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A b s t r a c t .  For k C No fixed we consider the joint distr ibution function Fn k 
of the n - k smallest order statist ics of n real-valued independent,  identically 
distr ibuted random variables with arbi t rary  cumulative distribution function 
F.  The  main  result of the paper  is a complete characterization of the limit 
behaviour of F ~ ( x l , . . . ,  Xn-k) in te rms of the limit behaviour of n(1 - F ( x ~ ) )  if 
n tends to infinity, i.e., in te rms of the limit superior, the limit inferior, and the 
limit if the lat ter  exists. This characterizat ion can be reformulated equivalently 
in terms of the limit behaviour  of the cumulative distribution function of the 
(k + 1)-th largest order statistic. All these results do not require any fur ther  
knowledge about  the underlying distribution function F.  

Key words and phrases: Extreme order statistic, extreme value distribution, 
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1. The main result 

Let (Xn)~e~ be a sequence of real-valued independent, identically distributed 
random variables with arbitrary cumulative distribution function (cdf) F and 
let Xl:n ~_ "'" ~_ Xn:n denote the order statistics of XI,...,Xn. Moreover, let 
F k ~ ( x l , . . . , x n - k )  = P(XI:n  ~_ x l , . . . , X n - k : n  ~ x n - k )  f o r a l l x  = ( X l , . . . , X n - k )  �9 

] ~ - k  and  n > k �9 N0. For  k �9 N0 we define gk(c) = e x p ( - c ) ~ = 0 e J / j ! ,  
c �9 [0, oo), and  gk(oo)  = limc--.oo gk(c) = O, so t h a t  gk can  be  r e g a r d e d  as a de- 
c reas ing  h o m e o m o r p h i s m  f r o m  [0, oo] on to  [0, 1]. No t i ce  t h a t  gk(c),  c �9 (0, ce) ,  
equa ls  Pc(Z <_ k), where  Z has  a Po i sson  d i s t r i bu t i on  w i t h  p a r a m e t e r  c u n d e r  Pc. 
T h e  m a i n  p u r p o s e  of  t he  p r e sen t  p a p e r  is to  p rove  

THEOREM 1.1. Let (Xn)~e~ be a sequence of real-valued independent, iden- 
tically distributed random variables with cdf F,  let k E No, c C [O, oe], and 
Xn E ( -oc ,  oc] such that an = 1 - F (xn )  < 1 for all n E ~.  

(a) 

(1.1) l im nan = c 
Wb---~ OG 
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implies 

(1.2) lim k F,: ( X l , . . . ,  x -k) = 
n - - + o o  

(b) I f  c < oe or (Xn)ne~ is non-decreasing, then (1.2) implies (1.1). 
(c) limsupn_~ ~ na~  = c i f f l i m i n f n _ ~  F~(X l , . . . ,  x~-k) = gk(c). 
(d) (i) l i m i n f n - , ~  nan = c implies l i m s u p n ~  ~ F~(x~ , . . . ,  xn-k)  < gk(c). 

(ii) If, in addition, (xn)neN is a non-decreasing sequence, then 
lim inf~_.~ noL n : C i #  lim SUPn_ ~ F )  (x l, �9 �9 �9 xn-  k) = gk (c). 

A well-known result related to Theorem 1.1 and concerning the cdf of the 
( k +  1)-th largest order statistic is available e.g. in Leadbe t te r  et al. ((1983), p. 32), 
i.e., 

(1.3) lira na~  = c iff lira P(X~-k:~ < x~-k)  ----- gk(c) 
n---* oc n - - ~  

for all c E [0, c~]. As a consequence of (1.3) we also have 

(1.4) liminfnc~n = c 
n--*ao 

(1.5) l imsup na~  = c 
n - - - + O O  

iff l i m s u p P ( X n - k : ~  < xn-k)  = gk(c), 

i f f  liminf P(Xn_k:,~ ~ X n - - k )  = g k ( C ) .  
n - ' ~  O 0  

It is striking that  Theorem 1.1 yields the full analogue to (1.3), (1.4) and (1.5) 
whenever the sequence (Xn)ne~ is non-decreasing. If this assumpt ion is violated, 
the equivalence of (1.1) and (1.2) is only valid for c < co. In Section 3 we present 
an example showing that  for c = oc (1.2) does not imply (1.1). Moreover, this 
example also reveals that  in Theorem 1.1(d)(i) the '< ' -s ign is possible. 

If  ( x n ) n ~  is a non-decreasing sequence, the  following recursive formula for 
F )  is useful for practical computat ions,  namely 

F 2 ( z l , . . .  , z , - k )  = 1 - 

= 1 - -  

n - k - i  

E P(Xhn  <_ x l , . . . ,  Xj:n <_ xj,  Xj+l:n ) X j + I )  

j = 0  

n - k - 1  

�9 . . , X j ) O ~ j + I ,  

j=0 

where Fj - F ~ with F0 ~ -- 1. 
The proof of Theorem I.I is presented in Section 2. In the first part we 

summarize some useful preparatory analytic and probabilistic results allowing an 
immediate conclusion of the assertions of Theorem i. i, except for part (b), which is 
proved by a different method. Some counterexamples, applications and concluding 
remarks in Section 3 finish the paper. 
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2, Proof of the main result 

First notice tha t  a t ten t ion  can be restricted to 'the special case of uniformly 
distr ibuted random variables. For, if U 1 , . . . ,  U~ are independent,  identically dis- 
t r ibuted random variables having a uniform distr ibution on [0, 1], and the joint 
distribution function of U l : n , . . . ,  U n - k : n  is denoted by G~, then we have (cf. Reiss 
(1989), p. 17) 

F ~ ( x z , . . . , X n - k )  = G k ~ ( F ( X l ) , . . . , F ( x ~ - k ) )  = Gkn(1 - a z , . . . , 1  - a n - k ) ,  

whence it suffices to consider the assertion of Theorem 1.1 in terms of G~. In the 
sequel we use the notat ion 

k 
H ~ ( a l , . . . , a n - k ) = G k n ( 1 - - a l , . . . , 1 - - a n _ k )  and H ~ - - H  ~ 

Before starting with the main part of the proof of Theorem i.i we first state 
some useful facts. To set notat ion,  let 0 < 0 < 1/2, j~ = [On], kn  = [(1 - O)n], 
n E N, where [x] denotes the largest integer less than  or equal to x E N. Define 
3'~ = m a x { a k n , . . . , a n _ k }  and u~ = m a x { a j n , . . . , a k , _ l }  for n - k _> k~ > j n -  
Then it is easy to establish tha t  

(2.1) lim n a n  = c implies lim nVn  = c / ( 1  - 0), 
n ' - ' +  O 0  n - ~  0 ( 3  

(2.2) lim sup n a n  = c implies lim sup nTn  = c / ( 1  - 0),  
n --"~ ~ n - - - ~  O 0  

(2.3) l i m i n f n a ~  = c implies l iminf  n~/~ > c / ( 1  - 0), 
n - - + ( : K )  n - - ~ O O  

and 

(2.4) if (a~)ne~ is non-increasing and lim inf na~  = c, 
n - - - ~  O O  

then lim inf nT~ = c / ( 1  - 0).  
n - - - - *  C ~  

Furthermore, 

(2.5) if i n e ~ ,  d n e [0, 1], n e N, such tha t  l i r n  i n / n  = d e (0, 1) and 

lim dn = do > d, then  lim P(Ui,~:~ > d~)  = O. 
n - - ' +  ( X )  ft ,  ---> ~ )  

This follows from the fact tha t  Uin:n tends to d in probability as n approaches 
infinity. Now, define 5 = infne~(1 - a~).  Then it obviously holds 

(2.6) P ( U j . - I : ~  < 5, U k n - z : ~  <_ 1 - ~ ,  U ~ - k : n  <_ 1 - 7n)  

<_ a -k) 
<-- P ( U n - k : n  <__ 1 - a n _ k ) .  

Elementary set algebra reveals that the lower bound in (2.6) is not less than 

P ( U n - k : n  <_ 1 - "In) - P ( U j ~ - I : n  > 5) - P ( U k , ~ - l : n  > 1 - ~n) .  
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If limsupn__, ~ neon < ce, then limn--,cc an  = l i m n - ~  Vn = 0 and 5 > 0, hence for 
all 0 e (0, min{1/2,  5}) (2.5) yields 

lim P(Uj~-I :n  > ~) = 0 
n - - + c ~  

and lim P(Uk~-l :n  > 1 -- L'n) = O, 
n - - - +  ~ o  

thus 

(2.7) lim inf P (Un - k:n -< 1 - 3'n) _< lim inf H~ (a 1 ,  �9 �9 " , a n - -  k ) 
n - - ~  OO fb----+ O o  

< l i m i n f P ( U n - k : n  < 1 - a n - k ) ,  
n "-"~ O 0  

and 

(2.8) lim sup P(Un-k:n < 1 - 7n) < lim sup H~ ( a l , . . .  , an_k) 
n -----~ O O  n - - - ~  O O  

< l imsup P(Un-k:n < 1 - an -k ) .  
n - - - +  (:X3 

Armed with these facts, we can easily conclude the assertions of Theorem 1.1, 
except for part  (b), where different arguments  are used. 

(a) For l i m n - ~  n a n  = c < c% part  (a) can be proved as follows. Let 0 E 
(0, min{1/2,  5}), then  l i m n - ~  nvn = c / ( 1 - 0 )  by (2.1). Now, (1.3), (2.7) and (2.8) 
imply gk(c/(1 - 0)) < l i m i n f n - ~ H ~ ( a t , . . . , a n _ k )  _< l i m s u p n ~ H ~ ( a l , . . . ,  
a n - k )  <_ gk(c). Lett ing 0 --~ 0 yields the assertion. If c - co, define f n  = 
min{am K / n } .  In view of f n  _< an  and l i m n ~  n f n  = K ,  the assertion follows 
from the case c < ~ by letting K -~ ~ .  

(c) First  let c < ~ and l imsupn__.~na~ = c. Then (2.2) implies 
l i m s u p n - ~  nTn = c/(1 - 0 ) .  With  (1.5) and (2.7) we then obtain gk(c/(1  - 0 ) )  < 
l i m i n f n - ~  H ~ ( a l , . . . ,  a n - k )  <_ gk(c), thus l iminfn--.~ H ~ ( a l ,  . . . ,  c~n-k) = gk(c) 
by lett ing 0 ~ 0. The case c = ~ can be t reated as in (a). The reverse direction 
in (c) is due to the fact tha t  gk is bijeetive. 

(d) (i) Follows immediately by applying (1.4) and the r ight-hand side inequal- 
i ty of (2.8), which is also valid for c = c~. 

(d) (ii) First  let c < ce and lira i n f n - ~  nan  = c. Then (2.4), (1.4) together 
with (2.8) yield l i m s u p = ~ H ~ ( a l , . , . , a n _ k )  > gk(c) by lett ing 0 --~ 0, thus  
limsuPn_~ ~ H ~ ( a l , . . . ,  a n - k )  = gk(c) by (d)(i). The case c = c~ is a special case 
of (a), and finally the equivalence follows as in (c). 

(b) In view of (c) and (d)(ii) we can restrict a t tent ion to the case c < ce. From 
(c) we obtain c = lira SUpn_~ nan.  Now, assume tha t  Cl = lim i n f = _ ~  nan  < c E 
(0, c~). Let /~n = max{an ,  min{1 /2 ,  c /n}} ,  n e N, then  l i m n - ~  rt/~n = c and 
fin >- an  for all n E N. Since cl = liminf~__.~ nan ,  we can extract  a subsequence 
(n{)ie~ of N such tha t  lim~__.~(n~ - k)an~-k = Cl and an~-k < an{-k-1 for all 
i E N. Then we obtain 

H k (a l  , an~-k) 
n i ~ "  o * 

> (/31,.. . ,  Zni-k-1, 
= P(UI:n <_ 1 - ~ 1 , . . . ,  Un,--k--l:n <_ 1 -- Z ,~-k -1 ,  Un~-k:n <_ 1 -- ~ ,~-k)  
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+ P(UI:n ~_ 1 - - / 31 ,  . . . , Un~-k-l:n ( 1 -- ~ - - k - - 1 ,  

1 --/3n{--k < Un~-k:n <_ 1 -- an~-k )  
k --~ H~ i (~ l , . . . ,~n i -k - l ,~n l -k )  
( T~i ) [/~ k+l k+l 

-'F k-F1 ~, n~-k --O:ni-k)Hni-k-l(~l ' ' ' ' ' /~n~-k-1)" 

Passing to the limit for i -* oc on both sides of this inequality together with part  
(a) of Theorem 1.1 yields 

1 1)! (ck+l - -  ck+l)g0(C) > gk(C), gk(C) > g (C) + (k- -T--  

which obviously is a contradiction. Hence the proof is complete. [] 

3. Concluding remarks 

As announced at the end of Section 1, we investigate part  (b) of Theorem 1.1 
for c = oo and part  (d)(i) for non-monotonic sequences (xn)~e~ in detail. 

First  of all it should be mentioned tha t  for c = co (1.2) always implies 
l imsupn__.~nan = c = oc (cf. Theorem 1.1(c)). Now, let F be the cdf of a 
non-degenerate probabili ty distr ibution and x0 C ~ with 0 < F(xo)  < 1. Define 
an = 1 - F(Xo) for n E 51 odd and an  = 0 for n C 51 even, then  (1.2) is satisfied 
with c = oc, but  l i m i n f n _ ~  n a n  = O, which means tha t  (1.1) is not valid. Fur- 
thermore, if F is continuous, for every d E [0, c~) it is possible to find a Sequence 
(x,~)nc~ or (an)heN such tha t  (1.2) holds with c = c~, but  liminfn_.c~ nan  = d; 
consider e.g. an = ra in{l /2 ,  d / n }  for n e 51 even, and an  = 1/2 for n e 51 odd. 
Moreover, l i m s u p ~ _ ~  H ~ ( a ~ , . . . ,  a ~ - k )  = 0 < gk(d), which shows tha t  in part  
(d) (i) the  '< ' -s ign is possible. 

A non-trivial example which illustrates (for continuous F )  the existence of a 
sequence (C~n)n~ with g k ( l i m s u p n ~ o o n a n  ) =-liminfn--.cc Hnk((~l,... ,c~n-k) < 
limsUPn--.~ Hkn(a l , . . .  , a n - k )  < gk(liminfn--.~ nO~n) is given by an = min{1/2,  

for e a even and = min{1/2,  c2/n}  for n e 51 odd, 0 < C 1 < C 2 < 0 0 .  

Similarly as in the proof of part  (b) it can be shown tha t  l imsupn_ .~  H~k(a~, . . . ,  
a n - k )  = gk(c2) + (c~ +1 - c~+l)go(c2)/(k + 1)!. A more detailed but  analogous 
argumentat ion reveals tha t  the last expression is not only < gk(cl), but  in fact 
< gk(cl). Since gk(c) can be interpreted as the  probabili ty Pc(Z  <_ k), where Z 
has a Poisson distribution with parameter  c E (0, ce) under  Pc, we obtain for all 
k E 510, 0 < c1 < c2 < c~, the inequality 

1 (c~ +1 - Cl k+l)  e x p ( - c 2 ) .  Pc1 ( Z  <_ k) - Pc~ ( Z  <_ k) > (k + 1)-------~ 

It is obvious from (1.3), (1.4) and (1.5) tha t  the conditions limn~oc nan  = c, 
l i m i n f n ~  nan  = c and limsupn__,oo nan  = c can be reformulated equivalently 
via conditions concerning the cdf of the (k + 1)-th largest order statistic, namely 
limn~c~ P ( X n - k : n  <_ x n - k )  = gk(c), l imsuPn~  ~ P ( X n - k : n  <_ Xn-k )  = gk(e) and 
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l iminf~-~ooP(X~_km < x~-k)  = gk(c). Hence, the joint distr ibution function 
of XI : ~ , . . .  ,Xn-k:n  from a sample X 1 , . . .  ,Xn  behaves just  like the (k + 1)-th 
largest order statistic Xn-k:n if n is large (at least in the case where (xn)~r is a 
non-decreasing sequence, which is a quite natural  assumption).  

If F belongs to the domain of at t ract ion of an extreme value distr ibution 
function Q, then  the equivalence in (1.3) can easily be derived from the well-known 
equivalence 

lim n(1 - F(a~x + b~)) = - log Q(x) for all x E R, 

iff 
k 

lim P(Xn- :n <_ a, ,x + = 
n-'-'+ C~ 

j=O 

for all x e R  

for some normalizing constants an > 0 and b~ C R (cf. Reiss ((1989), (5.1.4) and 
(5.1.28)), or Leadbet ter  et al. ((1983), Theorem 1.5.1 and Theorem 2.2.2)). 

If limn-~oo nan exists, Theorem 1.1 may be applied to approximate expressions 
like P(Xi:n < x i , i  e Jkn), where j k  C {1 , . . .  , n  -- k} with n - k e Jn k. For, since 
{Zl:n < x l , . . . ,  X n - k  < Xn-k} C_ {Xi:n < x i , i  E Jkn} C {Xn-k:n < Xn--k}, it is 
obvious tha t  l i m ~ _ ~  P(Xi:~ < xi, i E J~) = gk(c). 

Examples of sequences (an)n~m for which limn--.oo nan exists and which 
play an impor tant  role in multiple comparisons are an = 1 - (1 - a~) 1/~ with 

' = a / n ,  a E (0,1), n E N. In the first case limn-~oo nan = - log(1 - a) and a n 
we obtain e.g. for k = 0 l imn-- .ooHn(al , . . . ,an)  = 1 - a ,  in the second case 

a t limn--.oo H n ( a ~ , . . . ,  n) = e x p ( - a ) .  
It may appear strange to the reader tha t  we did not restrict a t tent ion to non- 

decreasing sequences (Xn)neN (or to non-increasing sequences (an)ne~) in advance. 
One reason for this was the following monotonicity problem first raised in Dunne t t  
and Tamhane (1992): 

If a E (0, 1) is fixed, does there exist a decreasing sequence ( a n ) n ~  

such tha t  H n ( a l , . . . , a n )  = 1 - a for all n E [~? 

A discussion of this question and some applications of Theorem 1.1 in multiple 
comparisons can be found in Finner et al. (1993). Recently, the monotonici ty  prob- 
lem described above was solved by Dalal and Mallows (1992), who encountered it 
in a completely different context, independently of Dunnet t  and Tamhane  (1992). 
They proved tha t  for every a E (0, 1) there indeed exists a strictly decreasing 
sequence (an)heN such tha t  H n ( ~ l , . . . ,  a~) = 1 - a for all n e ~l. 
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