addition II+RT1-1 would be  i.d. then there would also exist numbers  s T = •  
with 

(2.16) sp js; > 0 for all i # j 
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according to Corollary 1 of the cited theorem. 
If there is a cyclic product  ri~i: �9 .. ri~i~ ~ 0 with an odd value of k then (2.16) 

contradicts (2.15) and II + RTI -~ cannot be i.d. If there is no such product,  then  
R, after suitable renumbering, must  contain a 3 • 3-principal matr ix  R3 with the 
correlations r~2 ~ 0, r23 ~ 0 and r13 = 0. The product  r~2r~3 of the three off- 
diagonal cofactors of R3 is positive. It follows from (2.14) tha t  the marginal  L.t. 
I/3 + R3T31 -~ is not i.d. Thus I I + R T I  -~ is not  i.d. again. [] 

3. The multivariate gamma distribution with R or R -z of a tree type 

Let Rp• = (rij) or its s tandardized inverse Q = (qij) be a correlation matr ix  
C = (cij) of a tree type. In any spanning tree ~(C)  the degree di of i is the number 
of edges [i, j] of 6. We define 

(3.1) K =  {k l dk = l}, I = { i l d i > l } = { 1 , . . . , p } \ K  

and for any i E I the possibly empty set 

(3.2) 

Furthermore we set 

(3.3) I 1 - - { i E I ) K i ~ 0 } ,  / 2 = I \ I 1 ,  I = { ( i , j )  li ,  j E I ,  i < j ,  c i j r  

The notat ion }-~'-(n) means a summation over all part i t ions n = ~-~(i,j)eznij or 
p n = ~l_<~<j<p,cu#0 nij with non-negative integers n~j and Ni := ~-~j=l,c~j~o nij, 

ni := ~ jcLcu#o  nij (nj~ := nij, ni~ := 0). Let  I be of size m. Then the  following 
theorem holds: 

THEOREM 3.1. (a) I f  Q is of a tree type then the p-variate gamma d.f. with 
parameter ~ and the accompanying correlation matrix R is given by 

(3.4) 

(3.5) 

F(xl , . . . ,  xp; a, R) 

iQl~ / x  kHKexp(q~i~i)G ~ kk 2 --: (r Xk; qki~i) 

(i,j)E27 iEI  i a I  

• H G.+~(r"x4 
iEl2 

H exp(q~4C-( rk%~; : 
kEK~ 
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(a6) 
c~ 2n~j ]QI" qiy 

n=0 (n) l<i<j<_p 
qij r  

p 

(b) I f  R is of a tree type and 23 is a positive integer or c~ > (p - 1)/2 (cf. 
remarks following (2.14)) then 

(3.7) F ( x l , . . . ,  xp; c~, R) 

- -rk~yd" 1] 0Ft(~;~jy~y~) 
k~K (i,j)ez 

x I ~ ( ~ ) ~ J " ( 2 ~ ) g ~ ( y i ) d Y i  
iE I  

oo 2ni j  
1 r i j  

n=0 (n) ( i , j ) e z  " i e I  

~(n~) (~ • ~ a + n i  \;~i) 
iEI2 

/2 
iEI~ k E K i  

2n~5 p 
1 rij 

(3.9) r(~) Z I ]  r(~ + ~j)~,~! I I r ( ~  + ~ , a  (~') = , ~+~(xd. 
n--=0 (n) i < j  i-~l 

Remark  1. The proof of the density formula (2.1) in Blumenson and Miller 
(1963) can be extended to all correlation matrices R with R -1 of any tree type. 
However, to obtain directly a proof also holding for not integer values of 2c~, a 
power series expansion of the L.t. (2.2) with simple coefficients is derived and 
inverted. Then the similarity of (2.1), (2.2) is used if R itself has a tree type. 

Remark 2. Integral representations were included because of their remark- 
able reduction of the dimension. The dimension of the integrals is here the num- 
ber m of the "inner" vertices i E I. If e.g. G(R6x6) is a spanning tree with the 
degrees (1, 1, 3, 3, 1, 1) then (3.7) provides a bivariate integral. For integral repre- 
sentations of the multivariate x2-d.f, with the lowest possible dimension see also 
Royen (1993). Besides the expansion (3.8), derived from (3.7), might converge 
more rapidly than (3.9) as suggested by some numerical examples with p = 4 and 
identical correlations ri,i+l. 

PROOF OF THEOREM 3.1. Let 6(Q) be a spanning tree. At first IIQII < 1 is 
shown. After a suitable index permutation dp = 1 and qp-l,p ~ 0 can be assumed. 
The polynomial hp(x) = IxI + Q] = xhp-1 - qp-l,p2 hp_2 is inductively recognized 
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as an even or odd  function depending on the pari ty of p. From Q = I + (~ > 0 it 
follows tha t  hp(x)  > 0 for all x _> 1 and consequently IIQII < 1. 

Now the expansion 

f i  2nir p 
1 H + N )z5 (3.10) II + Q Z [ - "  - F(c~) ~ H !F(c~ + ni j )  

n=0 (n) i<j niJ i=1 
qi j 7s 

is derived inductively. The  series is convergent for all values 0 < zi < 1 because 
of 1t(~]1 < 1. It  is sufficient to verify (3.10) with Z = I.  Replacing the qij by 
v / z i q i y v ~ j  the general expansion follows. 

2 for qip 7 5 0 (i = 1, . p -  1) In part icular  we have lip + Q[ = 1 - ~iP2_~ qip " , 
p--1 and (3.10) is easily established with Ni = n~p (i = 1 , . . .  ,p  - 1), Np = ~ = 1  n~p. 

Besides, after a suitable index permutat ion,  (3.10) is seen to hold for all Q3x3 with 
exactly o n e  qij -= O. 

Now let be p > 4. There exists a vertex k E I1 and after a suitable index 
permuta t ion  we can assume 2 _< k < p - 2, Kk  = { 1 , . . . , k  - 1}, i.e. qik # 0, 
qij = 0 (i < k, j 75 k, j r i) and qk,k+l r O, qkj = 0 (j  > k +  1). Wi th  

k--1 d I(qij)i,j<kl = 1 ~ i = 1  2 = _ - qik, d m =  [(qij)i,j>_k+ml (m ---- 0, 1, 2) we find 

d 2 = 2a qk,k+l). (3.11) do = dl - 2qk,k+l, IQ[ = dd~ d(dl  - d , - 1  2 , 

Applying (3.10) to do we get with q2 replaced by q~,k+l/d,  Nik  = k ,k+l  
P ~j=k,jTs163 n i j ,  Nkk  = nk,k+l and the expansion of d -~-~k,k+~ the series 

I Q I - ~  - r ( ~ )  ~ I I  n~j!r(o~ + n~j) 
n~j >0 i<j i~-k 

k<_i<j<_p,q~j7s 

1 2nij 

- Z H + n~>_o i<j ni j!  Hk<i<j<_p F(ct + n i j ) '  
1 <i<j <p,qij 7 s qij ~0 

which yields (3.10) since Ni = nik for i < k. 
Prom (2.2) and (3.10) we obtain by inversion for all positive c~ the density 

P 
(3.12) f ( x x , . . . , X p ; C t ,  R )  = 1Q] ~ H r i ~ g ~ ( r i i x i )  �9 H oFl( t~;r~J2xixj)  

i=1 l~i<j<_p 

n=0 (n) i<j 

P 
~r ,r i i  ( r i ix i ) .  • H r(ce zr- Ivi) ga+N~ 

The series (3.6) follows by integration, (3.4) is verified by differentiation and (3.5) 
follows from the series expansion of the factors 0F~ in the integrand of (3.4). 
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Now let g(R) be a spanning tree. Using (3.10) the L.t. (2.1) is seen to have 
for all ti > 0 the absolutely convergent series expansion 

o~ 2nij p 
(3.13) 1 rij 

n~-O (n) i<j i=l 
r~j #0 

From this and (2.9), (3.9) follows by termwise inversion and integration. 
To prove (3.7), (3.8) a second form of the L.t. of (3.12) is derived, which 

implies a corresponding form of (3.13). From (3.5) we obtain with (2.10) and 

Si := E k e K r  2 qikzk the L.t. 

(3.14) 
IQlC~ ~ qi~niJ 

n=O (n) (i,j)657 

iEI \kEK~ / 

fO ~ . . . .  
• exp(r - t~xd<b~+~ (<~ddx~. 

With 1 +t i / r  ii : z~ 1 and the substitution Yi = (zi -1 - S i ) r i i x i  the last two factors 
of (3.14) become 

(3.15) (/j ) I ~  Z~ H .c~--l+ni exp(_yi)dy i Zi " ' a  " '  ( 1  - zi&) -~-~.  
i=1 iEI 

Since Q > 0 this also holds for the principal minor array of Q with the indices 
k E Ki. Therefore 1 - ~keK~ q{2k and 1 - ziSi are positive. 

With (3.14), (3.15) we find for all values 0 < zi <_ 1 the L.t. 

(3.16) 
P 

I Q l a [ I z ~ . [ I ( 1  - ziSi) -a 
i=l iEI 

J; X H oF1 o~;qij 
"~ (i,j)~z 

yizi y j z j  
1 - ziS~ 1 - zjSj ] "  H g~(yi)dyi. 

i6I  

If g(R)  is a spanning tree, then with z{ = (1 + t{ )  -~, u{ = t{z{ and S{ : :  
}-~keK{ r~kuk the corresponding L.t. is 

(3.17) 
P 

i=1 iEI 

X H 0-~1 Cg; ?~ij 
(<j)ez 

U~ y~ Uj y j  

1 --V~& 1 - ~ s j  ] H 9~(y~)dyi. 
iEI 
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The value of this expression is [R[ -~ if all the ui and zi are replaced by 1 because 
of (3.16) with zi -- 1. 

Now it is shown that the L.t. of (3.7) coincides with (3.17). Because of (2.11), 
(2.12) the function 

(3.18) f . . .  , ! f(x~, x,) = H g~(z~;- ~Y~) 
JR r~ k c K  

• 1-I(x~-l/r(~))oF~(~;-xiy~) 
i c 1  

is well defined. If the integrand is replaced by its absolute value then the L.t. of 
this function is bounded by 

IRI-~ H (1 +tk)-". Ht;~' 
k c K  iCI  

Now, changing the order of integration, the L.t. of (3.18) with t~ > 0 (i E I) is 

H 1-I z~ exp(r2kukyi) �9 H exp(--Yi / t i ) t i -~ 
i E I  k E K i  i E I  

• 1] ~ IIg~ 
(i,j)ez i~I 

With t izi  = u~ and u~ -1 = 1 + t~ -1 this becomes 

p 

H z~ f~ H 0Fl(a;  ri~yiyj) .  H exp( - (1  - u~&)y~/u~)u~y~-l/r(a)dy~, 
(~,j)cz i~z 

which is seen to coincide with (3.17) after the substitution (1 - u iS i ) y i / u i  --~ Yi. 
Thus (3.7) is obtained from (3.18) by integration and (3.8) by the power series 
expansion of the factors 0Fl(a;  r~jyiYj). [] 

The simplest case in (3.7) arises if rij -- 0 for i , j  < p (i 7~ j) .  Then 

(3.19) F ( x l , . . . ,  xp; c~, R) 
oop- -1  

=/0 II a~ 
k = l  

The correlation matrix R belongs to this class iff the elements qij of the standard- 
ized inverse satisfy the relations qij = qipqjp ( i , j  < p, i r j ) ,  i.e. Q is the limit 

2 case of "one-factorial" correlation matrices (qij) with qij -= aiaj (i 7 ~ j ) ,  a i < 1 
2 --~ 1. (i = 1 , . . . ,p ) ,  % 
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The  g a m m a  d.f. wi th  a 4 x 4-tr idiagonal  R is expressed by a double integral 
in (3.7). The  expansion (3.8) yields 

(320) 
+ 

F(~)n!  r~3Ln(x1'x2; ce' r22)Ln(x4'x3; ee'r24) 

with 

(3.21) Ln(xl, x2; c~, r 2) = G~(xl; -r2y)(~)~J~(2Xv@-~)g~+~(y)dy 

F ( a + n + k )  r 2 k ~ ( k  ) /X ~ ( n + k )  fX ~ 
= ~ ~((,::[~n~ '-'~+kt 1/',-'~+n+kt 2,J 

k=O 

i~ (~+  n +  
= (1 -- r2) - n  ~ r(o~ + n )k i  ) ( - r 2 / ( 1  - r2))k 

k 

k : 0  

(~+k) x 1 x G~,+k(x l )G~+n+k(  2/ (  - r2)).  

The last identities are verified again by Laplace transformation using the trans- 
formation ~2 = (I + (I - r2)t2) -I -- z2/(l - r2u2). The integral is evaluated with 
Kummer's transformation (A.S.13.1.27) and (A.S.22.5.54). 

In particular with a = 1/2 the p-variate "tetrachoric" expansion for proba- 
bilities of rectangular regions • ~ under a N(0, R)-distribution is 

obtained, if the Laguerre polynomials L (I/2) are expressed by Hermite polynomi- 
als. The condition II/~]I < 1 however, sufficient for absolute convergence, also holds 
for the classical tetrachoric expansion on any unbounded regions (cf. Section 1 and 
remarks following Theorem 2.1 in Royen (i 991 b)). 

The expansions in the above theorem may be numerically useful at least for 
small values of c~ and p. For larger values of a the central limit theorem and the 
multivariate Edgeworth expansion can be applied to the approximate computation 
of the multivariate gamma d.f. (cf. Khatri et al. (1977), Section 3). 
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