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Abstract. Assume that the probability density function for the lifetime of
& newly designed product has the form: [H'(t)/Q(8)] exp{—H(t)/Q(8)}. The
Exponential £(8), Rayleigh, Weibull W(6, 8} and Pareto pdf’s are special cases.
Q(6) will be assumed to have an inverse Gamma prior. Assume that m inde-
pendent products are to be tested with replacement. A Bayesian Sequential
Reliability Demonstration Testing plan is used to eigher accept the product
and start formal production, or reject the product for reengineering. The test
criterion is the intersection of two goals, a minimal goal to begin production
and a mature product goal. The exact values of various risks and the distri-
bution of total number of failures are evaluated. Based on a result about a
Poisson process, the expected stopping time for the exponential failure time is
also found. Included in these risks and expected stopping times are frequentist
versions, thereof, so that the results also provide frequentist answers for a class
of interesting stopping rules.

Key words and phrases: Bayesian sequential test, reliability demonstration
test, exponential distribution, Weibull distribution, expected stopping time,
producer’s risk, consumer’s risk.

1. Introduction

Reliability Demonstration Testing (RDT) is often used for the purpose of
verifying whether a specified reliability has been achieved in a newly designed
product. Based on a demonstration test, a decision is made to either accept the
design and start formal production, or reject the design and send the product back
for reengineering.

A serious problem with RDT is that a reliability test can be very expensive
in terms of money and time, especially in the case of products that require very
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high reliability and have a long lifetime. A common solution is to take into con-
sideration prior information, typically from engineering knowledge or knowledge
of previous similar products, and to test in a sequential fashion. Bayesian Sequen-
tial Reliability Demonstration Testing (BSRDT) can, in many cases, significantly
reduce the amount of testing required.

The following design questions are of interest. How many units need to be
tested to reach a decision? How much time is required to make a decision? What
are expected losses? There are a variety of Bayesian non-sequential reliability
demonstration tests for answering these questions. For example, see Esterling
(1975), Goel (1975), Schafer (1975), Schemee (1975), Goel and Coppola (1979),
and Bivens et al. (1987).

Schafer and Singpurwalla (1970) proposed the following test procedure. One
unit at a time is tested, where the lifetimes of units are independently identically
exponentially distributed with mean 6. The unknown 8 is assumed to have an
inverse Gamma prior distribution. Choose a minimum acceptable value, say 61,
and let P, = P(f > 6; | data). The test is terminated when P, > 1 — az (or
< a3), and a decision to accept {or reject) the product is made. Schafer and
Singpurwalla (1970) were primarily concerned with the acceptance probability of
this procedure, and developed approximations for it. Some related computations
and approximations for other risks were done in Schafer and Sheffield (1971) and
Mann et al. (1974). The approximations are only for the case where there is
no indifference region (see Subsection 2.3), and while they are often reasonably
accurate, they can be inaccurate. The extreme difficulty of all computations of
this type is discussed in Martz and Waller (1982); one of the major motivations
for this work is to show how such computations can be done explicitly, in closed
form, and for a general class of distributions.

The stopping rule of Schafer and Singpurwalla (1970) is discrete, in the sense
that one can only stop the test when a failure occurs. This can be inefficient
when observations are very expensive and/or have long lifetimes. Barnett (1972)
proposed a continuous BSRDT plan for the exponential failure rate problem. By
his method, one can stop the test at any time that enough information has accu-
mulated. Again, however, closed form answers were not obtained.

Related work can be found in Epstein and Sobel (1953), Ray (1965}, Harris and
Singpurwalla (1968, 1969), Soland (1969), MacFarland (1971), Goel and Coppola
(1979), Martz and Waller (1979), Chandra and Singpurwalla (1981), Montagne
and Singpurwalla (1985) and Lindley and Singpurwalla (1991a, 19915).

In this paper, a general BSRDT plan, stimulated by the work of Barnett
(1972), is considered for a general class of life distributions. The Weibull and
Pareto distributions are special cases. The testing plan continues until the poste-
rior loss is decisive according to a desired criterion, at which time testing termi-
nates and a decision made concerning the quality of the product. For this plan,
the exact values of various risks and the distribution of the total number of failures
are evaluated. Also, bounds on the expected testing time are given and, for the
special case of an exponential failure time, the expected testing time is computed
explicitly. Included in these risks and expected stopping times are frequentist ver-
sions, thereof, so that the results also provide frequentist answers for a class of
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interesting stopping rules.

In Section 2 of the paper, the basic model and the BSRDT plan are introduced.
The total number of units tested, the testing time, and several other important
features are imtroduced and evaluated in Section 3. Most proofs are given in
Appendix.

2. Structure of the problem

2.1  The model

The basic model is as follows. Suppose that units are independently tested
on m machines. Whenever a unit fails, it is replaced by a new unit and testing
is continued until enough information has been obtained. This model includes
the case in which m machines are tested themselves and, upon failure, a machine
is repaired or rebuilt (immediately) so that the repaired machine is as good as
new. The inter-failure times for machine ¢ will be denoted by t;1,%i2,..., for
i=1,2,...,m. Given 0, the life times ¢;;, ¢ = 1,2,...,m, j = 1,2,..., are iid.
random variables with reliability function

(2.1) Ro(t) = P(t11 >t | 6) =exp{—-H({®)/Q(6)}, >0,
ie, t;,1=1,2,...,m, j =1,2,... have the probability density function

(2.2) f(tl@):%exp{-%}, t>0.

Here H(-) is a known increasing function satisfying H{0%) = 0 and lim;_,, H(t) =
00, Q(-) is a known and strictly increasing function, and @ is the unknown char-
acteristic life.

The density of (2.2) is a special form of the exponential family and encom-
passes many common reliability distributions. The case when Q(#) = # is known as
the proportional hazard family and has been considered by Jewell (1977) for non-
sequential tests. Jewell (1977) also discussed the problem of identifying the proto-
type function H(z). Here are some other examples. The Weibull density, W(8, 3),
given by f(t [ 6) = (BtP~1/6°) exp{—(t/8)P}, t > 0, arises from Q(z) = H(z) = z°
(z > 0) in (2.2), for some known positive constant 3. Known 3 can arise when
the product is in a class of similar well-studied products, whose distributions have
been seen to arise from Weibull’s with similar shape. Of course, the exponential
and Raleigh distributions are two important cases, obtained when 8 = 1 and 2,
respectively. Soland (1968) gives a justification for this situation. Assume that,
for given 8, X, X, are independent random variables and X; has reliability func-
tion exp{—~t%/6}, where 3; and B, are known positive constants. Then the p.d.f.
min{Xi, X5} is also a special case of (2.2) with H(t) = t%1 + 72 and Q(9) = 6. If
we let H(t) = In(t + 1) (¢ > 0) in (2.2), the lifetimes have a Pareto distribution
with p.d.f. f(t | 6) = 1/[Q(8)(t + 1)V/LEO+1] ¢ > 0.

From Billingsley ((1986), (21.9) on p. 282), we know that

E(ti; | 0) = /O T Pty > | 0)ds = /O ~ Ro(s)ds.
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Since Q(-) is strictly increasing, we get Q(61) < Q(62), if 6; < 6. Thus Ry, (t) <
Ra,(t), which implies that E(t;; | 01) < E(ti; | 62), for 61 < 6. In other words,
larger 8 provide larger expected lifetime.

2.2 The prior and posterior

Prior information about the unknown parameter € is assumed available in the
form of a prior density function m(-). Schafer (1969) and Schafer and Sheffield
(1971) observed that the inverse Gamma prior distributions are often reasonable
for exponential failure problems. Here, the prior p.d.f. of 8 for the family (2.2)
will be assumed to belong to the conjugate family

b Q0 b
(2.3) m(f) = a) Q“"’(l()O) exp {—a(—e—)} , for 6>0.

Note that then Q(f) has an inverse gamma distribution ZG(a,b). Methods of
choosing ¢ and b will be discussed in Appendix A.1.

Define N;(t) = max{j : t;1 + - - + t;; < t}, the number of failures in machine
17 at time ¢, and

(2.4) N(t) = NMi(t) + -+ Nin(t),

the total number of failures at time ¢. Let

m Ni(t) N;(t)
(2.5) V=Vt => > H( U)+ZH t—Zt”
i=1 j=1

Here we define Z?:1~ = 0. Note that V is often called the transformed total
time on test or the rescaled total time on test. See Barlow and Campo (1975) and
Klefsj6 (1991). Since H(-) is continuous and strictly increasing, so is V'(t), ¢ > 0.
Then the likelihood function of @ is proportional to Q(8)~N® exp{~V (t)/Q(8)}.
It follows directly that if we stop the test at time ¢, the posterior density of 8 is

V(&) + )N+ /(o) {v<t>+b}
T(N@) +a) QNO+eri(e) “P1\7 Q@) [
for 0 >0,

(2.6) w(@|data) =

i.e., Q(0) has, a posteriori, an inverse gamma distribution, ZG(N(t) +a, V() +b).
In particular, it follows that the posterior a-th quantile is

(2.7) () = Q! ( 2V() +) )> , for O0<ax<l,

XN (tyray (L — @

where @ ~!(-) is the inverse function of Q(-) and X?(l — @) is the (1 — a)-th quantile
of the x? distribution with j degrees of freedom.
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2.3 The BSRDT plan

There are a variety of possible goals for sequential experimentation. The
following BSRDT plan is the intersection of two goals.

1. Let 61 be the goal to begin production, in the sense that the experiment
will stop and production begin if there is 100(1 — ;)% “confidence” that 6 > 6.

2. Let 0, be the mature product goal, in the sense that the experiment will
stop and the product will be rejected (sent back for reengineering) if there is
100(1 — a2)% “confidence” that 6 < 6.

Here a7 and a» are two usually somewhat small numbers, and 6, < 85 are two
prespecified values. The region 8; < 8 < 65 is often called the indifference region.

The BSRDT plan also arises in formal decision models. Suppose that a prod-
uct with small § < (6;) should be rejected and with large > (62) should be
accepted. Let 1(#) be the loss for making a wrong decision, where [{f) is non-
increasing and nondecreasing in (0,6;] and [fs, 0c0), respectively, and 1(f) =
for 6 € (01,62). The test will stop and production begin if the posterior loss of
accepting the product ( foel 1(0)w(6 | data)dh) is small enough, and the test will
stop and the product be rejected if the posterior loss of rejecting the product
fe (0)m (0 | data)dd) is small enough. The BSRDT plan arises if [(#) is constant
on both (0,6:] and [f2, 00).

It is easy to see that the testing plan is equivalent to

Stop and accept the product, if ¢*(a;) > 61;
Stop and reject the product, if ¢*(1 — ag) < y;
Continue testing, otherwise,

where ¢*(a) is the o-th posterior quantile. From (2.7), this is equivalent to

Stop and accept the product,

fV({E)+b> (1/2)Q(91)X2(N(t)+a)(1 o),
Stop and reject the product,

fV({t)+b< (1/2)Q(92)X3(N(t)+a)(0‘2)-

As with certain classical sequential tests these procedures are “semicontinuous”
(see Epstein and Sobel (1955)): one can “accept” when the continuous time of
accumulated nonfailure is large enough, but can “reject” only on the (discrete)
occurrence of a failure. It is possible to graph the stopping boundaries of this test
by defining

(2.8)

1 1
(29) = 5@(92)X§(a+i>(a2) and d; = 5@(91)X§(a+i)(1 —o1), 120

Since both oy and «g are small, it can be assumed that as < 1 — ;. Then it can
be seen that ¢; > d;—1 when 7 is large enough, as long as 8; < 5. Therefore there
is an ig such that

(2.10) fo=min{i=1,2,...:¢; > d;_1}.

Note that if i > 1, then ¢; < dp, which implies that cy < dg, but for iy = 1 we
will need to assume that ¢y < dy. If b < ¢p, we should reject the product without
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V() +b

_____

Ty . ThiTy Ts Ts I Ts Ty T

Fig. 1. An example of stopping boundaries.

test, and if b > dy, we should accept the product without test. Obviously, these
two cases are unlikely to occur in practice, so we consider only the case where
co < b < dp.

Let Ty < Ty < --. < T, be the first n ordered failure times for all the m
machines. For instance, Ty = min{t11,%21,...,tm1}, and if the first failure occurs
on machine i1, then Tp = min{¢;,1 + t;,2,%;1,% # i1}. Let T be the stopping time
or the testing time, that is

. 1
T = min {t >0:V()+b> §Q(91)X§(N(t)+a)(1 —ay) or

1
< EQ(HZ)Xg(N(t)-L-a)(aQ)} :

Note that T is different from the well-known total time on test. A graph of V(¢)+b
with respect to ¢ is shown in Fig. 1 using simulated data from a W(6800, 1.35)
distribution. For the graph, a = 2.5, b = 255,000, oy = 0.10, a2 = 0.10, 8; = 6,400
and 6, = 8,650, which implies ¢g < dg and i5 = 8. Note that both the acceptance
boundary and the rejection boundary have random jump points, but have fixed
height at each point. The boundaries in Fig. 1 are different than the boundaries
in traditional exponential sequential life testing procedures, in that they are data-
dependent, whereas in other sequential procedures, both Bayesian and frequentist,
they are predetermined. Also, the boundaries here have the form of a step function,
whereas V(t) + b is smooth, while the reverse is true for the other procedures. In
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Fig. 1, at time 7', V{(T') + b hits the rejection boundary. In general, at the stopping
time T, V(T')+b will hit either a horizontal segment on the acceptance boundary or
a vertical segment on the rejection boundary. If 6; < 62, ip < co and the sampling
region is closed. If §; < fs, ig = oo and the sampling region is open. Although
we have derived this class of stopping boundaries from a Bayesian perspective,
they can be used simply as specified boundaries in a frequentist analysis. Indeed
frequentist measures of performance will also be considered.

3. Features of the BSRDT plan

3.1 Design criteria and risks

Let A and R denote the action (or, by an abuse of notation, the region) of
accepting the product and the action of rejecting the product, respectively. Several
risk criteria, defined in Chapter 10 of Martz and Waller {1982), can also be applied
here to measure the goodness of the BSRDT plan. The following names of these
risks are borrowed from related conventions in quality control and are widely used
in nonsequential context.

1. Classical producer’s risk, v = P(R | 6;), and classical consumer’s risk,
b = P(A| 61). Here v is the probability that a product at the mature product
goal will fail the BSRDT and § is the probability that a product at the goal to
begin production will pass the BSRDT. Note that these are frequentist risks. It
can be seen that P(A | §) is monotonically increasing in . Thus P(R | ) < « for
6 > 63, and P(A|89) < é for 8 < 6;.

2. Average producer’s risk, ¥ = P(R | 8 > 65), and average consumer’s risk,
6= P(A| 8 < 6). Here 7 is the probability of rejecting a good product and § is
the probability of accepting a bad product. Note that computation of these risks
involves the prior.

3. Posterior producer’s risk, v* = P(6 > 62 | R), and posterior consumer’s
risk, §* = P(6 < 6, | A). Here v* is the posterior probability that a rejected
product is good, and 6* is the posterior that an accepted product is bad.

4. Rejection probability, P(R) = [o P(R | 8)7(6)df, and acceptance probabil-
ity, P(A) = 1— P(R). Here P(A) is the unconditional probability of the product
passing the BSRDT.

Of course, one can not find an “optimal” BSRDT in the sense that all above
risks are very small. However, it is possible to choose several risks. For the fixed
sample size problem, many papers are available concerning how to choose the
criteria. For example, Balaban (1975) favors the mixed classical/Bayesian pair
(v, 6*) to determine a Bayesian reliability demonstration test. Also see Easterling
(1970), Schafer and Sheffield (1971), Schick and Drnas (1972), Goel and Joglekar
(1976). We make no effort to compare the criteria here; our results are of use for
computation with any of them.

Let N = N(T') be the number of failed units at the time when testing stops.
Let Nry denote the total sample size or the total number of testing units put
on test. Finding the expected stopping time, F(T) = [E(T | 8)n(0)df, and
the expected sample size, E(Nry) = [ E(N7y | 0)7(8)d0, is important for design.
The following relationship between the total sample size and the number of failures
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follows immediately from the definition of the stopping rule, and allows us to
consider E(N) instead of E(Npy).

THEOREM 3.1. Nry = N+ m—I(R) and E(Nyy) = E(N)+m — P(R),
where I(-) is the indicator function.

In Subsection 3.3, we will find expressions for all the above risks for our decision
rules. In Subsection 3.4, we will find the distribution and expected value of the
number of failures. Expressions for E(T) are developed in Subsection 3.5. Some
examples are given in Subsection 3.6.

3.2 Technical preliminaries
Forn=1,...,1g, let

(3.1) an{(yl,...,yn):yj>0,cj—b<y1—|—'--+yjdehl—b,jzl,...,n},

let ||Go]| = 1 and let ||G,,|| denote the volume or Lebesgue measure of G, (n > 1).
It will be seen that all the risk expressions involve |G, || (n < 45). For all theorems
involving |G, ||, it will be assumed that

(3.2) ¢;j <dj_1, for j=1,2,...,n

where both {¢;};>0 and {d;};>0 are increasing sequences of positive numbers. If
(3.2) is violated, i.e., if there is j (< n), such that ¢; > d;_1, then G, is an empty
set, and hence ||G,| = 0. An analytic formula for ||G,|| is given in Lemma 3.2.
The following notation will be needed.

Forj=1,2,...,1=0,1,2,..., and y > 0, define

(civj Ndj—1)Vy —(c;Vy), ifi=>1,
(3.3) aij (y) = {d] L —cVy, if 4 = 0,
where z V y = max(z,y) and A y = min(z,y). Then (3.2) implies that

N céH/\dj_l—cj, 1f221)
(3.4) aij(c;) = { PR ifi=0.

For n > 2, define two sets of partitions of n by

k
(3.5) U, =< (i1,...,% }: 1,4, > 1
and
(3.6) U = {(i1, ... i) : (i1,...,%) € Uy, i > 2}.

For example, the first few ¥,, and U} are as follows:

U ={(1)}, T={(L1),2)} Ys={(1,1,
Uy = {(1,1,1,1), (1,1, 2), (1,2, 1}, (2,1, 1), (3,1),(1
\IJI =0, \Il; = {(2)}’ U3 = {(172)7 (3)}7

U ={(1,1,2),(1,3),(2,2), 4) }.

1,(1,2), (2,1, (3)},
57 13),(2,2), (W)},
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For 1 <r <m, (i1,...,%) € ¥y, define

(3.8) pu(bymiriin, ... ik) = pr(bsms7yis, ... ks cg,dim1, 1 < 5 < n)

) .
rt o
= [ k—1
c
w———a”;”"(, o) 1T anstcrs) pars®), ifk>2,
Hj:l ’L]‘! j==2
and for 2< 1 <r <mn, (i,...,ix) € U},
(3.9)  pabynsriliiy, ... k)
= palbynyri iy, oo ytks c5,d5-1, 1 < g <n)
at, . {d._
trore@tyg, if k=1,
- ai1~r Cr k~—1 )
onelor) ST atyet) § oGl i85 22,
Hj:l e | =2
where ig = 0, i(j) = io + iy + - + 15, a} () = ag_llpi(j)ﬂ), a;;(-) is given by

(3.3), ¢ ; = nig,)» and [[_p - = 1.

The following lemma will be used in the proof of Lemma 3.2. It also provides
the number of terms in the formula for ||G,}].

LEMMA 3.1. The numbers of elements in ¥,, and ¥}, are

(3.10) U} =2 and  #{U} =20

respectively. Furthermore, we have the following recursive formulas:

(3.11) Vo= |J {6 i+ 1), 00,0 D))
(’1,1 ,,,,, ik)E‘IJn

(3.12) Tra= U A6 i+ D)
(’il ----- ik)e\l’n

PrROOF. See Appendix A.2. O

LeMMA 3.2. The volume of G,, (n > 1) is

(3.13) Gl = Z pi(bynynidy, ... k)

_Z Z pa(bymym; iy, ... i),

1=2 (i1,..,1%) €0}
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where pr(byn;n;ie, ..., i) and pe(byn;n;liiy, ... i) are given by (3.8) and (3.9),
respectively.

PrROOF. See Appendix A.2. O

In equation (3.9), ||G1|],..., and ||Gn—2|| appear. Therefore, (3.13) is essen-
tially providing an iterative algorithm for their computation. Using (3.10), the
total number of terms in (3.13) is 2"t + Y L2172 =27 — 1,

3.3 Ewvaluation of risks
Define Ip(z;y) = foy t2le~tdt, for z,y > 0.

Lemma 3.3. For any fixed p > 0, we have

b
3 1
— HGH dn —b
(3.15) P(A|8) - . 6>0,
=2 s { Q) } g
and .
T2 b%Gal

dn
(3.16) P((0zp)NA) = nZ:O mIT (a - Q(u)) '

PrOOF. See Appendix A.2. O

The following theorem concerning the rejection and acceptance probabilities
follows from Lemma 3.3 and the fact that P(A) = lim,_,q P((§ > p) N A).

THEOREM 3.2. The rejection probability is

(3.17) P(R)=1-P(4)=1— Z b;;fff; ’;)

n=0

|G-

THEOREM 3.3. The classical risks are

ig—1
= | dp — b
(318) PRI0) =13 graben{-Gar |
X- 1;@ I dn—b
(3.19) §=P(A]6) ZQn(e { Q(el)}'

PrOOF. The results follow immediately from (3.15). O
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THEOREM 3.4. The average risks are

- Zl b|Gull Ir (o + n, dn /Q(8:))
2 g In(a,6/Q(82)

: 8 Gl T(a+n) = In(a +1,dn/Q(61))
(3.2 6—P(A19S91)",§0 dzrm T(a) — Ir(a, 5/Q(61))

(3.20) 4=P(R|6>6;) =1

PRrROOF. Note that
(3.22) ¥=P(R[02=6:)=1-P((0206:)NA)/P(O 2 06r).
So (3.20) follows by substituting (3.14) and (3.16) into (3.22). Similarly,

P(A) - P(026)0nA)

§=P(A]0<8) = =T pr=rn

Combining this, (3.14), (3.16) and (3.17), we get (3.21). O
THEOREM 3.5. The posterior risks are
(328) " =P(6>6:|R)

__b_ _ i0=1 14 i a+n
T (+ o) ~ e leatie (o +nges) /&
T(a) — Y075 b2]|GnllT(a + n)/de™

n=0
(324) & =PH<6; | A)=a.

1

PrROOF. Note that

P(8 > 6:) — P((6 > 6:) N A)
P(R) '

(3.25) PO >6,|R) =

Substituting (3.14), (3.16) and (3.17) into (3.25), one gets (3.23). Similarly,

(3.26) & =PO<6:|A
= Gl = ||Gnn
Z da+n < Q(g ) / d%—i—n F(a + ’I’L)

Since du/Q(01) = (1/2 gy (1 02), Tr(a+7,dn/Q(60))/T(a+1) = P(x0sm
< X%(Hn)(l —03)) = 1 — ay. Therefore, §* = a;. This completes the proof of
Theorem 3.5. O

Intuitively, it is easy to understand why P(6 < 6; | A) = a;. Indeed, A =
{data : P(6 < 6, | data) = a1}, and a standard measure-theoretic argument
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immediately gives the conclusion. Similarly, since R = {data : P(§ > 8, | data) <
ag, with a positive probability that strict inequality holds}, we conclude that

Fact 31. P >62|R) < as.

From (3.24) and Fact 3.1, one is able to control the two posterior risks by
choosing oy and as.

3.4 Distribution and expected value of the number of failures

Recall that N is the number of failures at the time we stop the test and make
a decision. It is easy to see that 0 < N < ig. The distribution and the expected
value of NV are as follows.

THEOREM 3.6. Let Py(-) = P(- | 8). The cumulative distribution of N for

given 8 is
_do—b TIN
(3.27) Py(N <n)= p{ (0) }, ” ” d; — b} ' ’
1—Jon+ : - , i 1 <n <
.—Xn:l { 0 7 n <1g

the expected number of failed units for given @ is

i5—1 i9—2 d —b
(3.28) E(N|6) = Jon —2 — -
2;0 Z%Q { QW)}
” Ao —111 1“ dlo 1 b .
T Qe1(9) W{ Q) }’

the marginal cumulative distribution of N is

b\*? .
(%)’ #n=0,

b*T(a+1 . .
1- n+ Z ”G ” da+’LI\ ))7 ZflSn<%o;

(3.29) P(N<n)=

=n—1

and the expected number of failed units is

ig—1 i0—2 .
b°I'(a + n) b*T(a+ig—1)
3.30 E(N) _;_ JIn — 2 Grn Gig-il| —————=
( ) ( Z ” ” da+nr\( ) ” 0 1” da+zO 1F(CI,)
where ||Gol| = 1, [|Gr]| is the volume of Gn, =0, Joo=Jo =1,
c1Vb—-1b )
exp{——-l—Q(b—)——}, zfnzl,
(3.31) Jon = / / { Cn—b) Vs 1}
’ dyn_1 - dy1,
o P Q) oo

ifn > 2,
and
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b .
(clvb ifn=1,

(3.32) J,= bara+n—1/ / dyn_1 -+~ dy
s 60V (81 +b)]oT 1
ifn>2.

Here so=b, sp_1=y1+ -+ Yn—1-
PROOF. See Appendix A.2. O
The formulas for computing Js ,, and J, are given by the following lemma.

LEMMA 3.4. For2 <n<1ig—1, we have

e Vh—b) =2 eXp{"cn Zyzlei)—b}
i——}}j Tex

(3.33)  Jon =exp {‘ Qo) | = Q*(0)

+on ]~ }25%

and
a n-lqg
(3.34) . Jn (cn V b)a Z 19(5 ((ac: vz )cyiﬂl * ; bc;ﬁ;;ag)gn’“
where
(3.35) bnr= Y, mbmriig,.. i)
{1,k )ET,

—Z Z p2(b;n;ry iy, ..., i)

1=2 (ig,...,ik ) €T

Here p1(b;n;rsiy, ... i) and pa(byn;rilide,. .. k) are defined by (3.8) and (3.9),
respectively.

PROOF. See Appendix A.2. O

The above computation is quite complicated, but there is a simple inequality

for J,:
b |Gl (a +n — 1) b2 |G| T(a +n —1)

(en Vdp—g)et—1T(a) &t (a)

If dn—2 < ¢, then Jp = b%||Gp|T(a+n —1)/{c&*™""T'(a)}. Since d;y—1 < c;y, We
have d,_2 < ¢, for somewhat large n.

<Jp <




234 DONGCHU SUN AND JAMES O. BERGER

3.5  Ezpected stopping time E(T)

The expected stopping time in general cannot be evaluated in closed form. In
this section, an upper bound and a lower bound for E(T' | §) are found. By using a
result about Poisson processes, a closed form is given for exponential failure time.

3.5.1 Bounds for E(T)
Note that
E(N;(T) | 8)E(t11 | 0) < E(T | 0) < E(N;(T)+1|6)E(t11 | ),

where N;(T') is the number of failure units for machine j at time T'. Therefore,
1 1
LB [0)E(s |0) < BT 10) < (2B (6)+1) Blou | ),

where N is the total number of failure units. Note that E{N | ) can be evaluated
by (3.28), and

E(t11]6) = /0 (e | 0yt = Ooo tg(/g) P {_g%} &

Remark 3.1. For the Weibull distribution, W(6, 8),
S 810611 —
0
0< E(T|6)—Ty < E(t11|9),

a 1/8
0< B(T)—T* < E(t1y) =T(1 4+ 1/8) [M] |

I'(a)
where
1 dnp—0
r(143) o azlGalen{-%50)
(3.36) Tg* = T{Z() 0J9,n -2 ZO grB—1
n= n=—

glio—1p-1 P 0B :

T (1—1—-1—) io—1 i0—2 ber <a+n— %)
(337) T = BLIS g=23 |Gl
n=0

m = dat VP (a)

b°r (a+io—1— —1—>
~|Gioal 5
ig—1 da-{-io—l—l/ﬁr(a)

ig—1
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IGoll =1, 55" - = 0, Jo,n, is given by (3.31), and

(5/PT(a—1/8) .
‘—“T(“a)*—”» ifn=0,
b°I'a —1/06) Y
T(a)(cy V b)e—1/8" ifn=1
Ta=q v [ Ta-1/8) ZHG 0@ +i—1/8)
T(a) | (cn Vb)a~-1/8 (cn V dy)oTi=1/B
EIQTiiﬁg”m}, ifn>2.

3.5.2 E(T) for exponential failure time

Suppose that M(t) (¢ > 0) is a Poisson process with intensity 1/6. Thus
M(t) has a Poisson distribution with mean t/6. For two increasing sequences of
constants {an }n>0 and {b, }n>0 satisfying ag < 0 < by, define

=inf{t >0:¢> by ort < an}
LEMMA 3.5. If Jig such that bjy—1 < a4, then
(3.38) E{M(T)} = E(T)/9.
PROOF. See Appendix A.2. O

Note that, for an arbitrary stopping time 7', equation (3.38) may be invalid.
For example, if T' = inf{t > 0 : ¢ > M(t) + 1} then it is easy to show that
T=M(T)+1and T = M(T) +1 for T = min(T,3). Thus E{M(T)} # E(T)/6
and E{M(T)} # E(T)/8.

THEOREM 3.7. For the BSRDT plan, if the product lifetime is £(0) dis-
tributed, then E(T | 0) = Ty and

0—1 ig—2
B(T) = {Z L

*T(a+i9—1—-1)
dite="(a) |’

=|Gig-1ll

where Ty 1is given by (3.36) with 8 =1 and

b
a—1’

ifn =0,
ba
Jr = (a —1)(c1 V bye—1’
b* T'(a—1) |G ]|F(a+z— 1) §nr1‘(a+r— 1)
(e RN E

ifn=1,

F(a) (C \/b)a 1 0-+'L 1 a+r 1 ’
\ ifn> 2.
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Classical Producer’s Risk Classical Consumer’s Risk
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Fig. 2. Classical and average risks.

ProOF. The first result follows from Lemma 3.5 immediately. The rest fol-
lows from the expression of T and the assumption 6 ~ ZG(a,b). O

3.6 Numerical examples

A Fortran program has been developed to compute the cumulative distribution
of N, E(N), T*, and all the risks. For fixed 6;, 02, a1 and a2, if 3o = 10,
the computing time is about two seconds to compute all the risks and stopping
quantities on a Sun 3/60 workstation. It takes about 15 seconds if 45 = 15 and 30
minutes for ig = 30.

Ezample. Suppose that the p.d.f. of failure time is W(6, 3), a guess for the
mean of 0 is §y = 8,000 (hours), and a guess for the standard deviation of 6 is
oo = 6,000 (hours). Assume that § = 1.35. Then we can compute that the
parameters a and b in the prior distribution are 2.5 and 304,931, respectively.

Choose ; = 0.10 and oy = 0.10, and 8, = kb, for various k mentioned below.
We choose 61 to be proportional to #; for convenience in graphing the results.
Various risks, T* (with m = 1), E(N), and the cumulative distributions of N with
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Acceptance Probability Posterior Producer’s Risk
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Fig. 3. P(A), P(6 > 63 | R), E(N) and T*

respect to Oz are shown in Figs. 2-4 for k£ = 0.70 (with a dashed curve), &k = 0.75
(with a solid curve) and k& = 0.80 (with a dotted curve).

The classical consumer’s risk, average consumer’s risk and the acceptance
probability have a similar shape for these three situations. Almost all the curves
bend at the value 6; = [2b/x§(a+1)(1 — a;)]Y/#. The curve of the posterior con-
sumer’s risk, P(6 < 6; | A), has not been drawn since it is the constant o;. The
posterior producer’s risk P(# > 62 | R) is not monotone with respect to 8, and is
always less than ag = 0.10, as shown in Fact 3.1. Also, it reaches its local min-
imum at 6, = {2b/x§(a+i)(a2)}1/ﬁ, i=0,1,.... Here T* is the lower bound for
E(T), and the upper bound is T* 4 E(t11), where E(t11) = 7,335.91. As intuition
would suggest, a larger k£ induces a larger rejection region, and hence increases
all the producer’s risks, the expected number of failures and the expected testing
time, but decreases all the consumer’s risks.
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Fig. 4 P(N <n),n=0, 4,10, 17.

Appendix
A1 Selecting a prior from the conjugate family

Option 1: Ask for Qo (the best guess for the mean of Q()) and og, (the
standard deviation for the guess). Then a and b can be determined by the equations

Qo =bl(a - 1)/I'(a), a=2+Qg/a%0,
=
o3, + Q3 = 1*T'(a - 2)/T(a), b=Qola—1).

Option 2: For the Weibull case with known 3, Q(#) = 8. Ask for 6, (the
best guess for the mean of 8), and oq {the standard deviation for the guess). Then
a and b can be determined by the equations
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( 1
9__“”T<“‘5> Pla-2/A)Ta) _, , o
T T R I2(a~—1/8) 03’
2/87 ( g — 2 _ 6ol (a) g
oot ro-3) o= [ messm)
k 0 0] F(a) ’

Note that an approximate value of a can be determined by iteratively solving

ol 2 L !
a=0.5+[1n(1+@§)+gln(1—aﬁ_1)}/ln<1‘@ﬁ——1—>z)’

starting with the initial estimate

. 1 2 2
a=2—ﬂ—{3+exp {—ﬁ—ln(l-l—%—%)}}.

Actually, 4 is often a very reasonable approximation to a itself.

Option 3: For the Weibull p.d.f. with known 3, ask for the 0.5 quantile,
g(0.5), and the 0.75 quantile, ¢(0.75), of the predictive distribution. Then it can
be shown that the matching choices of a and b are

a =1In2/1n{[g(0.75)/¢(0.5)]° — 1},
b=1[g(0.5))°/(2"/* — 1),

assuming that ¢(0.75) > 2'/8¢(0.5). If this is not satisfied, the given functional
form for the prior may not be suitable.

For example, assume that the p.d.f. of lifetime is W(6, §) with 5 = 1.35. If we
have from engineering knowledge and/or knowledge of previous similar products
that the best guess for the mean of # is 6y = 8,000 (hours) and the standard
deviation for the guess is o9 = 6,000 (hours), then a = 2.5 and b = 304,931. If we
know that ¢(0.5) = 5,000 (hours) and ¢(0.75) = 9,147 (hours), then a = 3.0 and
b=379,112.

A2 Proofs of theorems and lemmas
Note that A and R can be written as disjoint unions:

(A1) Ale AN (N =n), RzORﬁ(N=n),
n=0 n=1

where

(A2) AN(N =n)={¢ <W;+b<d;_1,7=1,...,n,Wpi1 +b>d,},
(A3) Rﬂ(N=n)={cj <Wj+b§dj._1,j=1,...,n—1,Wn+b§6n}.
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Here W,, = V(T,,), and V() is defined by (2.5) and T, is the n-th failure time.
It is easy to see that evaluation of E(N) and all the risks depends on the joint
distribution of (W1, Wa,...,W,,), which is given by Lemma A.1 in the following
subsection. We will use the notation, Y1 = Wy, Y; = W, — W;_; (j > 2). Also,
let Py(-) denote the conditional probability P(- | 8) for fixed 6.

A2.1 A crucial lemma

The following lemma gives the distribution of Y7,...,Y, and is of independent
interest.
LEMMA A.l. For given 0 and anyn, Y1,Y5,...,Y, are i.i.d. exponential ran-

dom variables with common mean Q(0).

In order to prove the lemma, a known result about point processes will be
stated here. Let M (t) be a point process which is right continuous and piecewise
constant with jump 1, and satisfy M(0) = 0. Assume that A(t) is an intensity
for this process, i.e., for fixed ¢ > 0, A(t) is measurable with respect to the o-field
Fi- = o{M(s) : 0 < s < t}, and satisfies

Al}:mo P(M(t+At)—M(t)>1|F-)=At), as
The following theorem follows from Theorem T16 of Bremaud ((1981), p. 41).

THEOREM A.l. Define 7(t) = inf{s > 0 : fos Alr)dr =t} (t > 0). Then,
M(7(t)) (t > 0) is a standard Poisson process with the intensity 1.

ProoOF OF LEMMA A.l. Since 6 is considered to be fixed, without loss of
generality, assume that Q(f) = 1. It is easy to see that N(t), the total number
of failures at time ¢, is a point process which is right continuous and piecewise
constant with jump 1, and satisfies N(0) = 0.

It follows from the assumptions on H(-) that V(¢), defined by (2.5), is a
strictly increasing and continuous function of ¢ and satisfies that V(0) = 0 and
lim¢ oo V(t) = co. Note that units are tested independently on all machines,
it is easy to see that (d/dt)V(t) is an intensity for the process N(t). Therefore
7(t) = V~1(t), where V~1(.) is the inverse function of V(-). From Theorem A.1,
N(V7L(t)) (t > 0) is a standard Poisson process with the intensity 1. Thus
Yy,Ys,...,Y, are iid. £(1) r.v.s. This completes the proof of Lemma A.1. O

A.2.2 Proofs of technical preliminaries

Proor oF LEMMA 3.1. First, for fixed 2 € k < n, we will show that
k n—1
(A.4) # (il,ig,...,ik):ij21,;ij=n =<k_1>,

k
. . . . . . n_Z
(A5) # (21,22,...,Zk)21jZl,ZkZQ’szZn ::(k}—l)

Jj=1
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Induction on k will be used to prove (A.4). If k=2 and n >k,

#{(7’7.7) : i,j > 1,i +j = ’I’L} = #{(1,7’& - 1)7 (2,TL - 2)» . -7(” - 171)}
_ 1= (" 1
=n =lp_1)
So (A.4) holds for k = 2. Suppose, next, that (A.4) is true for all £ < n; then, for
kE+1<n,

k+1

# (ilw-'aikaik-l-l):ij217zij:n
=1

N
Il
A

k
=Y # (il,...,ik,l):ijzI,Zijzn—l},
=1

which equals, by the induction assumption, ?:_1k (” i 1) = ( ) = ((k - 1)
This means that (A.4) is also true for £ +1 < n. The proof of (A ) is similar.
Since

#{¥,} = #{(n)}-i-z#{(zl,,zk) T I A ]
k=2

equation (A.4) yields #{¥,} = 1+ >, (}71) = 21, Similarly, #{¥}} =
272 using (A.5). So (3.10) holds. Note that the right hand side of (3.11) is a
subset of ¥,1;, and the number of elements in the right hand side of (3.11) is
2(27~1) = 2(n+1)=1 hy (3.10). Thus (3.11) is true. Similarly we can prove (3.12).
This completes the proof. O

In order to prove Lemma 3.2, an integral formula is needed.

LEMMA A.2. For any integers i > 0 and j > 2, and any real number x > 0,

1

(A.6) /dO k! (¢) (b) + —— af; ™ (b) — afi(d
. v Qyj y"azgcjaj 1,1 z+1 .’E+1 (do),

where a;;(-) is defined by (3.3).

Proor oF LEMMA A.2. We first consider the case 7 = . Denote

do do

Ap = / aﬁj (y)dy = / (dj—1 —¢; Vy)©dy.
c1Vvb c1Vbh

Since j > 2 and ¢p < b < dy, there are 3 different situations to consider: ¢y < b <

¢j < dp, co < ¢ <b<dp,and ¢g < b < dy <c¢;. By a simple calculation, A4y

equals
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1 . .
(dj—1—c;)*(c; =1 Vb) + m(dj_l —¢g)®F T+ 1(dg 1 —do)*,

lfCO<b§Cj < dg

1 z 1 z )
m(dj_l — b) o m(dj_l — do) +1, if ¢g < c; < b < dp
(dj_l—Cj)w(do-Cl\/b), if g <b<dy <g¢
= (dj—l - Cj)m{(Cj A d()) Vb—cV b}
T+ (dj—l — Cj \% b)w_l—l _ (dj_1 —C4 \% do)m+l
z+1 z+1
x 1 T 1 z
= %j(cj)aj—l,l(b) + . laogﬂ(b) R laofl(do)y

by the definition of (3.3). So (A.6) holds for ¢ = 0. Similarly, we get for z > 1 that

do dO
/ az;(y)dy = {(citg Ndj_1) Vy —c; Vy}dy

1Vh c1Vh

1
( (citj —¢j)%(cj —e1 V) + o G — c;)*,
if ¢ <bSCj < Ciyj < dg,

1
ey 1(Ci+j — b)x+1, if ¢ < c; < b< Cipj < do,
0, ifCQ<Cj<Ci+j<b<d0,
_ ) (Giyg Adj—1 —¢)7(¢j —e1 VD) .
ol Adjoy = ¢)* — —og (G A1 = do)**,

if ¢g < bSCj <dy < Citj,
l(Ci+j Adj_1 — do)*™,

if ¢o < ¢ <b<dy Sci+j>
(ciﬂ- /\dj_l —cj)””(do-—cl \/b), if ¢ <b<d0§Cj,
= (ci—l-j ANdj1 ~— ¢;)*((ej Ndp) Vb —c1 V b)

——-—1((Ci+j A dj_l) Vb-— c; VvV b)$+1

g G N1 B>+ —

1
—_ m((CH—j A dj—l) Vdg — ¢V do)w—}-l’
which also equals the right hand side of (A.6). Thus Lemma A.2 is proved. O

Proor orF LEMMA 3.2. We will also use induction to prove Lemma 3.2.
Note that

do—b di—(b+y1) A1 —(bFy1 -+ tUn—1)
IGnll = / / / : AYr - - - dyadys -
0V(e1=b) JOV(c2— (b+y1)) OV {cn—(b+y1+ - +yn-1))
If we write ||Gr|| = ||Grll(b;c1, ... ¢n;do, ..., dn-1), then

do—b
(A7) Ganl = / IGnll(b+y15c2,. -  Cntaids - o dn)dyn

V(e —b)

dg
=/ NGnll(yscay .. yenst;di, - .-y dn)dy.
[+

1Vh
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Now, for n = 1, |G1]| = ao1(b), so (3.13) holds. For n = 2, it follows from (A.7)
that

dp

do
[Gall = [ Gl tscaj )y = / a0s(y)dy
c1Vvh c1Vvbh
1 1
= agp2(cz)a1,1(b) + 5“32(5) - 5“(2)2(610)-

The last equality follows from (A.6). Thus (3.13) is true for n = 2. Suppose (3.13)
is true for n. From (A.7), we then know that, for n + 1,

(A8) [Grall = Z /b (wimimsin, . ik
Vv

( ,Zk)E\I/
¢, dj-1,2 < j<n+1)dy

_Z Z / o(ysmynlyi, ..t
clvb

=2 (7,1 ,lk)E\I/*
Cj,dj‘l,Q <ji<n+ 1)dy

By the definition of p; and the fact that n +1 — z’}:ﬂ =i+ 1,

do
(A.9) / s mnsin, ik iy dio1,2 < 5 < nt Ldy
[#]

1Vb
do
: Han+1 j(cn+1j) / G‘:L+1,k(y)dy
Hh 1Zh j=1 c1Vbh
1
H i) Han+1 i(Cns1,5)
h=1 j=1

g1 k(Chin k)0, k+1(b) + ani1 £(0) — ap, 41 £(do)}
=pn+Lin+ 10,0 ) +p(n+ n+ 14, .., + 1)
—pabn+Lin+1n+ 10,0 + 1),

where the second equality follows from Lemma A.2. In addition,

do
(A.10) / p2lyinins i, .tk ey, di1,2 <5 <n+1)dy
c1Vbh

1
H Ont1,5(Chi1k) ¢ Ot (@nri-i)
Hh R P

=pa(byn+Lin+ 150, ..., i)
Substituting (A.9) and (A.10) into (A.8), ||Gr+1]| equals

S {nbn+Ln+ L, ik )+ o+ L+ Ly, .. ik + D}
(‘il ..... ik)e‘lln
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- Y st LintLnd L. i+ 1)
(41 50e-s ik )ET,

=2 (il,...,ik)eq/z(

= Z pibyn+1;n+ 1541, ..., %)
(i1, ik )EY g2
n+1

=Y palbin Ln Ly,

=2 (il,.,.,ik)E\I}?

The last equality follows from (3.11) and (3.12). So (3.13) is true for n + 1. This
completes the induction argument. O

A.2.3 Proof of lemma about risks

ProoF Oor LEMMA 3.3. Since Q(8) ~ ZG(a,b), i.e., 1/Q(6) ~ I'(a,b), we
have b/Q(8) ~ T'(a,1). Thus

PO> p) = ﬁ /O P ( QE’M);@) / I(a).

So (3.14) is true. Since

0

(3.15) follows from (A.1) and (A.11), for 39 = 1. If 49 > 2, it follows from (A.2)
that, for 1 < n <ig, Py(AN (N = n)) equals

(A11) Py(AN (N =0)) = Po(mT; > do ~b) :exp{_do ~b},

=1 Jj—1
(A.12) PQ{OV <cj—b—zyk) <Y;<djii—b->» Yi1<j<n,

k=1 k=1

n+1
Z Y, > d, — b}
k=1

2// ) (Yn+1>dn”b_2yk>
Gn k=1

1 + ety
v%exp{—yl———@—g—}dyn---dyl

NGl dn =
om 0 ’

So (3.15) holds for ig > 2. Finally,

(A13) P63 mnA) = / P4 | 0)r(0)do

and
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0 ,—{dn=b)/Q(6) be 0 —dn /s
(A.14) / € T k(0)d = —— / € T ds

Ju Q" (6) L(a) Joqu s+
ba

= Ip<a+n,—in—).
d7""T'(a) Qw)
Equation (3.16) follows from combining (3.15), (A.13) and (A.14). O
A.2.4  Proofs about E(N)
ProoF OF THEOREM 3.6. First we have
(A.15) Py(n) = Py(AN(N =n)) + Ps(RN (N = n)).

For ¢y = 1, equation (3.27) follows from combining (A.1), (A.2) and (A.11). If
7:0 2 27

Pg(Rﬂ(Nz1)):Pe(iﬁ—t—bﬁcﬂ:l—e}(p{—%ﬁ}

Combining this and (A.12) establishes (3.27) for ¢p = 2. If ig > 3, Py(RN(N = n))
equals

-1 j—1
Py <0V<6j—b—zyk> <Yj§dj_1—b—ZYk,1Sj§’n—1,

k=1 k=1
iYkSCn—b)
k=1
=[] =Rl > 0V =0}

We"p{ Qw)}dy”‘ o
R U o e

o) kot g}
it )

_ ”Gn—2” dn—2 -b
= Je,n—1 - Jo,n - P exXp '—Q—(f)‘)‘*— y

for 2 < n < i, where s, = y1 + - - + yn. Equations (3.27) and (3.28) follow by
algebra and from (A.12}). Equations (3.29) and (3.30) follow immediately from the
assumption on the prior. O
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PROOF OF LEMMA 3.4. It is enough to prove (3.33). The proof is similar to
the proof of Lemma 3.2 and is hence only outlined.

1. By an argument similar to that leading to (A.6), the following integral
formula can be established:

do c; Vy Ci c;i Vb
_ — . 3 4
(A.16) 61Vbexp{ X }dy aj_l,l(b) exp{ 3 } —+—)\exp{ 3 }

——)\exp{——cj\)/\do},

for 7 =2,3,..., and A > 0, where a;_1,1(-) is given by (3.3).
2. Define

Jom = e—b/cxe) Jom

dn_2
" Cp 'V 8p_1
Q(é’ )= /b / e"p{" 0] }ds"‘l s

Then prove (3.33) by induction, Lemma 3.6 and equation (A.16).
A.2.5 Proof of the lemma about a Poisson process

Proor oF LEMMA 3.5. Replace c; —band d; 1 —bin (3.1) by a; and b;_4,
respectively. From Theorem 3.6,

ig—1 i0—2
(A.17) E(M(T)) = ZJ —QZ ”G I { %ﬁ}

H Gig—1ll biy—1
——01.—0—_—1—exp —T .

Let Y1,Y2,.. ., be iid exponential random variables with common mean 1/6. Then
i
(A.18) T =Y {Hin+ Han},
n=1
where

Hy1 = bol(Y1 > bo),

Hin=bp 1 I{{(Y1,.. ., Y1) € Guo) N (S > bps1)}l, 2 < n < g,
Hy =Y1I(Y1 < ay),

Hyp = SpI{{((Y1,...,Yn-1) € Gu1) N(Sp < an)}, 2<n <ig,
Hojy = Sip—1I{((Y1,...,Yig—1) € Giy—1) N (Sp < bjy—1)}.

Note that, for 1 < n <1,

EH,, = tntllGall p{_bn_l}.

gn—1 0
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Define Hs; = Hy1 and
Hsp, = SnI{((Yl, v ;Yn—l) € Gn—l) N (Sn < bn)}, for 2<n <.

Then

n
G; b
EH3n = EH3,n——1 - EHQ,n-—l - EHl,n + 9*]9,71 - Z ng'u €Xp {"_ﬁ} 3

i=n—1

which implies that

E(Hsn — H3p—1)+ EHopo1 + EHyjp = 8Jg 0 — z G| Z” exp{ 0 } .

i=n-—1

Therefore

ET = Z EHy .+ Z EHyn

n=1 n=1

i 4 2
= z": EH ., + ZO E(H3pn — H3n—1)+ EH3z 1 + ZOEHQ,n—l

n=1 n=1 3=2

“"WM bi
_EH11+EH31+29JM 1=0Y " > {—5}.

n=24i=n—2

Since E(Hy; + H31) = 6(1 — exp{—b,/0}),

io—1 i9g—2 .
n Gi—— bz’—-
ETezJ_wZW” {%}ﬂﬁggqn%}

n=0

Thus (3.38) holds. O

REFERENCES

Balaban, H. S. (1975). Reliability demonstration: purposes, practics, and value, Proceedings 1975
Annual Reliability and Maintainability Symposium, 246248, The Institute of Electrical and
Electronics Engineers, California.

Barlow, R. E. and Campo, R. (1975). Total time on test processes and application to failure
data analysis, Reliability and Fault Tree Analysis (eds. R. E. Barlow, J. Fussell and N. D.
Singpurwalla), 451-481, SIAM, Philadelphia.

Barnett, V. D. (1972). A Bayes sequential life test, Technometrics, 14, 453-467.

Billingsley, P. (1986). Probability and Measure, 2nd ed., Wiley, New York.

Bivens, G., Born, F., Caroli, J. and Hyle, R. (1987). Reliability demonstration technique for fault
tolerant systems, Proceedings 1987 Annual Reliability and Maintainability Symposium, 316—
320, The Institute of Electrical and Electronics Engineers, California.

Bremaud, P. (1981). Point Processes and Queues, Martingale Dynamics, Springer, New York.

Chandra, M. and Singpurwalla, N. D. (1981). Relationships between some notions which are
common to reliability theory and economics, Math. Oper. Res., 6, 113-121.



248 DONGCHU SUN AND JAMES O. BERGER

Easterling, R. G. (1970). On the use of prior distribution in acceptance sampling, Annals of
Reliability and Maintainability, 9, 31-35.

Eastering, R. G. (1975). Risk quantification, Proceedings 1975 Annual Reliability and Masntain-
ability Symposium, 249-250, The Institute of Electrical and Electronics Engineers, Califor-
nia.

Epstein, B. and Sobel, M. (1953). Life testing, J. Amer. Statist. Assoc., 48, 486-502.

Epstein, B. and Sobel, M. (1955). Sequential life tests in the exponential case, Ann. Math.
Statist., 26, 82-93.

Goel, A. L. (1975). Panel discussion on some recent developments in reliability demonstration,
introductory remarks, Proceedings 1975 Annual Reliability and Maintainability Symposium,
224245, The Institute of Electrical and Electronics Engineers, California.

Goel, A. L. and Coppola, A. (1979). Design of reliability acceptance sampling plans based upon
prior distribution, Proceedings 1979 Annual Reliability and Maintainability Symposium, 34—
38, The Institute of Electrical and Electronics Engineers, California.

Goel, A. L. and Joglekar, A. M. (1976). Reliability acceptance sampling plans based upon prior
distribution, Tech. Reports, 76-1 to 76-5, Dept. of Industrial Engineering and Operations
Research, Syracuse University, Syracuse, New York.

Harris, C. M. and Singpurwalla, N. D. (1968). Life distributions denied from stochastic hazard
functions, IEEE Transitions on Reliability, R-17, 70-79.

Harris, C. M. and Singpurwalia, N. D. (1969). On estimation in Weibull distribution with random
scale parameters, Naval Res. Logist. Quart., 16, 405-410.

Jewel, W. S. (1977). Bayesian life testing using the total Q on test, The Theory and Application
of Reliability, with Emphasts on Bayesian and Nonparametric Method (eds. C. P. Tsokos
and I. N. Shimi), 49-66, Academic Press, New York.

Klefsjo, B. (1991). TTT-plotting—a tool for both theoretical and practical problems, J. Statist.
Plann. Inference, 29, 99-110.

Lindley, D. V. and Singpurwalla, N. D. (1991a). On the amount of evidence needed to reach
agreement between adversaries, J. Amer. Statist. Assoc., 86, 933-937.

Lindley, D. V. and Singpurwalla, N. D. (1991b). Adversarial life testing (submitted).

MacFarland, W. J. (1971). Sequential analysis and Bayes demonstration, Proceedings 1971
Annual Reliability and Maintainability Symposium, 24-38, The Institute of Electrical and
Electronics Engineers, California.

Mann, N. R., Schafer, R. E. and Singpurwalla, N. D. (1974). Methods for Statistical Analysis of
Reliability and Life Data, Wiley, New York.

Martz, H. F. and Waller, R. A. (1979). A Bayesian zero-failure (BAZE) reliability demonstration
testing procedure, Journal of Quality Technology, 11, 128-138.

Martz, H. F. and Waller, R. A. (1982). Bayesian Reliability Analysis, Wiley, New York.

Montagne, E. R. and Singpurwalla, N. D. (1985). Robustness of sequential exponential life-
testing procedures, J. Amer. Statist. Assoc., 80, 7T15~719.

Ray, S. M. (1965). Bounds on the minimum sample size of a Bayes sequential procedure, Ann.
Math. Statist., 39, 859-878.

Schafer, R. E. (1969). Bayesian reliability demonstration, phase I-——data for the a priori distri-
bution, RADC-TR-69-389, Rome Air Development Center, Rome, New York.

Schafer, R. E. (1975). Some approaches to Bayesian reliability demonstration, Proceedings 1975
Annual Reliability and Maintainability Symposium, 253-254, The Institute of Electrical and
Electronics Engineers, California.

Schafer, R. E. and Sheffield, T. S. (1971). Bayesian reliability demonstration, phase IT—
development of a prior distribution, RADC-TR-71-139, Rome Air Development Center,
Rome, New York.

Schafer, R. E. and Singpurwalla, N. D. (1970). A sequential Bayes procedure for reliability
demonstration, Navael Res. Logist. Quart., 17, 55-67.

Schemee, J. (1975). Application of the sequential t-test to maintainability demonstration, Pro-
ceedings 1975 Annual Reliability and Maintainability Symposium, 239-243, The Institute of
Electrical and Electronics Engineers, California.



BAYESIAN SEQUENTIAL RELIABILITY 249

Schick, G. J. and Drnas, T. M. (1972). Bayesian reliability demonstration, AIIE Transactions,
4, 92-102.

Soland, R. M. (1968). Bayesian analysis of the Weibull process with unknown scale parameter
and its application to acceptance sampling, IEEE Transactions on Reliability, R-17, 84-90.

Soland, R. M. (1969). Bayesian analysis of the Weibull process with unknown scale parameter
and shape parameters, IEEE Transactions on Reliability, R-18, 181-184.



