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A b s t r a c t .  Consider  a s t a t iona ry  f irst-order autoregressive process, wi th  i.i.d. 
residuals  following an unknown mean zero d is t r ibut ion .  The cus tomary  es t ima-  
tor  for the  expec ta t ion  of a bounded  function under  the  residual  d i s t r ibu t ion  
is the  empirical  es t imator  based on the es t ima ted  residuals.  We show tha t  
this  es t imator  is not  efficient, and  construct  a simple efficient es t imator .  I t  is 
adap t ive  with respect  to the  autoregression parameter .  
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1. Introduction 

Let Q be a distribution on the real line wi th  zero mean and positive and finite 
variance. We observe realizations Xo,. . .  ,Xn from a s ta t ionary autoregressive 
process Xi = 0X/-1 + ci, where the e~ are i.i.d, with unknown distr ibution Q. A 
simple, but  inefficient est imator for 0 is the least squares estimator 

t~ n = X i _ l X  / 2 2 1  . 
i=1 i = l  

The unobserved residuals si are est imated by g~i = Xi - # n X i - 1 .  A natural  
estimator for the expectat ion Ef(s)  of a bounded function f is the empirical 
estimator based on the est imated residuals, 

JEnf = n -1 L f(gni) .  
i=1 

For fixed t E ~ and f(x)  = I(x <_ t) we obtain an est imator for the residual 
distribution function F( t )  = Q(-cx~, t], 

St  

F~(t) = n -1 E I(g,~i _< t). 
i= l  

309 



310 W. WEFELMEYER 

The estimator Fn is well studied. For the stationary case, with tv~l < 1, a functional 
central limit theorem is proved by Boldin (1982, 1983). For moving average models 
see Boldin (1989). He requires a uniformly bounded second derivative of F.  His 
result is generalized by Kreiss (1991) to linear processes with coefficients depending 
on a finite-dimensional parameter. Koul and Leventhal (1989) treat the explosive 
autoregressive process, with I~ I > 1. They get by with a uniformly bounded first 
derivative of F .  For related results under weak smoothness assumptions on F we 
refer to Koul (1991, 1992). 

Here we restrict attention to the stationary case, with I~1 < 1. First we show 
that Enf  is not efficient. This is not due to the fact that  an inefficient estimator, 
the least squares estimator, is used for ~. Rather, the reason is that  E ~ f  ignores 
that Q has mean zero. The es t imator /~nf  can be improved by adding noise, 

n 

Enf  = F"nf - &nn -1 E gni with 
i = l  

o /fi 
i = 1  / i = 1  

Here &~ estimates a = Eef (e ) /Ee  2, and n -1 ~ g ~ i  estimates zero and may be 
considered as noise. The asymptotic distribution o f / ~ f  has variance E(f(e) - 
Ef(e ) )  2. The asymptotic distribution of E~f  has variance 

E(f(r - Ef (e ) )  2 - (Er 2. 

This is strictly smaller than E(f(r - Ef( r  2 unless c and f(r are uncorrelated. 
In particular, an improved estimator for the distribution function F(t) is 

n 

F~(t) = Fn(t) - &~(t)n -~ E eni with 
i = 1  

/• a,~(t) = ~ &J(gn~ < t) g2 
- -  hi" 

i=I / i=i 

It is easy to check that E~f is asymptotically optimal among estimators of 
the form E . f  ^ --1 n ^ - bun ~ = 1  s n i  with/~n a consistent estimator of some functional 
of Q. In Section 2 we prove, for smooth f ,  that E*f  is efficient in the much larger 
class of regular estimators. 

If ~ is known, observing the Xi is equivalent to observing the si. Moreover, one 
can replace the estimated residuals ~{  by the true residuals ci. The problem then 
reduces to estimating Ef(s)  efficiently on the basis of i.i.d, observations ~{ with 
E~ = 0. It can be solved with the methods described in Pfanzagl and Wefelmeyer 
(1982) and Bickel et al. (1993). The main technical difficulty in the present setting 
lies in showing that observing the gn{ is asymptotically equivalent to observing the 

8 i .  

Boldin (1982, 1983, 1989), Koul and Leventhal (1989), Koul (1991, 1992) 
and Kreiss (1991) consider the residual distribution function, i.e. step functions 
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f(x) = I(x <_ t), and need smoothness of the distribution function. We consider 
smooth functions f and get by without smoothness of the distribution function. 
This version is appropriate for the application we have in mind; see Wefelmeyer 
(1992). Two questions remain open. Under which conditions is our improved 
estimator F~(t) efficient? Over which classes of functions f does one obtain a 
functional version of our result? 

The present result is an example for efficient estimation in models with certain 
restrictions. Here the restriction is zero mean of the residual distribution. Such a 
restriction is also common in regression models. We note that  E~f  is not a one- 
step improvement of F, n f  as discussed, e.g., by Bickel (1982) and Schick (1987) 
for the i.i.d, case. For a general theory of one-step estimators under restrictions 
in the i.i.d, case see Koshevnik (1992). 

2. Result 

First we determine an asymptotic variance bound for estimators of Ef(~) 
when ~ is known. Then we find an estimator which attains the bound for all ~. 
Such an estimator is called adaptive. Its existence implies that  the variance bound 
for known ~ equals the variance bound for unknown ~). We expect adaptivity to 
be symmetric in d and Q. In fact, there exist estimators for ~) which attain, for 
all Q, the asymptotic variance bound for the model in which ~ varies and Q is 
known; see Kreiss (1987). 

Fix ~ with [~l < 1 and a distribution Q on the real line with zero mean and 
positive and finite variance. For known ~, a local model around Q is introduced 
as follows. Set 

H = {h:  R ~ N bounded, Eh(e) = O, Eeh(e) = 0}. 

For h E H define Q~h by 

Q h(dz) = (1 + n-1/2h(x) )Q(dx). 

Then Qnh is a probability measure for large n, and the residual has again mean 
zero under Qnh 

Enh~ = Ee + n-1/2Eeh(~) = O. 

Let Pn denote the joint distribution of X 0 , . . . , X n  if Q is true. Define p~h ac- 
cordingly. It is easy to check local asymptotic normality, 

fib 

log dPr~ h/dPn = n -1/2 E h(Xi - v~Xi-1) - 1 Eh(e)2 + op. (1) 
i = 1  

n -1/2 s h(Xi - v~Xi-1 =} Nh under Pn, 
i = 1  

and 

where Nh is normal with mean zero and variance Eh(r 2. For details see Huang 
(1986) or Kreiss (1987). 
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Now we describe an asymptotic variance bound for estimators of the expec- 
tation E l ( s )  and characterize efficient estimators. The norm ( E h ( s ) 2 )  1/2 in local 
asymptotic normality provides an inner product E h ( s ) k ( e )  on L 2 ( Q ) .  We can 
express differences E n h f ( e )  - E f ( s )  in terms of this inner product, 

n 1/2 ( E n h f ( c )  - E f ( ~ ) )  = E h ( ~ ) f ( ~ ) .  

The right side is a linear functional on H; the function f is a gradient. Let H 
denote the closure of H in L2 (Q). The gradient f may be replaced by its projection 
into H, the canonical  gradient .  We show that  the latter is given by the function 

(2.1) g(x )  = f ( x )  - E l ( e )  - ax  

with 
a -- E e f ( r  2. 

To see this, note that  g is a gradient since for h E H, 

E h ( ~ ) g ( ~ )  = E h ( r  - E h ( e ) E f ( e )  - a E e h ( r  = E h ( ~ ) f ( e ) ,  

and that  g E H since 

E g ( e )  = E l ( e )  - E f ( e )  - a E c  = 0, 

Esg (~ )  = E e f ( r  - E ~ E  f ( e )  - a E e  2 = O. 

An estimator Tn for E f ( c )  is called regular at Q with l imi t  L if, for h ~ H, 

- L under p;h. 

By the convolution theorem, an asymptotic variance bound for such an estimator is 
given by the squared length of the canonical gradient. More precisely, L = M + N 
in distribution, where M is independent of N, and N is normM with mean zero 
and variance equal to 

E g ( s )  2 = E ( f ( ~ )  - Ef(~))  2 - ( E ~ f ( ~ ) ) 2 / E c  2. 

The convolution theorem justifies calling an estimator ef f ic ient  for E f ( ~ )  at Q if 
its limit distribution under P~ is N. It is well known that  an estimator Tn for 
E f ( e )  is regular and efficient at Q if and only if it is asymptotically linear with 
influence function equal to the canonical gradient, 

(2.2) nI/:(T  - E l ( 4 )  = g(X  - OX _I) + (1). 
i ~ 1  

We use this characterization to prove our main result. A convenient reference for 
the characterization is Greenwood and Wefelmeyer (1990). 

A different local model is introduced in Huang (1986) and Kreiss (1987). It 
does not take into account that  the residuals have mean zero. Hence the condition 
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E~h(~) = 0 is missing in the definition of H, the relation Enh~ ---- 0 does not hold, 
and the local model is not contained in the given model. With this local model 
the canonical gradient is f (x )  - Ef(c) ,  and the empirical e s t i m a t o r / ~ f  would be 
declared efficient. We have seen that  it can be improved. The mistake is harmless 
for estimating ~. In fact, because of adaptivity, it suffices then to consider local 
models with Q fixed and d varying. Local asymptotic normality for such models 
is proved in Akahira (1976) and Akritas and Johnson (1982). 

THEOREM 2.1. Let f be bounded with uniformly continuous and bounded 
derivative. Then the estimator 

Tt 

E* f = E ~ f  - 5~n - 1 E  7ni, 
i = 1  

an = E gnif(gni) ~2. 
i = 1  / i = l  

with 

is regular and efficient for El (g)  at Q. 

3. Proof 

In this section, all sums extend over i from i to n, as before. We must show 
that  (2.2), with g given in (2.1), holds for Tn = Enf .  This follows if we prove 

(3.1) 

(3.2) 
(3.3) 

n l /a (En f  - E f(c)) = n -1/2 E ( f ( r  - E f(r + op~ (1), 

5,~ = a + op,, (1). 

Fix 5 > 0. Since 0n is nl/2-consistent, there exists c > 0 such that  

> <5. 

Since Xi is square-integrable, 

Pn ~ max ]Xil > Sc- lnU2}  = 

Hence we may restrict attention to X0,. �9 �9 X~ with 

IJn - OJ <_ n-1 /%,  IXi[ <_ 5c - l n  1/2. 

(i) To prove (3.1), choose gn~ between vi and gni such that  

(3.4) f ( g n i ) = f ( c i ) + ( g n ~ - e i ) f ' ( g n i ) .  
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n l / 2 ( E ~ f  - E f ( s ) )  = n -1 /z  ~ ( f ( ~ )  - E f ( e ) )  

- nl/Z(O~ - O)n -1 ~ X i - l f ( g ~ i ) .  

The least squares estimator is nl/2-consistent, nl/2(On - O )  = Opt ( i ) .  Use (3.4) 
to write 

n -1 ~ ,  x~_l/'(~.~) = ~-~ ~ x~_~f'(~) + ~ - 1 Z ( / , ( ~  ) _/'(~0). 

Relation (3.1) follows if this is of order op~(1). The second right-hand term is 
Op,~ (1) since f '  is uniformly continuous and 

with 6 arbitrarily small. The first right-hand term is opn (1) by the ergodic theorem 
since 

E X o / ' ( x ~  - ~ X o )  = E X o s F / ' ( c )  = o. 

(ii) To prove (3.2), write 

~-~/~ Z (  ~ - ~) = -~ /~ (~ -  - ~) n-~ Z x~_~. 

The least squares estimator is nX/:-consistent, and the ergodic theorem and E X o  = 
0 imply n - l ~  X i - 1  -- opn (1). Hence (3.2) holds. 

(iii) To prove (3.3), note that  &~ is a ratio of two averages. Consider first the 
numerator. Write 

(3.5) n - ]  E ( g n i f ( g n O  - s i f ( e i ) )  

= ~-1 ~ ( g . ~  _ ~ ) f ( ~ . , )  + ~-1 ~ ~(f (~ .~)  _ f ( ~ ) ) .  

The function f is bounded, say by c. Hence the first right-hand term in (3.5) is 
bounded by c[0~ - 0In -1 E Ix i - l l  �9 This is of order Op.(1) since 0~ is consistent 
and n - 1 E  [Xi-ll  = EIXol  + OR.(1) by the ergodic theorem. Use (3.4) to write 
the second right-hand term in (3.5) as 

(~"~ - ~ ) n - ~  Z ~f'(g"~)" 

The function ff  is bounded, say by c. Hence the second right-hand term in (3.5) is 
bounded by 5 c n - 1 ~  "] levi and is therefore of order op~(1) by the ergodic theorem 
since 5 is arbitrarily small. We obtain that  (3.5) is OR,(1), and by the ergodic 
theorem, 

(3.6) n-1 Z gnif(gni) = n-1 E ~if(si) + op~ (1) 

= E e f ( e )  + op~ (1). 
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Consider now the denominator of 5n. Write 

- = n - 1  - + 

= --(On -- ~))f~ - 1 E X i - l ( 2 X i  "[- (On ~- ~9)Xi-1).  

This is bounded by 52(1 + 101)n-1E Ix , - l f  and hence is of order op~(1) by the 
ergodic theorem since ~ is arbitrarily small. Again by the ergodic theorem, 

(3.7) 7/'--1 E ^2 = n - 1  2 eni E e i +  o p ~ ( 1 ) = E c 2 + o p ~ ( 1 ) .  

Since Ec 2 is positive, relations (3.6) and (3.7) imply (3.3), and we are done. 
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