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A b s t r a c t .  Given two independent positive random variables, under some 
minor conditions, it is known that from E ( X  ~ [ X + Y)  --- a(X + y)T and 
E ( X  ~ ] X + Y )  = b ( X + Y ) ~ ,  for certain pairs of r and s, where a and b 
are two constants, we can characterize X and Y to have gamma distributions. 
Inspired by this, in this article we will characterize the Poisson process among 
the class of renewal processes via two conditional moments. More precisely, let 
{A(t), t _> O} be a renewal process, with {Sk, k >_ 1} the sequence of arrival 
times, and F the common distribution function of the inter-arrival times. We 
prove that for some fixed n and k, k _< n, if E(S~ [ A(t) = n) = at ~ and 
E(S~ [ A(t) = n) = bt ~, for certain pairs of r and s, where a and b are 
independent of t, then {A(t), t > O} has to be a Poisson process. We also give 
some corresponding results about characterizing F to be geometric w h e n / ;  is 
discrete. 
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1. Introduction 

Since Lukacs (1955) characterized two independent  non-degenerate  positive 
random variables X and Y to be gamma  distr ibuted by the independence of X / Y  
and X + Y, many  papers have been devoted to the problem of characterizing 
the g a m m a  distributions. In particular Wesolowski (1989, 1990a) replaced the 
independence condition of X / Y  and X + Y  by the following regression assumptions:  

(1.1) E ( X  I X --k Y )  -- a ( X  -b Y )  

and 

(1.2) E(X I X + Y) = a(X + Y) 

and E(  X2 ! X + Y )  = b(X + y)2 ,  

and E(  x - 1  I X + Y )  = b(X + r ) - l ,  

* Support for this research was provided in part by the National Science Council of the 
Republic of China, Grant No. NSC 81-0208-Mlt0-06. 

351 



352 SHUN-HWA LI ET AL. 

respectively, where a and b are constants. The following is another similar char- 
acterization. 

THEOREM 1.1. Let X and Y be two independent non-degenerate positive ran- 
dom variables such that E(X -2) < ce and E(Y 2) < ec. I f  the conditions 

(1.3) E ( X  -1 I X + Y) = a(X + y ) - i  and E ( X  -2 ] X + Y)  = b(X + y ) - 2  

hold for some constants a and b, then both X and Y have gamma distributions 
with the same scale parameter. 

PROOF. 

(1.4) 

and 

(1.5) 

The assumptions imply 

E ( Y / X  ] X + Y)  = a -  1 

E ( ( Y / X )  2 [ X + Y)  = b -  2a + l. 

From this it is easy to obtain (b + 1)/2 > a > 1 and b > a 2. Now for 0 > 0, let 
f(O) = E ( X - 2 e  - ~  and g(O)= E(e-~  Then (1.4) and (1.5)imply 

(1.6) 
and 

(1.7) 

respectively. 

f ' (O)g ' (O) - - (a -  1)H'(O)g(O ) 

f(O)f'(O) = (b - 2a + 1)f"(O)g(O), 

Solving (1.6) and (1.7), along the lines of the proof of Wesolowski (1990a), 
yields 

(1.8) f(O) = kl(1 + k20) -~(a-1)/(b-a2) 

and 
(1.9) g(O) -- (1 + k20)-(b-~)(a: 1)~(b-a2), 

where kl ---- E(X-2) ,  k2 = k3(b-a2) / (k la(a-1))  and k3 = E(X-1) .  Consequently, 

k23(b- a 2) 
(1.10) E(e - ~  = f"(O) = k - ~ a : j ~ )  (1 + k20) -(2b-a-~2)/(b-~2) 

= (1 + k20) -(2b-a-a2)/(b-~2). 

Here we have used the fact that  being a Laplace transform, f"(0)  = 1, hence 
k2(b - a2)/(kla(a - 1)) = 1. Therefore we have shown that  both X and Y have 
gamma distributions with the same scale parameter k~ 1 and shape parameters 

2 b -  a -  a 2 ( b -  a ) ( a -  1) 
and 

b - a 2 b - a 2 ' 

respectively. This completes the proof. [] 
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But for giving the other pairs of conditional moments, the computations be- 
come very complicated. So that except (1.1), (1.2) and (1.3), we still do not have 
other similar conditions to characterize gamma distributions. 

The following is an application of the above results. Tollar (1988) has es- 
tablished that if W > 0 and 0 < V < 1 are two independent non-degenerate 
random variables, then V W  and (1 - V ) W  are independent if and only if W has 
a F(c~ + fl, A) distribution and V has a Be(a, ~) distribution, for some a, ~, A > 0. 
Based on the previous constant regression characterizations of the gamma distri- 
butions, instead of assuming the independence of W and V, we have the following 
immediate generalization. 

THEOREM 1.2. Let W > 0 and 0 < V < 1 be two non-degenerate random 
variables such that V W  and (i - V) W are independent. Then W has a F ( a + ~ ,  A) 
distribution and V has a Be(a,  ]3) distribution, for some a,/3, A > 0, i f  and only if  
one of the following three holds: 

(i) E ( w  < E ( V  I W)  = el  and E ( V  2 J W)  = 
(ii) E ( W )  < 0% E ( W  -1) < co, E ( V  ] W)  = a2 and E ( V  -1 I W)  = b2, 

(iii) E ( W  -2) < c~, E ( V  - t  [ W )  = a3 and E ( V  -2 I W)  -- ba, 
where aj, b j , j  = 1, 2, 3, are constants. 

Other characterizations of distributions by constant regression or moment's 
approach can be found in papers such as Laha and Lukacs (1960), Hall and Simons 
(1969), Shanbhag (1971), Alzaid (1990), Wesolowski (1990b), Li et al. (1992), and 
Pusz and Wesolowski (1992). On the other hand, ~intar and Jagers (1973), Huang 
et al. (1993) and many others have characterized Poisson process among the class 
of renewal processes through some conditional expectations. More precisely, let 
{A(t), t > 0} be a renewal process with {Xk,  k > 1} the sequence of inter-arrival 
times, {Sk, k _> 1} the sequence of arrival times, where Sk = ~j=lk Xj ,  and let 
F be the common distribution function of the inter-arrival times, 6t the current 
Iife at t, and 7t the residual life at t. Huang et al. (1993) proved that,  for a 
single positive integer n, under mild conditions, as long as E(G(6t)  ] A(t)  = n) = 
E(G(X1)  I A(t)  = n), Vt > 0, or E ( V ( a )  ] A(t)  = n) = c, Vt > O, where V is a 
monotone function and c is a constant, then {A( t ) , t  > 0} is a Poisson process. 

An immediate consequence of the previous constant regression characteriza- 
tions of gamma law enables us to characterize the inter-arrival times of the renewal 
process to be gamma distributed by using one of the following conditions: 

(i)  E(s  I : aSL 
(ii) E ( S ~  1 [Sn) = bS~ 1, 

where k and n, 1 < k < n - 1, a re two  fixed integers, a and b are some constants. 
Inspired by the above results, in this article, we will characterize a renewal 

process {A(t), t > 0} to be a Poisson process, by the identities such as 

(1.11) E ( S ;  I A(t)  = n) = at ~ and E(S~ ] A(t)  = n) = bt 8, Vt > 0, 

for some fixed 1 ~ k ~ n and (r ,s)  = (1,2), (1 , -1 )  or ( - 1 , - 2 ) ,  where a and b 
are constants. Actually when (r, s) = (1, 2) the right side of the latter equation in 
(1.11) with more general form will yield a similar result. A parallel result for St will 
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also be presented. We also give some corresponding results about  characterizing 
F to be geometrically dis t r ibuted when F is assumed to be discrete. 

2. Results for the continuous case 

If the renewal process {A(t), t > 0} is Poisson, then given that  A(t )  = n, 
S: < $2 < " "  < S~ are dis t r ibuted as order statistics of n i.i.d, random variables 
with the common uniform distr ibut ion on [0, t]. From this it can be shown tha t  
E ( S k  I A( t )  = n) = k t / ( n  + 1) and E(S~  I A( t )  = n) = k(k  + l ) t2 / [ (n  + 1 ) ( n + 2 ) ] .  
Conversely, we have the following result. 

THEOREM 2.1. Let the common  inter-arrival t ime distribution funct ion F of 
the renewal process {A(t), t > 0} be continuous with F(O) = 0 and E(X2:) < oo. 
Assume for some fixed integers k and n, 1 < k < n, 

(2.1) E ( S k  I A( t )  = n) = at 

and 

(2.2) E ( S  2 ] A( t )  = n) = bt 2 + ct, 

hold for some constants a, b and c, for  every t > 0, whenever P ( A ( t )  = n) > O. 
Then 

(i) a = k / ( n  + 1), b = k(k  + 1)/[(n + 1)(n + 2)] and c = 0; 
(ii) {A( t ) , t  > 0} is a Poisson process. 

PROOF. From (2.1) and (2.2) we obtain for every t > 0, 

fo t y ( F ~ - k ( t  - y) - F~+: -k ( t  - y ) )dFk(y)  = a t ( F , ( t )  - F~+l(t))  (2.3) 

and 

(2.4) fo t - y) - F~+:_k(t  - y ) )dFk(y)  y 2 (Fn - k ( t  

= (bt 2 + ct)(F~(t)  - F~+:(t)) ,  

where F~ is the n-fold convolution of F with itself. Taking the Laplace t ransforms 
of bo th  sides of (2.3) and (2.4) with respect  to 0, we obtain  for every 0 > 0, 

(2.5) 

and 
(2.6) (r ' ' r  - -  c n + l - - k ( o )  

0 

_r  
(o) Y a 

=b(dpn(o)-r ' 
-0- 

where 

(2.7) r = E ( e  - e x :  ) = e - e~dF(x ) .  
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From (2.5), it follows 

n--k __~n+l-k(O ) ( _~ ) 
(2.8) ( 1 -  a)(@(O)) '~ (0) 0 = a~)k(O) ~b' -k(0)--  "+ l -k (0 )  '" 

Consequent ly a r 0, 1. Solving (2.8) we deduce tha t  

~n--k(O ) -- Cn+l--k(O ) = I~r  
(2.9) 0 

where K > 0 is a constant .  After dividing the  bo th  sides of (2.9) by ~b ~-k (0) and 
using the fact t ha t  K = lim0-~o(1 - q~(0))/0 = #1 = E(X1),  we have 

1 - ~ ( 0 ) ,  ~l~ka-l_n(0)" 
(2.10) 0 

From (2.10) we have E ( X D  = 2(ka -~ - ~ ) ~ .  As Var(Xl) > 0, therefore we 
obtain ka -1 - n > 1/2. Replacing (1 - ~b(0))/0 in the  left side of (2.5) by the  right 
side of (2.10), it follows 

(2.11) ( qS~ (0) --O(~n+l(o))t= ]~l'tla ~k(a-l--1)(O)*'(• 
Fur thermore ,  by using (2.10) and (2.11) and after some simplifications, (2.6) be- 
comes 

(2.12) ( l - b )  qS"(o) 

Subs t i tu t ing  

(2.13) 

into (2.12), it yields 

(2.14) 

+ ( k - l - -  

~ ' ( 0 )  
~ ( 0 ) -  ~(0) 

+ ~ ~ ' ( 0 )  _ 0. 
a qS(0) 

(l-b)~'(O)+(l-~)k~2(o)+C~(o)=o. 
From (2.14) we find t ha t  a 7~ b, otherwise r = 1 or r = exp{-(c/a)((1 - 
b/a2)k)-lO}, which contradicts  the  a s sumpt ion  tha t  F is cont inuous.  Similarly, 
a 2 r b, otherwise it would also lead to a contradict ion.  Now (2.14) can be rewri t ten 
as 

(2.15) 

where 

(2.16) 

(2.17) 

~1(0) -t- C1~2(0) -F C2~(0) = 0, 

.1- 

..:'/(la 
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In the following we will prove C2 = 0 first. Assume C2 # 0, then the solution 
of (2.15) is 

~(0) = Kle_C2O, 
(2.18) ~(0) -~- C2/C1 

for some constant  KI .  Differentiating both sides of (2.10), we obtain 

- r  - (1 - r = (ka_ ~ _ n) 1 - r r 
o r (2.19) 

h e n c e  

(2.20) 
~b'(0) -q~'(0) - (1 - ~b(0))/0 

{ ( 0 ) -  r  - (ka -~-n)(1-r 

From the right side of (2.20), we find tha t  as 0 --+ co, ~(0) -* 0. Using this fact in 
(2.18) it in turn  implies C2 > 0. On the other hand,  from (2.18) we have 

C11 
(2.21) r = ( 1  

Kl  e-c2~ ~ 
I ' 

which would not imply lim0--.oo r = 0. The contradiction implies C2 = 0, hence 
c = 0. Therefore the solution of (2.15) is 

(2.22) ~(0) = (C10 - ~ t l l )  -1, 

since lim0-~0~(0) = - f f l .  Furthermore,  as ~(0) _< 0, V0 > 0, it yields C1 < 0. 
Comparing (2.13) and (2.22), it follows 

(2.23) r = (1 - C1#~0) c ( ' .  

Substi tut ing r in (2.23) into the right side of (2.10), we have 

(2.24) 1 - r = #10(1 - Cl11,10) C~-'(ka-l-n) 

By lett ing 0 ~ ec in the bo th  sides of (2.24), we get (noting tha t  ka -1 - n > 0 
and C1 < 0) 

(2.25) C11(ka -1 - n) = - 1  and C1 = - 1 .  

Hence a = k / (n  + 1) and 

(2.26) r = (1 + #10) -1. 

Thus b = k(k + 1)/[(n + 1)(n + 2)], as can be seen by replacing C1 = - 1  and 
a = k / ( n  + 1) into (2.16). This completes the proof. [] 
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Remark 1. As mentioned in Section 1, by choosing G(x)  -- x, for a fixed 
n > _ l ,  

(2.27) E ( f t  t A( t )  = n)  -- E ( X 1  I A( t )  = n),  Vf > O, 

implies { A ( t ) , t  >_ 0} is a Poisson process. Consequently, let 1 < k < n be two 
fixed integers, if 

k 
(2.28) E ( S k  I A( t )  = n) - t, 

n + l  

then {A(t), t > 0} is a Poisson process. Thus in order to force the process {A(t), t _> 
0} to be Poisson, the condition (2.2) in Theorem 2.1 may be replaced by a -- 
k / ( n  + 1). This also can be seen by noting that (2.1) is equivalent to (2.10) which 
in turn implies (2.26) immediately when a = k / ( n  + 1). 

On the other hand, noting that r = - E ( X 1 )  and r = E(X12), 
from (2.10) we obtain 

(2.29) E ( X  2) = 2 E z ( X 1 ) ( k a  -a - n). 

Hence if 

(2.30) E ( X  2) = 2E 2 (Xa), 

then a = k / ( n  + 1). Therefore condition (2.2) may be also replaced by (2.30). 
Yet only the condition (2.1) does not suffice to characterize the Poisson process, 

since (2.10) is not enough to imply (2.26). The point is, by giving both (2.1) and 
(2.2), not only the process { A ( t ) , t  > 0}, but also the constants a, b and c can 
be determined. However, we do not even know whether given the condition (2.1) 
together with an a r k / ( n  + 1) can yield a solution which is a Laplace transform 
or not. For the case a --- k / ( n  + 2), (2.10) becomes a quadratic equation, solving 
it we obtain r = 2(1 + ~ ) - 1  which is indeed a Laplace transform. Yet 
when a = 2 k / ( 2 n  + 1), (2.10) reduces to a quadratic equation again, and it can be 
checked easily that neither of the two solutions of (2.10) is a Laplace transform in 
this case. For other a's, it is not easy to solve equation (2.10), so this part is still 
open. 

The next two theorems are concerned with the situations of moments with 
negative orders. As the proofs follow standard technique of solving the differential 
equations as in the proof of Theorem 2.1, we only give outlines. 

THEOREM 2.2. Let F be continuous with F(O) = 0 and E(X1) < co. Assume  
for  some fixed integers k and n, 2 < k < n, 

(2.31) 

and 

(2.32) 

E ( S k  I A ( t )  = n)  = at 

E ( S [  1 J A( t )  = = bt -1 ,  
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hold for some constants a and b, for every t > 0 whenever P ( A ( t )  = n) > O. Also 
assume E ( S [  1) < oe. Then 

(i) a = k / ( n  + 1) and b = n / ( k -  1); 
(ii) {A( t ) , t  > 0} is a Poisson process. 

PROOF. Again, first (2.31) and (2.32) can be  converted into 

(2.33) p~(O)  ~ ) n - k ( O )  --  Cnq-l-k(• 

and 
O r - -  cn+>k(O)  

(2.34) P k ( )  0 

II = a(qn(O ) -- qtnt+l(O)) 

= b(q~(O) - q~+l(0)),  

respectively, where r is as defined in (2.7), pk(O) = j ~  e - ~  and 
qj (0) = f o  e-~ - 1FJ (y)dy, j = n, n + 1. Solving the above differential equations 
we obtain the assertions. [] 

THEOREM 2.3. Let F be continuous with F(O) = 0 and E(X1)  < oo. Assume 
for some fixed integers k and n, 3 < k < n, 

(2.a5) 
and 

(2.36) 

E ( S k  1 l A( t )  = n) = at -1 

E ( S ;  2 I A( t )  = n) = bt -2, 

hold for some constants a and b, for every t > 0 whenever P ( A ( t )  = n) > O. Also 
assume E(S~ -2) < c~. Then 

(i) a = n / ( k  - 1) and b = n(n  - 1)/[(k - 1)(k - 2)]; 
(ii) {A(t), t > 0} is a Poisson process. 

PROOF. As before the proof follows by converting (2.35) and (2.36) into 

_ C n + l - k ( e )  (2.37) ~b~(0) Cn-k(e) 

and 

(2.38) Ck(0) Cn-k(• _ -- "--r ) 
0 

' 

= -  n+l ( 0 ) )  

= b( n(e) - 

respectively, where ~bk(e) = f ~  e-eYy-2dFk(y) ,  and {j(O) = f ~  e -~  
j = n, n + 1. The remaining argument  is similar to  the  one used in the proof  of 
Theorem 2.1. [] 

Note that  when {A(t ) , t  >_ 0} is a Poisson process both  E ( S ~  1 [ A( t )  = n) 
and E ( S ~  2 ] A(t)  = n) are infinite, hence the conditions tha t  k > 2 and k _> 3 
are needed in Theorems 2.2 and 2.3, respectively. For the current life St, we have 
the following result in Theorem 2.4 under similar conditions as in Theorem 2.1. 
Again since when { A ( t ) , t  >_ 0} is a Poisson process both  E(5~ 1 ] A( t )  = n) 
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and E(5~ 2 I A(t)  = n) are infinite, we do not  have results which are parallel to 

Theorems  2.2 or 2.3. 

THEOREM 2.4. Let F be continuous with F(O) = 0 and E ( X ~ )  < c~. Assume 

for some fixed integer n, 

(2.39) E(5~ I A(t)  = n) = at 

and 

(2.40) E (  ~2 I A(t)  = n) = bt 2 + ct, 

hold for some constants a, b and c, for every t > 0 whenever P ( A ( t )  = n) > O. 
Then 

(i) a = 1 / ( n +  1), b = 2 / [ (n  + 1)(n + 2)] and c = 0; 
(ii) {A(t), t _> 0} is a Poisson process. 

PROOF. Since given A(t)  = n, 5t = t - Sn, the assertions now follow from 
Theorem 2.1 immediately. [] 

3. Results for the discrete case 

When  the  inter-arrival distr ibution of the  renewal process {A(t) ,  t _> 0} is 
discrete, we have the following result which can be compared  with Theorem 2.1. 
Yet again the results corresponding to Theorems  2.2 and 2.3 do not hold any more 
in this case as will be seen from an example given later. 

THEOREM 3.1. Let F,  F(O) = O, be arithmetic with span 1 and E ( X ~ )  < oc. 
For some fixed integers k and n, 1 < k < n, i f  

(3.1) 
and 

(3.2) 

E(Sk  ] A( t )  = n) = a l t  + ao 

E(  $2 I A( t )  = n) = b2t 2 + blt -~- bo, 

hold for some constants ar bs, r = 0,1, s = 0, 1, 2, for every t = n , n  + 1 , . . . ,  
whenever P ( A ( t )  = n) > 0, then  

(i) a l  = a0 = k / ( n  + 1), b2 = k(k  + 1) / [ (n  + 1)(n + 2)], bl = k(3k - n + 
1) / [ (n  + 1)(n + 2)], b0 = k ( 2 k -  n) /[ (n  + 1)(n + 2)]; 

(ii) {A(t), t > 0} is a geometric renewal process. 

Again, by lett ing f(O) = E(e  -~ -= ~-2~=1 e - ~  = x),  the  proof  of the  
above theorem is much in the spirt as tha t  of Theorem 2.1 and is omit ted.  Also 
similar to the continuous case, condition (3.3) may  also be replaced by al = a0 = 
k / ( n  + 1). This  is exact ly  Theorem 2 of Huang  et al. (1993). Next ,  just  as in 
Theo r e m 2.4, it is easy to  obtain a corresponding result  for St. We omit  it here. 

Finally, we give an example to i l lustrate t h a t  for the discrete case we do not  
have similar characterizat ions based on the condit ional  moments  wi th  negative 
orders. 
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Example  I. Let  {A(t ) ,  t > 0} be a geomet r i c  renewal  process ,  t h a t  is, a s sume  
P ( X I = k ) = p ( 1 - p ) ~ - I  k = l , 2 , . . . , w h e r e 0 < p <  1. T h e n  

t 

(3.3) E ( S Y  1 I A( t )  = 2) = 2t -1  - 2 E Y-1 / [ t ( t  - 1)], 
y--2 

which  is no t  the  fo rm of a l t  -1 + ao for any  cons tan t s  a0 and  a l .  

4. Discussion 

In  this  p a p e r  we have cha rac t e r i zed  the  Poisson  process  us ing some su i tab le  

cond i t iona l  m o m e n t s .  B y  us ing this  k ind  of  condi t ions  we could  develope  an  
a s y m p t o t i c  tes t  f rom one of  t he  charac te r iza t ions ,  which  does  no t  need  all t he  
i n fo rma t ions  a b o u t  the  arr ival  t imes,  therefore  gives an  a l t e rna t ive  way  of  t e s t i ng  

t he  Po i sson  process  o ther  t h a n  all those  tes ts  a l r eady  exist. F u r t h e r  inves t iga t ion  
a b o u t  this  k ind  of  t es t ing  p r o b l e m  will be discussed elsewhere.  
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