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A b s t r a c t .  The nonparametric  problem of estimating a variance based on a 
sample of size n from a univariate distribution which has a known bounded 
range but is otherwise arbitrary is treated. For squared error loss, a certain 
linear function of the sample variance is seen to be minimax for each n from 2 
through 13, except n --- 4. For squared error loss weighted by the reciprocal of 
the variance, a constant multiple of the sample variance is minimax for each 
n from 2 through 11. The least favorable distribution for these cases gives 
probability one to the Bernoulli distributions. 

Key words and phrases: Admissible, minimax, nonparametric,  linear estima- 
tor, moment  conditions. 

1. Introduction and summary 

We study the problem of finding nonparametric minimax estimates of the 
variance of an unknown distribution F on the real line, based on a sample from 
F, similar to the treatment of Hodges and Lehmann (1950) for the problem of 
estimating the mean of F. 

We first review the problem of estimating the mean nonparametrically. Let 
XI,..., Xn be a sample from a distribution F with finite mean, #, and consider 
the problem of estimating p with squared error loss, L(F, ~) --- (p - ~)2. To rule 
out the possibility that every estimator of # have infinite maximum risk, Hodges 
and Lehmann consider two possible restrictions on F: (i) bounded variance, say 
Var(X~) < i; (ii) bounded range, say 0 _~ Xi _~ I. Under (i) the sample mean -~n 
is minimax, and the normal distributions with variance 1 form a least favorable 
class. Under (ii), the Bernoulli distributions on {0, i} are least favorable, and the 
estimate 

'nv,,_ - 1 1 
d(Xn) -- 1 Xn + 1 + ~  2 

is min imax .  Meeden  et al. (1985) show t h a t  ) (n  is admiss ib le  in case (i). A p p l y i n g  
thei r  E x a m p l e s  1 and  2 (with  M - x/~ and  #* = 1/2) ,  one can  show t h a t  )~n and  
d ( _ ~ )  are  admiss ible  in case (ii). 
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A third case arises when the loss is taken to be the scale invariant loss function, 
Ls(F, t2) = (# - t2)2/~ 2. In this case, we need only restrict the parameter  space 
to those F with finite positive variance. Then ) ~  is again minimax, since it is an 
equalizer rule and an extended Bayes rule with respect to the priors concentrated 
on normal distributions, F = N(# ,  1), where # is N(0, m 2) with r 2 known and 
large. )~n is also admissible for L~(F, [~) since it is admissible for L(F, [~). 

Consider now the corresponding problems of est imating a variance. Through- 
out this  paper we use 0 instead of ~r 2 to represent the variance of the unknown 
distribution, F .  We consider three loss functions: squared error loss, LI (F ,  0) = 
(0 - ~)2, a weighted squared error loss, L2(F, O) = (0 - 0)2/0, and the scale invari- 

ant loss, L3(F, 0) = ( 0 -  0)~/02. We denote the risk function for the loss L~ by R~, 
tha t  is, Ri(F, 5) = EFL~(F, 5(X)), where X = ( X I , . . . ,  Xn). 

In some cases, the minimax est imate turns out  to be degenerate. For the 
scale invariant loss, L3, where we restrict the parameter  space to be distributions 
with finite positive fourth moment,  the degenerate est imate 00 - 0 is minimax 
for any sample size. This may be seen as follows. Clearly, R3(F, 00) ~- 1, so it 
suffices to show tha t  suPF R3(F,d) >_ 1 for any decision rule (estimate), d. In 
fact, supFe9 R3(F, d) k 1 for all d, where ~ is the set of all distributions Gp for 
0 < p ~ 1/2, where Gp gives mass p to +1 and - 1 ,  and mass 1 - 2p to 0. This 
holds since the probability tha t  all observations are zero is P(X = 0) = (1 - 2p) ~, 
so tha t  

R3(Gp, d) > (i - 2p) ~ "(1 - d(0) ' ]2 
- 2 p  ] ' 

and as p --~ 0, this quant i ty  tends to oc if d(0) r 0, and to 1 if d(0) = 0. 
A similar analysis shows tha t  in case (i) above with squared error loss and with 

variance at most 1, the degenerate rule, 01 -~ 1/2 is minimax for any sample size. 
Here, we have Ra(F, Oa) = (0 - 1/2) 2 < 1/4 for all distributions with 0 < 0 < 1. 
Yet for the class, G~,  consisting of the distr ibution G ~ ,  degenerate at  zero, and 
of the distributions, G~ for a _> 1, where G~ gives mass 1/(2a 2) to both  + a  and 
- a ,  and mass 1 - (1/a  2) to 0, we have for any decision rule, d, 

so tha t  

( I) -RI(Ga, d)> 1 - ~ - ~  (1 - d(0)) 2 

s u p  RI(G,d) > m a x  d ( 0 ) 2 , s u p  1 - (1 - d ( 0 ) )  2 > - .  
G~6~ -- a -- 4 

For the weighted squared error loss, L2(F,O), and with variance at  most  one, a 
similar argument  gives 1 as the minimax risk achieved at the degenerate rule, 
Oo --0. 

A perhaps more direct analogy with the case (i) problem of est imating a mean 
would be to restrict the distributions to have bounded fourth central moment,  
say it4 < 1. The analysis of the above paragraph does not work because the 
distr ibution Ga has fourth central moment  tending to infinity as a -~ cx~. We do 
not know the minimax est imate of the variance for this problem. 
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For case (ii) above, the minimax estimate turns out to be nontrivial and we 
are successful in finding it only for certain values of n for squared error loss, L1, 
and weighted squared error loss, L2. We restrict F to be in the class, 5~[0,i], of 
distributions with support in [0, 11, and for the L2 loss function we assume that 
the variance of F is positive. Let ~n denote the unbiased estimate of 8, 

n 

(1.1) = 1). 
i=1 

The method of attack will proceed along these lines. First, we make a conjec- 
ture, eventually shown to be correct for some values of n, that the least favorable 
distribution gives weight only to the class, 5r{0,i}, of Bernoulli distributions Bp 
for p E [0, i], where Bp gives mass p to 1 and mass 1 - p to 0. Under this con- 
jecture, the problem reduces to finding minimax rules for estimating the variance, 

--p(l -p), of the Bernoulli distribution Bp. We therefore search for equalizer 
rules for both loss functions, LI and L2. In Section 2 we find linear functions of 
~n that are equalizer rules for estimating ~ = p(l -p). Therefore in the following, 
it suffices to restrict attention to linear estimators. 

Second, we show that the supremum of the risk of linear estimators over ~[0,i] 
is attained at the Bernoulli distributions. This is done in Section 3. 

Thus it is sufficient to show these equalizer rules are minimax for the esti- 
mation of the variance of the Bernoulli distribution. This we attempt in Section 
4. In Subsection 4.1 we show that the equalizer rules are minimax within the 
class of linear functions of ~n. In Subsection 4.2, we show that the equalizer es- 
timators are admissible and minimax among all estimators under LI for values 
of n = 3, 5, 6, 7,..., 13, and under L2 for n -- 2, 3,4,..., ii. For the loss L1 
and n -- 4, we find the minimax estimator by numerical methods; whether this 
estimator is also minimax for the nonparametrie problem is still unknown. 

We are led to believe that the minimax property is a very delicate one. The 
equalizer rules seem to be very good in any case (for n = 4 and LI loss, the 
minimax rule improves on the equalizer rule by only .00000047), so whether or not 
the equalizer rule is minimax is much a matter of chance. For large n, there is a 
much greater possibility of having a complex estimator uniformly improve on the 
equalizer rule. What is perhaps surprising is that, except for n = 4 and loss LI, 
there seems to be a sharp cutoff for n at which the equalizer rule is minimax: 13 
for LI and Ii for L2. 

Brown et al. (1992) have shown that the maximum likelihood estimator of 
the variance of a binomial distribution under squared error loss is admissible for 
n _< 5 and inadmissible for n _> 6. The admissibility of ~2 = (n + l)-l(n - I)~ 
for the L1, L2 and L3 loss functions for all F is established by Meeden et al. 
(1985). Other papers such as Aggarwal (1955), Phadia (1973), Cohen and Kuo 
(1985), Brown (1988), and Yu (1989), study the nonparametric estimation of a 
distribution function from a decision theoretic point of view. 



298 THOMAS S. FERGUSON AND LYNN KUO 

2. Equal izer rules for the Bernoul l i  d is t r ibut ions,  n > 2 

In this section, we restrict attention to the Bernoulli distributions and find 
constant risk decision rules for both loss functions, L1 and L2 for sample of size 
n > 2. For later use, we first give a formula for the risk function under squared 
error loss, L1, of an arbitrary linear function of 0~, for arbitrary distributions F 
having finite fourth moment. 

LEMMA 2.1. Let #4 represent the fourth moment o fF  about the mean. Then, 

(2. i)  a2 ( (n - 3)a2) o2 _ 2b(l _ a)O § b2" Rl(F,  aOn + b ) =  --#4-t-n ( l - a ) 2  ~ ( n - - ~  

PROOF. 

RI(F, aO~ + b) = ELl(F,  aO~ + b) 
= E(aOn + b - 8) 2 

= a 2 Var(On) + (b - 0(1 - a)) 2. 

The formula follows using the expression, 

V a t ( < )  - Z4 ( ~ -  3)8 2 
n n ( n -  1) 

(see, for example, S. S. Wilks (1962), p. 199) and collecting terms in #4, 82 and 8. 
[] 

For the Bernoulli distributions, Bp, the sample variance takes on the simple 
form, 0~ = W , ( n -  W~)/(n(n - 1)), where W. = Y~4~1 Xi is the number of ones 
in the sample. The variance of Bp is 0 = p(1 - p), and the fourth moment about 
the mean is #4 = p(1 - p)4 + (1 - p)p4 = p(1 - p)(1 - 3/9 + 3p 2) = 8(1 - 38). 
Substituting this into (2.1) and collecting terms gives the following corollary to 
Lemma 2.1. 

LEMMA 2.2. 

( (4n =-6)---a2 h 02 ( - ~  2b(1 a))O b 2 . (2.2) n l ( B p ,  a s  ( l - a )  2 n ( ~ - l )  ] + - - + 

We may use this formula to derive the equalizer rules, to be denoted by 5~, 

(2.3) 6~ = a~O~ -4- bm 

by equating the coefficients of 0 and 8 2 to zero. This leads to the equations, 

(2.4) 2b~(1 - a~) = a ~ / ~  
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and 

(2.5) 1 - 2an + zna~ = 0, 

where 

(~  - 2 ) ( n  - 3) 
(2.6) zn = n ( n -  1) 

Also note tha t  the constant  risk of the rule, 5n, is R I ( B p ,  5~) = b~. 
For n = 2 and n = 3, (2.5) is linear in an, and the equations (2.4) and (2.5) 

have a unique solution, 

(2.7) 

I 1 
a2 = 2 '  b2 = ~, 

1 1 
a3 = 2 '  53 = ~ .  

For n _> 4, (2.5) has two roots and the equations have two solutions. We choose 
as 5n the solution with the smaller risk, b2~, namely, 5n -= anon + bn, where, 

] . - ~ / T - z n  2 
(2.8) an -- and bn - an 

zn 2n(1 - an) 

Under  the  weighted squared error loss function, L2, the risk function of the rule 
a~n + b is found by dividing (2.2) by 0, 

( (a_: ) (2.9) R2(Bp ,  at~n + b) = (1 - a) 2 ~((nk:-~) / / 0  + - 2b(1 - a) + b2/O. 

For this to be constant,  the first and the last coefficients must  vanish. This leads 
to equalizer rules, denoted by d,~, which differ from 5n by the removal of the  term 
bn, 

(2 .10)  dn = anon,  

where the an are as given in (2.5) and (2.6). The constant  risk of these decision 
rules  is R2(Bp, tin) = a~/~. 

3. Reduction to the Bernoulli case for linear estimates 

In this section, we show that  in the nonparametr ic  problem of est imating 
a variance of a distr ibution on [0, 1] by a linear function of 0n, the worst  case 
dis tr ibut ion is Bernoulli. The  proof is based on the following lemma of independent  
interest. For the remarkably simple proof of this lemma, we are indebted to 
Thomas  Liggett.  

LEMMA 3.1. I f X  E [0, 1], then, 

#4 + 30 .4 _< (72, 
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with equality if and only if X is Bernoulli or degenerate. 

PROOF. Let X and Y be i.i.d, on [0,1]. Then ( X - y ) 2  e [0,1], so tha t  
E (X  - y ) 4  <_ E(X - y )2  with equality if and only if X is Bernoulli or degenerate. 
This inequality is equivalent to 

E ( ( X  - , )  - ( Y  - _< E ( ( X  - , )  - ( Z  - . ) ) 2  

which reduces to 2/t 4 -b 6c ~4 ~ 2or 2. [] 

From this, the main result follows easily. 

THEOREM 3.1. For every a and b, and for every F in 5[0,]], there exists a 
Bernoulli distribution, Bp in 5c{0,1} such that 

R1 (F, aOn + b) < R1 (Bp, aO~ + b). 

Similarly for the risk function, R2. 

PROOF. The variance of any F E ~c[0,1] satisfies 0 < 0 < 1/4 so we can find 
Bp E Y{0,1} with the same variance. The subst i tut ion of #4 with  0 - 302 in the 

R~(F, aOn + b) of Lemma 2.1 results in the Rl(Bp,  aOn + b) of Lemma 2.2 with 
this Bp. Lemma 3.1 shows tha t  the subst i tut ion results in an increase. Since R2 
is equal to R1 divided by 0, the same result holds for R2 as well. [] 

4. Minimax estimator of the variance of the Binomial distribution 

Minimax est imation of the variance of the restricted family Jc{0,1 } is studied 
in this section. Thus, we deal with the sufficient statistic, W~, the number  of l ' s  
in the sample, which has a binomial distribution, B(n, p). The min imum variance 
unbiased est imate (1.1) of the variance, 0 = p(1 - p), reduces to 0n -- Wn(n - 
W~)/(n(n - 1)). In Subsection 4.1, we find the minimax est imator  of 0 within the 
class of linear functions of 0~, and in Subsection 4.2, we show this est imator  is 
minimax and admissible within the class of all estimators for certain values of n. 

4.1 Minimax linear estimators 
First  we show tha t  for squared error loss the equalizer rule, 5;~ = anOn+bn with 

an and b~ given by (2.7) and (2.8), is minimax within the class of all est imators 
tha t  are linear in On, for all n > 3. In the proof, we use the principle tha t  if an 
equalizer rule d is a Bayes rule within a class d of decision rules, then  d is minimax 
within C. For if d C C is not minimax, then there is an e > 0 and a rule d* E g 
such tha t  max0 R(0, d*) < max0 R(0, d) - e, which implies, if d is an equalizer rule, 
tha t  R(0, d*) < R(0, d) - e for all 0, which in turn  implies for any prior t ha t  the 
Bayes risk of d* is at least e smaller tha t  the Bayes risk of d, so t h a t  d cannot  be 
Bayes within g for any prior. 
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THEOREM 4.1. For all n > 3, the equalizer rule, 5~, is minimax with respect 
to squared error loss, LI(p,  a) = (t9 - a) 2 where to = p(1 - p), within the class of 
estimators that are linear functions of ton. 

PROOF. We take C to be the class of linear rules, a~n + b, and from L e m m a  
2.2 note  tha t  the risk function of such rules may be wri t ten  as 

R1 (0, a /~ + b) = Ato 2 + Bto + C, 

where 

A = a2z,~ - 2a + 1 = (1 - a) 2 - a2(1 - zn), 
a 2 

B = - -  - 2b(1 - a), 
n 

C =  b 2, 

(n - 2)(n - 3) 
zn = n ( n -  1) 

To show tha t  for n > 3 the equalizer rule, 5~ = a~0~ + b~ where as  and b~ are 
given in (2.7) and (2.8), is minimax within C, it is sufficient to  show tha t  there  
exists a prior distr ibution,  7r, for to in the interval [0, 1/4] such t h a t  5~ is Bayes 
with respect  to ~r within C. 

The  Bayes risk of a linear rule with respect  to a prior distr ibution,  7r, may  be 
wri t ten  as 

(4.1) r(~, aOn + b) = Ap2 + Ba l  + C 

= #2((i - a)2 - a 2 ( 1 -  zn)) + #l ( ~  - 2b (1 -  a))  + b 2 

where #i = E~0 i. We are to show tha t  there  exists a prior :r such tha t  the  
minimum of (4.1) over all a and b occurs at tha t  a and b tha t  make the  coefficients 
A and B zero. For fixed a, (4.1) is a quadrat ic  function of b with a min imum at 
b = #1(1 - a). Wi th  this value of b, the Bayes risk becomes 

(4.2) r(Tr, aOn+b)= #2( (1 -a )2 -a2(1 - zn ) )+# l  ( ~ -  2#1(1 -  a ) 2 ) + # ~ ( 1 - a )  2. 

If bo th  coefficients A and B are to  be zero, then we must  have ( l - a )  2 = a 2 ( 1 - z ~ )  
and a2/n = 2#1(1 - a )  2, which, eliminating a, gives 

1 n - 1  

#1 = 2n(1 - z~) -- 4 ( 2 n -  3) 

as a necessary condit ion for the  desired prior. Wi th  this value of #1, we m ay  write 
(4.2) as 

(4.3) r(Tr, a0,~ + b) = (#2 - 2#~)((1 - a) 2 - a2(1 - zn)) + p~(1 - a) 2. 
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We must  show tha t  there  exists a choice of #2 as a second moment  of a dis tr ibut ion 
on [0, 1/41 whose first moment  is # t  = 1/ (2n(1 - zn)), such t h a t  the minimum of 
(4.3) occurs at a point  a tha t  satisfies (1 - a) 2 = a2(1 - z~). (4.3) is a quadrat ic  
funct ion of a with a minimum at the point  

it2 - #2 

The  equation, ( 1 -  a) 2 : a2(1 - z n ) ,  becomes equivalent to (#2 - p S )  2 = (1 - 
z~)(2#~ - p 2 )  ~. We may  solve this for #2 in the  interval (#[,  2# 2) by taking square 
roots , /z2 - / ~  = ~ ( 2 p ~  - ;~2), or equivalently, 

1 + 2v/1 - zn 
# 2  = #~ 

1 + x/~--- zn 

It  remains to  be shown tha t  there  is a dis tr ibut ion on [0, 1/4] with #1 and it2 
as the  first two moments .  For this it is necessary and sufficient tha t  tt21 _< tt2 _ 
#1 / 4  _< 1/16. T h e  first and th i rd  inequalities are clear. To show #2 _< #1/4 ,  we 
replace p~ by its value in te rms of it1 and cancel it1 and find tha t  it is equivalent 
to s h o w  

1 + v f f - z ~  

4(1 + 2 

We replace # l  by its value and find it is equivalent to show 

n - 1  < l + v r f - z ~  

2n - 3 - 1 + 2x / f ' -  z~" 

This  reduces to  v/1 - Zn <_ n - 2, which is valid for all n > 3. [] 

When  n = 2, the  equalizer rule, a20n + b2 is not minimax.  In this case, the 
class of linear es t imators  coincides with the class of all est imators.  In Subsection 
4.2, we show tha t  5202 +bz is minimax,  where a2 = 1 - ( x / 2 )  -1 and b2 = ( v ~ - 1 ) / 4 .  

The  corresponding result for scaled squared error  loss, L2(p, a) = (0 -a )2 /0 ,  
is much easier. 

THEOREM 4.2. For all n >_ 2, the equalizer rule, dn = anon, is minimax with 
respect to the loss, L2(p, a), within the class of estimators that are linear functions 
of On. 

PROOF. From (2.9), we see tha t  the risk of aO~+b is of the  form AO+B+b2/O. 
Therefore,  we must  have b = 0 to  have a bounded  risk. Then  since R2(p, aOn) is 
linear in 0, it achieves its max imum at the boundary  points 0 = 0 and 0 = 1/4, 
corresponding to  say p = 0 and p = 1/2, so tha t  

(4.4) max R2(p, aOn) = max {R2(O, aOn),R2 ( ~  aO ) 1  0 ~ p < l  , n 

a a2 Zn -- 2a + 1 a 2 } 
= max  - - ,  + - -  . 

4 r t  n 
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The  left and right terms of this max imum are equal if a is equal to the an given 
in (2.7) and (2.8), while for a _< an the  right side is decreasing in a and for a > an 
the left side is increasing in a. This implies tha t  the min imum of this maximum 
occurs at a = an with a minimax value of a2/n. [] 

4.2 Minimaxity of  5 n and dn within all estimators 
In this subsection, we investigate whether  or not  the minimax linear es t imator  

of Subsection 4.1 is minimax overall. We first t rea t  the L1 loss function. It suffices 
to  show tha t  the equalizer rule for n > 3 is Bayes with respect  to some prior 
distr ibution on [0,1]. Unfortunately,  the  conjugate  prior does not  work. The  
Bayes rules with respect  to  the be ta  distributions,  Be(a, a) ,  with squared error 
loss are d~(Wn) -- (2a + n ) - l ( 2 a  + n + 1 ) - l { W ~ ( n  - Wn) + ~ ( a  + n)}. None 
of these rules come close to  the equalizer rule. Instead,  we find necessary and 
sufficient conditions on the first few moments  of the  prior dis tr ibut ion in order 
tha t  the equalizer rule be Bayes with respect  to this prior. Then  we check whether  
or not  there  exists a dis tr ibut ion with these first few moments .  

We show tha t  5n = anon + bn is minimax for n = 3, 5, 6 , . . . ,  13. For n = 4, 
a404 + b4 is not  Bayes with respect to any prior dis t r ibut ion on [0,1], nor is it 
minimax. We obtain a minimax es t imator  by direct calculation in this case in 
Theorem 4.4. 

THEOREM 4.3. In the problem of estimating 0 = p(1 -p)  with loss L1 (p, a) = 
(0 - a) 2 based on W E B(n, p), the equalizer rule, ~n, is admissible and minimax 
f o r n = 3  a n d S < n < 1 3 .  

PROOF. The  result  for n = 3 follows immediate ly  from Theorem 4.1 since 
53 assumes only two values and any function defined on only two values is linear. 
Assume then  tha t  n _> 4 where (2.8) holds for a~ and bn. Since the problem is 
invariant under  the t ransformat ion  x --+ 1 - x, we may restr ict  a t ten t ion  in our 
search for a minimax rule to rules depending only on Y~ = min{Wn, n - Wn}. The  
density of Yn given 0 = p(1 - p) is 

P(Y  = y I o)  = 

( y )  OY[(1 _p)n--2y+pn--2y], for 0 < y < n/2 

if n is even and y =- n/2. 

Since this depends on p only th rough  0, we may, with some algebraic manipula-  
tions, write this density as 

P(Yn = Y l O) = (y)OVqn-2y(O), 

where q0 (0) = 1 and 

[k/2J k (k  ~. J)(_o)J ' 
q (O) = k - j  

j=O 
for k_> 1, 
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and Lx3 denotes the greatest integer less than  or equal to x. The first few functions, 
qk, are: q1(8) = 1; q2(8) = 1 -  20; qa(8) = 1 -  38; qa(8) = 1 -  48 + 282; q5(8) = 
1 -- 50 +582; q6(O) = 1 -- 60 + 902 -- 20a; etc. 

Thus, qk(8) is a polynomial of degree [k/2J in 0, and P(Y~ = y I 8) is a 
polynomial of degree In~21 in 8. The risk function depends only on 8 so we write 
it as R(O, d) and evaluate it as 

Ln/2J 
R(8, d) = E P(Y~ = y I 8)(8 - d(y)) 2. 

y-~O 

This is a polynomial of degree In/2] + 1. (The coefficient of the highest term gets 
cancelled.) 

To find a Bayes rule with respect to a given prior, ~r, we minimize E~R(8,  d) 
separately for each d(y). Thus, the Bayes rule is 

E 8 y+I,'y r,~\ 
d(y) = ~ un-2~kv) for y = 0 , 1 , . . .  [n/2J.  

E~rSYqn-2 v (8) ' 

The question is: Does there exist a prior distribution,  7r(8) for 8 in [0, 1/4], such 
that 

E 8 y+I (4.5) qn_2y(8) y) E,rSYqn_2y(8 ) = 5n(y) = ann(  n _ 1) ~-bn for all y = 0 , 1 , . . . ,  Ln/2J? 

If so, the equalizer rule, being Bayes, will be minimax. Moreover, being unique 
Bayes, it is admissible among invariant rules and hence admissible (Theorem 4.3.2 
of Ferguson (1967)). 

Equation (4.5) is essentially a linear system of [n/2J + 1 equations in the first 
[n/2J + 1 moments of the prior distribution. Let #~ = E~0 i. For fixed n, we can 
solve these equations for P l , . . . , p [ ~ / 2 j + I ,  and then  check whether  or not there 
exists a distribution on [0, 1/4] having these moments.  

These equations may be writ ten Ap  = b, where p = (#1 , . . .  ,p l~/~j+l)  T, 
where b = ( - b n , O , . . .  ,0) T, and where A is the ([n/2J + 1) x ([n/2J + 1) matr ix  
whose i, j - t h  entry is given by 

Aij = ( -1 )J - i+l (~n( i  - 1)b~j § c~j), 

where 

bij : { 

cij -~- { 

(n - 2i + 2)(n - i - j)!  
for i = 1 , . . . ,  [n/2J, j = i -  1 , . . . ,  [n /2j  

( j -  i + 1 ) ! ( n -  2j)i ' 
1, for i = [n/2J + 1, j = kn/2J 
O, otherwise, 

( n - 2 i + 2 ) ( n - i - j + l ) !  f o r i = l , . .  Ln/2J j = i, . [n/2J + l 
( j - ~ ) ! ( ~ - 2 j + 2 ) !  ' �9 ' ' " ' 

1, f o r i = j =  [ n / 2 J + l  
0, otherwise. 
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The  solution to the problem of determining whether  a given sequence of num- 
bers, m l , . . .  , ink, can be the first k moments  of a distr ibution on [0, 1] is a well- 
known result  in the theory  of moments .  See Chapte r  III  of Shohat  and Tamark in  
(1943) or Chapter  IV of Karlin and Shapley (1953). We give a brief  descript ion of 
these results in terms of . the matrices A__ k and A k defined as follows. For k even, 

- -  k let ~ k '  (resp. Ak), be the (k2 + 1) x (~ + 1) matrix,  (resp. g x k matr ix) ,  whose 

i j - th  element is mi+j-2,  (resp. rni+j-1 - mi+j) .  For k odd, let ~ k '  (resp. Z k )  , be 
the k+l  k+l  ( ~ - - )  • (--5--) mat r ix  whose i j - th  element is m~+j-1, (resp. m i + j - 2 -  m i+ j -1 ) ,  
where m0 is defined to be 1. Then,  a necessary and sufficient condit ion for the exis- 
tence of a dis tr ibut ion on [0, 1] with moments  m l , .  �9 �9 mk is t ha t  the de te rminants  
of ~ 1 ' / k l ' "  " "' ~ k '  Ak be nonnegative.  

Using this result, we may check whether  the #i found by solving A #  = b, is 
a moment  sequence of a distr ibution on [0, 1/4] by checking whether  mi  = 4ip~ is 
a moment  sequence on the interval [0, 1]. This was carried out  on a compute r  for 
values of n from 3 to 33 inclusive, where it was determined tha t  for n = 3 and 
5 _< n _< 13 the sequence Pi is indeed a moment  sequence. [] 

For n = 4 and 14 < n < 33, it was determined tha t  the Pi is not  a moment  
sequence, so tha t  the corresponding equalizer rule is not  a Bayes rule. 

For n = 4, it is of interest to find how much smaller we can make the  minimax 
risk than  the  value .00512425. . .  achieved by the equalizer rule. Th e  risk funct ion 
of a rule d as a function of y = min(W4, 4 - W4) is 

R l ( O , d ) : ( 1  - 4 0 + 2 0 2 ) ( 0 -  d ( 0 ) ) 2 + 4 0 ( 1  - 2 0 ) ( 0 -  d ( 1 ) ) 2 + 6 0 2 ( 0 -  d(2)) 2, 

which is a cubic function of 0. The  max imum of this risk can be found at the  
boundary  or at the roots  of (O/O0)RI(O, d) = O. One may then  use a numerical  
procedure,  such as the  Nelder-Meade downhill simplex method,  to find the  min- 
imum of max0 RI(0,  d) as a function of the three variables, d(0), d(1) and d(2). 
Algebraically, the least favorable distr ibution is determined by two equat ions in 
two unknowns, 7r and z. The  first equat ion is tha t  the risk funct ion of the  Bayes 
rule with respect to the prior have a local max imum at 0 = z. The  o ther  is t ha t  
the value of the risk function at 0 = 1/4 be equal to the value of the  risk funct ion 
at 0 = z. We find 

THEOREM 4.4. For n = 4 and squared error loss, the minimax rule is given 
by d(0) -- .07151065. . . ,  d(1) = .2024725. . .  and d(2) = .2443337. . . ,  and the mini- 
max value is .00512378. �9 .. This rule is Bayes with respect to the prior distribution 
giving probability ~r = .5138768..  - to the point 0 -- .25 and probability 1 - ~r to the 
point 0 = z = .04313538. . . .  

This  gives an improvement  to  the minimax value of only .00000047---  over 
the equalizer rule. Next,  we consider the case n = 2. 

THEOREM 4.5. For n = 2 and squared error loss, the invariant rule defined 
by d(0) = (y/2 - - 1 ) / 4  and d(1) = 1/4 is admissible and minimax. This rule has 
the/o.  + w h e r e  as  = 1 - a n d  = - 1 ) / 4 .  
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PROOF. The risk is 

Rl (8 ,  d) -- (1 - 28)(8 - d(0)) 2 + 28(8 - d(1)) 2 

= 82(1 + 4d(0) - 4d(1)) + 8 ( -2d (0 )  - 2d(0) 2 + 2d(1) 2) + d(0) 2. 

Since 0 _< 8 _< 1/4, we may take 0 ~ d(0) < 1/4 and 0 < d(1) < 1/4 without  
loss of generality. Therefore, the  coefficient of 8 2 is 1 + 4d(0) - 4d(1) > 0. Hence 
R~ (8, d) is convex in 8, and 

max R1(8, d) = max{R1(0,  d), R1(1/4,  d)} 
o<0<1/4 

: m a x  {d(0) 2, l d ( 0 ) 2 - ~ d ( 0 ) +  l d ( 1 ) 2 - ~ d ( 1 ) +  1 } .  

The  minimum of this function over d(1) occurs at d(1) = 1/4. Thus,  

(4.6) m i n m a x R l ( 8 ' d ) = m a x ( d ( O ) 2 ' 2 d ( O ) 2 - 1 d ( O ) +  e 

Equat ion  (4.6) has a minimum over d(0) at  d(0) 2 = d(0)2/2 - d (0) /4  + 1/32, 
i.e. d(0) : (x/2 - 1)/4. The minimum value is mina(o),d(1) maxo Rl(8, d) : ( v ~  - 
1)2/16, which is achieved at d(0) = ( v ~ -  1) /4  and d(1) - 1/4. This shows that  
the  s ta ted rule is minimax. Since it is a unique Bayes rule among invariant rules, 
it is admissible among invariant rules and hence admissible. [] 

We remark that this rule is not an equalizer rule. It has smaller maximum 

risk than the equalizer rule. The least favorable distribution is concentrated at 

8 = 0 and 1/4 with probabilities r~ and 1 - rr, where rr = v/2 - I. 

THEOREM 4.6. Consider the problem of estimating 0 with loss L2(p, a) = 
(0 - a)2/O where 0 = p(1 - p), based on W ~ B(n,p). The estimate dn = anO,~ is 
minimax and admissible when 2 < n < 11. 

PROOF. We follow the proof  of Theorem 4.3 bu t  we must  modify the argu- 
ment.  The result for n = 2 and n = 3 follows directly from Theorem 4.2 since then 
0n takes on only two values and any function defined on two values is linear. We re- 
str ict  a t tent ion to n > 4 and to rules tha t  are functions of Yn = min{Wn, n -  Wn}. 

First  note tha t  it is sufficient to show that  dn is minimax within the  class Co of 
rules d tha t  have d(0) = 0. For if d(0) > 0, the risk function is unbounde  d above, 
and if d(0) < 0, we may replace d(0) with 0 and obtain  an everywhere smaller 
risk. Second, note by the principle s tated before Theorem 4.1 that  it is sufficient 
to show that  dn is Bayes within the class Co. 

Analogous to (4.5) we have dn is Bayes within Co with respect  to a prior ~ if 

= a, Y) (4.7) E ,  OYq _ y(O) = d (y) for all 1, [ /2J 
E~Oy-lqn_2y(O) n(n 1) Y . . . .  ' " 
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This is a linear system of [n/2j equations in the first Ln/2J moments of 7r, 
which may be written as A# = b, where # = (p l , . . . ,#kn/2 j )  r ,  where b = 
( - a= ,O , . . . , 0 )  r ,  and where is the ~n/2J x [n/2j matrix whose i, j - th  entry is 
given by 

Aij = ( -  1)J -i+a (d~ (i)bij + ci3), 

where 

Cij ~ { 

( ~  - 2 ~ ) ( ~  - i - j - 2 ) !  

( j  - i + 1 ) ! ( ~  - 2 j  - 2 ) ! '  
for  i = 1 , . . . ,  [ ~ / 2 J  - 1,  j = ~ - 1 , . . . ,  L~/2~ - 1 

1, for  g = i n / 2 j ,  j = kn/2J - x 

0, otherwise, 

( n  - 2 i ) ( n  - i - j - 1)!  for  i---- 1 , . . . ,  [ n / 2 J  - ' 1 ,  j = i , . . . ,  [ n / 2 J  
( j  - i ) ! ( ~  - 2 j ) !  ' 

1, for i = kn/2J, j = [n/2J - 1 
0, otherwise. 

As in Theorem 4.3, by computing the determinants of ~ i '  z~l '"" '  '-~Ak~/2j' Z~[~/2J 
we may cheek whether or not the resulting sequence #1 , . . .  ,>[~z/2j of numbers 
forms a moment sequence. When this is done it is found that  this is a sequence of 
moments for n -- 4 , . . . ,  11, but not for n = 12 , . . . ,  31. [] 
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