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Abstract. For k € Ny fixed we consider the joint distribution function F¥
of the n — k smallest order statistics of n real-valued independent, identically
distributed random variables with arbitrary cumulative distribution function
F. The main result of the paper is a complete characterization of the limit
behaviour of F¥ (1, ..., Tn—k) in terms of the limit behaviour of n(1— F(zx)) if
n tends to infinity, i.e., in terms of the limit superior, the limit inferior, and the
limit if the latter exists. This characterization can be reformulated equivalently
in terms of the limit behaviour of the cumulative distribution function of the
(k + 1)-th largest order statistic. All these results do not require any further
knowledge about the underlying distribution function F.
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1. The main result

Let (X, )nen be a sequence of real-valued independent, identically distributed
random variables with arbitrary cumulative distribution function (cdf) F and
let X1., < -+ < X,., denote the order statistics of Xi,...,X,,. Moreover, let
FE(zy,. .. Zpt) = P(X1n <215+ s Xnkn < Tng) forallz = (z1,...,2,_p) €
R** and n > k € Ng. For k € Ny we define gx(c) = exp(—c) Zfzocj/j!,
¢ € [0,00), and gx(o0) = lim, .o gr(c) = 0, so that g can be regarded as a de-
creasing homeomorphism from {0, co] onto [0,1]. Notice that gx(c), ¢ € (0,00),
equals P.(Z < k), where Z has a Poisson distribution with parameter ¢ under P,.
The main purpose of the present paper is to prove

THEOREM 1.1. Let (Xp)nen be a sequence of real-valued independent, iden-
tically distributed random variables with cdf F, let k € Ny, ¢ € [0,00], and
Zn € (—00,00] such that a, =1 — F(z,) <1 for alln € N,

(a)

(1.1) lim na, =c¢
n—co
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implies

(12) lim Fylf(a:lr",mn—k) :gk(c)‘

n—0o0

(b) Ifc < 00 or (zn)nen is non-decreasing, then (1.2) implies (1.1).

(¢) limsup,,_, ., no, = c iff iminf, o F¥(z1,...,2n-x) = gr(c).
(d) (i) liminf, .. noy, = ¢ implies limsup,, o, FF(x1,...,Tn-k) < grlc).
(iiy If, in addition, (Zn)nen 18 a non-decreasing sequence, then
lim inf,,— o0 Ny, = ¢ iff imsup,,_, . F¥(z1,. .., Tn-t) = gr(c).

A well-known result related to Theorem 1.1 and concerning the cdf of the
(k+1)-th largest order statistic is available e.g. in Leadbetter et al. ((1983), p. 32),
ie.,

(1.3) lim na, =c iff lim P(Xp—pn < Zn-r) = gi(c)
n—00

00

for all ¢ € [0,00]. As a consequence of (1.3) we also have

(1.4) liminf noy, =c¢ it limsup P(Xp—kin < Tn-k) = gr(c),
n—0oo N—00

(1.5) limsupna, =c¢ if liminf P(X,_kn < Tn—k) = gx(c).
n—00 n—00

It is striking that Theorem 1.1 yields the full analogue to (1.3), (1.4) and (1.5)
whenever the sequence (z,)nen is non-decreasing. If this assumption is violated,
the equivalence of (1.1) and (1.2) is only valid for ¢ < co. In Section 3 we present
an example showing that for ¢ = oo (1.2) does not imply (1.1). Moreover, this
example also reveals that in Theorem 1.1(d)(i) the ‘<’-sign is possible.

If (zn)nen is a non-decreasing sequence, the following recursive formula for

F,’f is useful for practical computations, namely

n—k—1
Fylf(xla- .. 7$n—k) =1- Z P(Xlzn S T1y.-- )Xj:n S -Tjan+1:n > xj—{-—l)
7=0
n—k—1 n ]
=1- Z (,)Fj(ml,...,xj)a;:f,
=0 M

where F; = F} with F§ = 1.

The proof of Theorem 1.1 is presented in Section 2. In the first part we
summarize some useful preparatory analytic and probabilistic results allowing an
immediate conclusion of the assertions of Theorem 1.1, except for part (b), which is
proved by a different method. Some counterexamples, applications and concluding
remarks in Section 3 finish the paper.
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2. Proof of the main result

First notice that attention can be restricted to the special case of uniformly
distributed random variables. For, if Uy,...,U, are independent, identically dis-
tributed random variables having a uniform distribution on [0, 1], and the joint
distribution function of Uy.y, . . ., Up—k:x is denoted by G%, then we have (cf. Reiss
(1989), p. 17)

FF(z1,. o Zpp) = GE(F(z1),.. ., F(@p_)) =GF(1 —1,...,1 — ap_y),

whence it suffices to consider the assertion of Theorem 1.1 in terms of GX. In the
sequel we use the notation

Hﬁ(al,...,an_k)=Gfl(1—a1,...,1—ozn_k) and H, = H?.

Before starting with the main part of the proof of Theorem 1.1 we first state
some useful facts. To set notation, let 0 < 8 < 1/2, 4, = [On}, k, = [(1 — O)n],
n € N, where [z] denotes the largest integer less than or equal to z € R. Define
Yo = max{og,,...,0n—k} and v, = max{a,,,..., o, 1} for n —k > k, > j,.
Then it is easy to establish that

(2.1) lim na, =c¢ implies lim ny, =¢/(1-0),
n—oo n— 00

(2.2) limsupna, =c¢ implies limsupny, =c¢/(1-6),
n—od n-—00

(2.3) liminfna, =¢  implies  liminfny, > ¢/(1 —6),
n—oc n—o0

and

(2.4) if (otn)nen is non-increasing and liminf na, = c,

n-—-o0

then liminfny, =¢/(1 —0).
n—oo
Furthermore,

(2.5) ifi, €N, d, €[0,1}, n €N, such that lim i,/n=d € (0,1) and
lim dy =do > d, then lim P(U;_ .. > dn) = 0.

=00 n—00

This follows from the fact that U;_., tends to d in probability as n approaches
infinity. Now, define 6 = inf,en(1 — a,). Then it obviously holds

(26) P(an—l:n S 57 Ukzn—lzn S 1 Vn, Un—k:n S 1- 'Yn)
< Hj(on,...,0m-)
S P(Un—k:n <1l- an—k)-

Elementary set algebra reveals that the lower bound in (2.6) is not less than

P(Un—km <1- ’y'ﬂ) - P(U'n—lin > 6) - P(Ukn—l:n >1- Vn)'
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If limsup,,_, o, Ny, < 00, then lim, o @y = lim,— oo v, = 0 and 6§ > 0, hence for
all 0 € (0,min{1/2,6}) (2.5) yields

lim P(Uj,—1:n >6)=0 and lim P(Ug, —1:n > 1—1vy) =0,

n—0
thus
2.7) liminf P(Up—:n < 1~ 7,) < liminf H¥(as,. .., an )
T 00 n—oc
<liminf P(Up—gi < 1= 1),
00
and

(2.8) limsup P(Up—gen < 1 —7,) < limsup H*(aq, ..., 0n_1)

n—00 n—o0

< hmsup P(Un——k::n <1- an—k)-

n—od

Armed with these facts, we can easily conclude the assertions of Theorem 1.1,
except for part (b), where different arguments are used.

(a) For lim, o na,, = ¢ < oo, part (a) can be proved as follows. Let 6 €
(0,min{1/2, 6}), then lim, o0 7y, = ¢/{1~0) by (2.1). Now, (1.3), (2.7) and (2.8)
imply gk(c/(1 — 6)) < liminf, 0o HE(au,...,0n_) < limsup, ., HE(ay,...,
on—k) < gr(c). Letting § — 0 yields the assertion. If ¢ = oo, define g8, =
min{an,, K/n}. In view of 8, < a, and lim,_, . nB, = K, the assertion follows
from the case ¢ < oo by letting K — oo.

(c) First let ¢ < oo and limsup,_,no, = ¢ Then (2.2) implies
limsup,, o nYn = ¢/(1 —8). With (1.5) and (2.7) we then obtain gx(c/(1-8)) <
liminf, e HE (a1, .., an—k) < gk(c), thus liminf, .o HS(01,...,an-) = gr(c)

by letting # — 0. The case ¢ = oo can be treated as in (a). The reverse direction
in (c) is due to the fact that gi is bijective.

(d) (i) Follows immediately by applying (1.4) and the right-hand side inequal-
ity of (2.8), which is also valid for ¢ = 0.

(d) (ii) First let ¢ < oo and iminf, o na, = ¢. Then (2.4), (1.4) together
with (2.8) yield limsup,, . H*(a1,...,0m_x) > gr(c) by letting § — 0, thus
limsup,,_, .o H¥(a1,. .., an—k) = gi(c) by (d)(i). The case ¢ = co is a special case
of (a), and finally the equivalence follows as in (c).

(b) In view of (c) and (d)(ii) we can restrict attention to the case ¢ < oco. From
(c) we obtain ¢ = limsup,,_, ,, nan. Now, assume that ¢; = liminf,_,o noy, < c€
(0,00). Let B, = max{a,,min{l/2,¢/n}}, n € N, then lim, 0o nB, = ¢ and
Bn = ay, for all n € N. Since ¢; = liminf,_, na,, we can extract a subsequence
(ns)ien of N such that lim; oo (n; — k)an,—k = ¢1 and o~k < Qp;—k—1 for all
t € N. Then we obtain

H* (a1,...,0m,—k)

2 Hﬁl (ﬁla < 7/5n1-—k-1, ani—k)
= P(Ulzn < 1- ﬂla R Uni—k~1:n < 1- ﬁni—-k—lv Uni—k:n <1l- ﬂni—k)
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+P(U1n§1—51, ey Unjmk—1n 1= Bny—k-1,
- ﬁm—k < U i—k::n _— 1 - ani—k)
= H‘rlil (ﬁl» ce 7/6ni-k~17/6n.;——k)

+< i )(ﬁfl;[lk— k“k) nik—1(81, -+ s Brs—k—1)-

Passing to the limit for ¢ — oo on both sides of this inequality together with part
(a) of Theorem 1.1 yields

1
(k+1)!

gk(c) Z gr(c) + (** —e1™go(e) > gr(e),

which obviously is a contradiction. Hence the proof is complete. 1
3. Concluding remarks

As announced at the end of Section 1, we investigate part (b) of Theorem 1.1
for ¢ = co and part (d)(i) for non-monotonic sequences (&, )nen in detail.

First of all it should be mentioned that for ¢ = oo (1.2) always implies
limsup,,_, ., na, = ¢ = oo (cf. Theorem 1.1{c)). Now, let F' be the cdf of a
non-degenerate probability distribution and z¢ € R with 0 < F(zp) < 1. Define
an, = 1— F(xg) for n € N odd and a, = 0 for n € N even, then (1.2) is satisfied
with ¢ = oo, but liminf,,_, na, = 0, which means that (1.1) is not valid. Fur-
thermore, if F' is continuous, for every d € [0, 00) it is possible to find a sequence
(Tn)nen Or (0 )nen such that (1.2) holds with ¢ = oo, but liminf, . nay, = d;
consider e.g. o, = min{l/2,d/n} for n € N even, and a,, = 1/2 for n € N odd.
Moreover, limsup,, ,., H:(a1,...,0n_1) = 0 < gi(d), which shows that in part
(d)(1) the ‘<’-sign is possible.

A non-trivial example which illustrates (for continuous F) the existence of a
sequence (@, )nen with gi(limsup, . nay,) = liminf, oo H*(ou,...,an-k) <
limsup,_, ., H¥(a1,...,0n-k) < gk(liminf,_ o noy,) is given by a, = min{1/2,
c1/n} for n € N even and @, = min{1/2,¢o/n} for n € N odd, 0 < ¢; < ¢3 < o0.
Similarly as in the proof of part (b) it can be shown that limsup,,_,., H:(a,...,
Qn-k) = grlca) + (cF™ — ¥ )go(ea)/(k + 1)!. A more detailed but analogous
argumentation reveals that the last expression is not only < gg(c1), but in fact
< gx(c1). Since gi(c) can be interpreted as the probability P.(Z < k), where Z
has a Poisson distribution with parameter ¢ € (0,00) under P., we obtain for all
ke Np, 0 < ¢; < ey < 00, the inequality

P (Z <k) = Po(Z < k) > e (cht? = FH1

T 1)‘ — ™) exp{—ca).

It is obvious from (1.3), (1.4) and (1.5) that the conditions lim,_,., na, = ¢,
liminf, .o noy, = ¢ and limsup,_,. no, = ¢ can be reformulated equivalently

via conditions concerning the cdf of the (k + 1)-th largest order statistic, namely
limpeoo P(Xn——k:n < xn—k) = gk(c)7 }imsupn—»oo P(Xn—k'n < xn—k) = Qk(C) and
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liminf, »oo P(Xn—kn < Tn-k) = gr(c). Hence, the joint distribution function
of Xim,...,Xn—km from a sample Xi,..., X, behaves just like the (k + 1)-th
largest order statistic X,,—g., if n is large (at least in the case where (2, )nen is a
non-decreasing sequence, which is a quite natural assumption).

If F belongs to the domain of attraction of an extreme value distribution
function @, then the equivalence in (1.3) can easily be derived from the well-known

equivalence

lim n(l — Flapz +by)) = ~logQ(z) forall zeR,
n—0oc

k
it lim P(Xp_km < a2 +bn) = Q(z) Y_(—log Q(x)) /5!

n-——00
j=0

forall zeR

for some normalizing constants a, > 0 and b, € R (cf. Reiss ((1989), (5.1.4) and

(5.1.28)), or Leadbetter et al. ((1983), Theorem 1.5.1 and Theorem 2.2.2)).

If lim,, _, o0 N, exists, Theorem 1.1 may be applied to approximate expressions
like P(X;.m, < 24,4 € JF), where J* C {1,...,n — k} with n — k € J¥. For, since
{Xl:n < zy,... ;Xn—k < -'L'n——k:} c {Xi:n < z,1 € J,’fi} - {X'n,—k:n < x'n—kz}a it is
obvious that lim, oo P(X;.n < 24,1 € J,’f) = gx(0).

Examples of sequences (aup)nen for which lim, ., na, exists and which
play an important role in multiple comparisons are o, = 1 — (1 — a,)'/™ with

lim,—co na, = —log(l — a) and o), = a/n, o € (0,1), n € N. In the first case
we obtain e.g. for k = 0 lim, 0o Hp(o,...,04) = 1 — @, in the second case
limy,—co Hn(ad, ..., al) = exp(—a).

It may appear strange to the reader that we did not restrict attention to non-
decreasing sequences (Zrn, )nen (0T to non-increasing sequences (@, )nen) in advance.
One reason for this was the following monotonicity problem first raised in Dunnett
and Tamhane (1992):

If « € (0,1) is fixed, does there exist a decreasing sequence (Qn)nen
such that Hy(oq,...,a,) =1—afor all n € N?

A discussion of this question and some applications of Theorem 1.1 in multiple
comparisons can be found in Finner et al. (1993). Recently, the monotonicity prob-
lem described above was solved by Dalal and Mallows (1992), who encountered it
in a completely different context, independently of Dunnett and Tamhane (1992).
They proved that for every a € (0,1) there indeed exists a strictly decreasing
sequence (Qp)nen such that H,(ay,...,a,) =1—aforalln e N.
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