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A b s t r a c t .  Assume that the probability density function for the lifetime of 
a newly designed product has the form: [H'(t)/Q(O)] exp{-H( t ) /q (o)} .  The 
Exponential E(0), Rayleigh, Weibull ]4;(0,/5) and Pareto pdf's are special cases. 
Q(O) will be assumed to have an inverse Gamma prior. Assume that m inde- 
pendent products are to be tested with replacement. A Bayesian Sequential 
l~eliability Demonstration Testing plan is used to eigher accept the product 
and start formal production, or reject the product for reengineering. The test 
criterion is the intersection of two goals, a minimal goal to begin production 
and a mature product goal. The exact values of various risks and the distri- 
bution of total number of failures are evaluated. Based on a result about a 
Poisson process, the expected stopping time for the exponential failure time is 
also found. Included in these risks and expected stopping times are frequentist 
versions, thereof, so that the results also provide frequentist answers for a class 
of interesting stopping rules. 

Key words and phrases: Bayesian sequential test, reliability demonstration 
test, exponential distribution, Weibull distribution, expected stopping time, 
producer's risk, consumer's risk. 

I .  Introduction 

Reliability Demonst ra t ion  Testing (RDT)  is often used for the purpose of 
verifying whether  a specified reliability has been achieved in a newly designed 
product .  Based on a demonstra t ion test, a decision is made to either accept the 
design and star t  formal production,  or reject the design and send the produc t  back 
for reengineering. 

A serious problem with R D T  is tha t  a reliability test  can be very expensive 
in terms of money and time, especially in the case of products  tha t  require very 
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high reliability and have a long lifetime. A common solution is to take into con- 
sideration prior information, typically from engineering knowledge or knowledge 
of previous similar products, and to test in a sequential fashion. Bayesian Sequen- 
tial Reliability Demonstration Testing (BSRDT) can, in many cases, significantly 
reduce the amount of testing required. 

The following design questions are of interest. How many units need to be 
tested to reach a decision? How much time is required to make a decision? What  
are expected losses? There are a variety of Bayesian non-sequential reliability 
demonstration tests for answering these questions. For example, see Esterling 
(1975), Goel (1975), Schafer (1975), Schemee (1975), Goel and Coppola (1979), 
and Bivens et at. (1987). 

Schafer and Singpurwalla (1970) proposed the following test procedure. One 
unit at a time is tested, where the lifetimes of units are independently identically 
exponentially distributed with mean 0. The unknown 0 is assumed to have an 
inverse Gamma prior distribution. Choose a minimum acceptable value, say 01, 
and let P~ = P(O >_ 01 I data). The test is terminated when Pn -> 1 - a2 (or 
_< c~1), and a decision to accept (or reject) the product is made. Schafer and 
Singpurwalla (1970) were primarily concerned with the acceptance probability of 
this procedure, and developed approximations for it. Some related computations 
and approximations for other risks were done in Schafer and Sheffield (1971) and 
Mann et al. (1974). The approximations are only for the case where there is 
no indifference region (see Subsection 2.3), and while they are often reasonably 
accurate, they can be inaccurate. The extreme difficulty of all computations of 
this type is discussed in Martz and Waller (1982); one of the major motivations 
for this work is to show how such computations can be done explicitly, in closed 
form, and for a general class of distributions. 

The stopping rule of Schafer and Singpurwalla (1970) is discrete, in the sense 
that one can only stop the test when a failure occurs. This can be inefficient 
when observations are very expensive and/or  have long lifetimes. Barnett  (1972) 
proposed a continuous BSRDT plan for the exponential failure rate problem. By 
his method, one can stop the test at any time that enough information has accu- 
mulated. Again, however, closed form answers were not obtained. 

Related work can be found in Epstein and Sobel (t953), Ray (1965), Harris and 
Singpurwalla (1968, 1969), Soland (1969), MacFarland (1971), Goel and Coppola 
(1979), Martz and Waller (1979), Chandra and Singpurwalla (1981), Montagne 
and Singpurwalla (1985) and Lindley and Singpurwalla (1991a, 1991b). 

In this paper, a general BSRDT plan, stimulated by the work of Barnett  
(1972), is considered for a general class of life distributions. T h e  Weibull and 
Pareto distributions are special cases. The testing plan continues until the poste- 
rior loss is decisive according to a desired criterion, at which time testing termi- 
nates and a decision made concerning the quality of the product. For this plan, 
the exact values of various risks and the distribution of the total number of failures 
are evaluated. Also, bounds on the expected testing time are given and, for the 
special case of an exponential failure time, the expected testing time is computed 
explicitly. Included in these risks and expected stopping times are frequentist ver- 
sions, thereof, so that the results also provide frequentist answers for a class of 
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interesting stopping rules. 
In Section 2 of the paper, the basic model and the BSRDT plan are introduced. 

The total number of units tested, the testing time, and several other important 
features are introduced and evaluated in Section 3. Most proofs are given in 
Appendix. 

2. Structure of the problem 

2.1 The model 
The basic model is as follows. Suppose that  units are independently tested 

on m machines. Whenever a unit fails, it is replaced by a new unit and testing 
is continued until enough information has been obtained. This model includes 
the case in which m machines are tested themselves and, upon failure, a machine 
is repaired or rebuilt (immediately) so that the repaired machine is as good as 
new. The inter-failure times for machine i will be denoted by t i l , t i 2 , . . . ,  for 
i =  1 , 2 , . . . , m .  Given 0, the life t imes t i j ,  i = 1 , 2 , . . . , m ,  j = 1 , 2 , . . . ,  arei id.  
random variables with reliability function 

(2.1) Ro(t) = P(t11 > t 10) = exp{-H( t ) /Q(O)} ,  t > O, 

i.e., tij, i = 1, 2 , . . . ,  m, j = 1, 2 , . . .  have the probability density function 

(2.2) f ( t , o ) _ H ' ( t )  { H ( t ) }  Q(O) exp Q(O) ' t > O. 

Here H(.)  is a known increasing function satisfying H(0 +) = 0 and limt-.oo H(t) = 
oo, Q(.) is a known and strictly increasing function, and 0 is the unknown char- 
acteristic life. 

The density of (2.2) is a special form of the exponential family and encom- 
passes many common reliability distributions. The case when Q(O) = 0 is known as 
the proportional hazard family and has been considered by aewell (1977) for non- 
sequential tests. Jewell (1977) also discussed the problem of identifying the proto- 
type function H(x).  Here are some other examples. The Weibull density, W(0, fi), 
given by f ( t  [ O) = (~t~-l  /O ~) exp{-( t /O)~},  t > 0, arises from Q(x) =- H(x)  = x ~ 
(x > 0) in (2.2), for some known positive constant /3- Known 3 can arise when 
the product is in a class of similar well-studied products, whose distributions have 
been seen to arise from Weibull's with similar shape. Of course, the exponential 
and Raleigh distributions are two important cases, obtained when ~ = 1 and 2, 
respectively. Soland (1968) gives a justification for this situation. Assume that, 
for given 0, X1, )(2 are independent random variables and Xi has reliability func- 
tion e x p { - t ~ / O } ,  where 31 and 32 are known positive constants. Then the p.d.f. 
min{X1, X2} is also a special case of (2.2) with g ( t )  = t ~1 + t ~2 and Q(O) = 0. If 
we let H(t) = ln(t + 1) (t > 0) in (2.2), the lifetimes have a Pareto distribution 
with p.d.f, f ( t  I O) = 1/[Q(O)(t + 1)1/Q(~ t > O. 

From Billingsley ((1986), (21.9) on p. 282), we know that 

/o /0 E(Qj l 0) = P(ti3 > s lO)ds = Ro(s)ds. 
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Since Q(.) is strictly increasing, we get Q(01) < Q(02), if 01 < 02. Thus R01 (t) < 
Ro2(t), which implies that E(ti t I 01) < E(tij I 02), for 01 < 02. In other words, 
larger 0 provide larger expected lifetime. 

2.2 The prior and posterior 
Prior information about the unknown parameter 0 is assumed available in the 

form of a prior density function 7r(.). Schafer (1969) and Schafer and Sheffield 
(1971) observed that  the inverse Gamma prior distributions are often reasonable 
for exponential failure problems. Here, the prior p.d.f, of 0 for the family (2.2) 
will be assumed to belong to the conjugate family 

b a QP(O) exp{  b } 
(2.3) zr(0) = P(a) Qa+l(0) Q(O) ' for 0 > 0. 

Note that then Q(O) has an inverse gamma distribution Z~(a, b). Methods of 
choosing a and b will be discussed in Appendix A. 1. 

Define Ni(t) = max{j : t i l  + ' "  + tit < t}, the number of failures in machine 
i at time t, and 

(2.4) N(t) = Nl(t) + . . .  + N,~(t), 

the total number of failures at time t. Let 

(2.5) v = v ( t ) =  E z(t t)+ H t -  Z tit . 
i = l  j = l  i=1 j = l  

0 Here we d e f i n e  E j = I "  = 0. Note that V is often called the transformed total 
time on test or the rescaled total time on test. See Barlow and Campo (1975) and 
Klefsj6 (1991). Since H(.) is continuous and strictly increasing, so is V(t), t > O. 
Then the likelihood function of 0 is proportional to Q(O) -N(t) exp{-V(t)/Q(O)}. 
It follows directly that if we stop the test at time t, the posterior density of 0 is 

(v(t) + b)N(t)+ a Q'(o) f 
(2.6) 7c(0 [ data) = r(N(t) + a) QN(~)+a+I(0) exp ( 

v(t) + v ] 
Q(o) I ' 

for 0 > 0 ,  

i.e., Q(O) has, a posteriori, an inverse gamma distribution, Z~(N(t) + a, V(t) + b). 
In particular, it follows that  the posterior a-th quantile is 

/ 2(V(t_____~) + b) 
(2.7) = J for 0 < c ~ <  1, 

where Q-1 (.) is the inverse function of Q(.) and )/2 ( 1 -  a) is the ( 1 -  a)-th quantile 
of the X 2 distribution with j degrees of freedom. 
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2.3 The B S R D T  plan 
There are a variety of possible goals for sequential experimentation. The 

following BSRDT plan is the intersection of two goals. 
1. Let 81 be the goal to begin production, in the sense that  the experiment 

will stop and production begin if there is 100(1 - a l )% "confidence" that 0 > 81. 
2. Let 02 be the mature product goal, in the sense that the experiment will 

stop and the product will be rejected (sent back for reengineering) if there is 
100(1 - c~2)% "confidence" that  0 < 82. 

Here c~1 and a2 are two usually somewhat small numbers, and 01 < 02 are two 
prespecified values. The region 0i < 0 < 02 is often called the indifference region. 

The BSRDT plan also arises in formal decision models. Suppose that a prod- 
uct with small 0 < (01) should be rejected and with large 0 > (02) should be 
accepted. Let l(O) be the loss for making a wrong decision, where l(O) is non- 
increasing and nondecreasing in (0,01] and [02, c~), respectively, and l(O) = 0 
for 0 E (01,02). The test will stop and production begin if the posterior loss of 

accepting the product (fol  l(O)rc(O [ data)d0) is small enough, and the test will 
stop and the product be rejected if the posterior loss of rejecting the product 
(fo~ l(O)rc(O [ data)d0) is small enough. The BSRDT plan arises if l(O) is constant 
on both (0, 01] and [02, oo). 

It is easy to see that  the testing plan is equivalent to 

Stop and accept the product, 
Stop and reject the product, 
Continue testing, 

if q*(al) > 01; 
if q*(1 - a2) _< 02; 
otherwise, 

where q* (c~) is the a- th  posterior quantile. From (2.7), this is equivalent to 

(2.8) 

Stop and accept the 15roduct, 
if V(t)  + b > (1/2)Q(O1)X~(N(t)+a)(1 - Ctl), 

Stop and reject the product, 
if V(t)  + b <_ (1/2)Q(O2)X~(N(t)+a)(a2). 

As with certain classical sequential tests these procedures are "semicontinuous" 
(see Epstein and Sobel (1955)): one can "accept" when the continuous time of 
accumulated nonfailure is large enough, but can "reject" only on the (discrete) 
occurrence of a failure. It is possible to graph the stopping boundaries of this test 
by defining 

1 2 
(2.9) ci = Q(02)x~(~+i)(c~2) and di = ~Q(O1)x2(~+i)(1 - al ) ,  i _> 0. 

Since both a l  and c~2 are small, it can be assumed that a2 < 1 - C~l. Then it can 
be seen that ci _> d~-i when i is large enough, as long as 01 < 02. Therefore there 
is an i0 such that 

(2.10) io = min{i -- 1 ,2 , . . .  : ci >_ d~-l}. 

Note that if io > 1, then cl < d0, which implies that Co < do, but for io = 1 we 
will need to assume that Co < do. If b < co, we should reject the product without 
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Fig. 1. An  example  of s topping  boundaries .  

test,  and if b > do, we should accept  the p roduc t  wi thout  test. Obviously, these 
two cases are unlikely to occur in practice,  so we consider only the case where 
co < b < do. 

Let  T1 <_ T2 <_ . . .  <_ Tn be the  first n ordered  failure t imes for all the  m 
machines. For instance, T1 = rain{t11, t 2 1 , . . . ,  tml},  and if the first failure occurs 
on machine il ,  then  T2 = min{t i l l  + ti12, til, i # i l}.  Let T be the s topping t ime 
or the testing time, tha t  is 

T = min { t  > O : V( t )  + b > l Q(o1)X~(N(t)+~)(1--o~l) or 

<_ ~Q(O2)X22(N(t)+a)(Ct2) } . 

Note tha t  T is different from the  welt-known tota l  t ime on test.  A graph of V ( t ) + b  
with respect to  t is shown in Fig. 1 using s imulated da ta  from a W(6800, 1.35) 
distribution. For the graph, a = 2.5, b = 255,000, c~1 = 0.10, c~2 = 0.10, 01 = 6,400 
and 02 = 8,650, which implies c9 < ds and io = 8. Note tha t  bo th  the acceptance 
boundary  and the rejection bounda ry  have r andom jump points, but  have fixed 
height at each point.  The  boundar ies  in Fig. 1 are different than  the boundar ies  
in t radi t ional  exponential  sequential  life tes t ing procedures,  in tha t  they  are data-  
dependent ,  whereas in other  sequential  procedures,  bo th  Bayesian and frequentist ,  
they are predetermined.  Also, the  boundar ies  here have the form of a step function,  
whereas V(t)  + b is smooth,  while the reverse is t rue  for the other  procedures.  In 
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Fig. 1, at time T, V ( T ) +  b hits the rejection boundary. In general, at the stopping 
time T, V(T)+b will hit either a horizontal segment on the acceptance boundary or 
a vertical segment on the rejection boundary. If 01 < 02, i0 < ec and the sampling 
region is closed. If 01 < 02, i0 = oc and the sampling region is open. Although 
we have derived this class of stopping boundaries from a Bayesian perspective, 
they can be used simply as specified boundaries in a frequentist analysis. Indeed 
frequentist measures of performance will also be considered. 

3. Features of the BSRDT plan 

3.1 Design criteria and risks 
Let A and T~ denote the action (or, by an abuse of notation, the region) of 

accepting the product and the action of rejecting the product, respectively. Several 
risk criteria, defined in Chapter 10 of Martz and Waller (1982), can also be applied 
here to measure the goodness of the BSRDT plan. The following names of these 
risks are borrowed from related conventions in quality control and are widely used 
in nonsequential context. 

1. Classical producer's risk, T = P ( ~  I 02), and classical consumer's risk, 
5 = P ( A  I 0:t). Here 7 is the probability that  a product at the mature product 
goal will fail the BSRDT and 5 is the probability that  a product at the goal to 
begin production will pass the BSRDT. Note that these are frequentist risks. It 
can be seen that P(A  ] 0) is monotonically increasing in 0. Thus P(7~ I 0) < T for 
O>O2, a n d P ( A  t0) < S for O < 01. 

2. Average producer's risk, ~/ = P ( ~  ] 0 k 02), and average consumer's risk, 
= P ( A  [ 0 < 01). Here ~ is the probability of rejecting a good product and 5 is 

the probability of accepting a bad product. Note that  computation of these risks 
involves the prior. 

3. Posterior producer's risk, 7" = P(O _> 02 ] 7"~), and posterior consumer's 
risk, 5" = P(O <_ 01 I .4). Here T* is the posterior probability that  a rejected 
product is good, and 5* is the posterior that  an accepted product is bad. 

4. Rejection probability, P(T~) = fe  P ( ~  ] O)Tr(O)dO, and acceptance probabil- 
ity, P(A) = 1 - P ( ~ ) .  Here P(A) is the unconditional probability of the product 
passing the BSRDT. 

Of course, one can not find an "optimal" BSRDT in the sense that  all above 
risks are very small. However, it is possible to choose several risks. For the fixed 
sample size problem, many papers are available concerning how to choose the 
criteria. For example, Balaban (1975) favors the mixed classical/Bayesian pair 
(T, 5*) to determine a Bayesian reliability demonstration test. Also see Easterling 
(1970), Schafer and Sheffield (1971), Schick and Drnas (1972), Goal and Joglekar 
(1976). We make no effort to compare the criteria here; our results are of use for 
computation with any of them. 

Let N = N(T) be the number of failed units at the time when testing stops. 
Let NTU denote the total sample size or the total number of testing units put 
on test. Finding the expected stopping time, E(T) = f E (T  [ O)~r(O)dO, and 
the expected sample size, E(NTu) = f E(NTcr [ O)7c(O)dO, is important for design. 
The following relationship between the total sample size and the number of failures 
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follows immediately from the definition of the stopping rule, and allows us to 
consider E ( N )  instead of E ( N T u ) .  

THEOREM 3.1. NTU = N + m - I ( ~ )  and E ( N T u )  = E ( N )  + m - P(7~),  
where I ( . )  is the indicator  func t ion .  

In Subsection 3.3, we will find expressions for all the above risks for our decision 
rules. In Subsection 3.4, we will find the distr ibution and expected value of the 
number  of failures. Expressions for E ( T )  are developed in Subsection 3.5. Some 
examples are given in Subsection 3.6. 

3.2 Technical pre l iminaries  
For n = 1 , . . . ,  i0, let 

(3.1) Gn = {(Yl , . . . ,Yn)  : Yj > 0, cj - b < Yl + " "  + Y j  <- d j -1  - b , j  = 1 , . . . , n } ,  

let IIG011 = 1 and let ]lGnll denote  the volume or Lebesgue measure of G~ (n _> 1). 
It will be seen tha t  all the risk expressions involve I1G,~II (n < i0). For all theorems 
involving IIG~ II, it will be assumed that  

(3.2) cj < d j - 1 ,  for j = 1 , 2 , . . . , n ,  

where both  {c j} j>o and {dj}j>0 are increasing sequences of positive numbers.  If 
(3.2) is violated, i.e., if there is j (<  n), such tha t  cj > d j -1 ,  then Gn is an empty  
set, and hence IIG~II = 0. An analytic formula for llGn]l is given in Lemma 3.2. 
The  following notat ion will be needed. 

For j = 1 , 2 , . . . ,  i = 0, 1 , 2 , . . . ,  and y > 0, define 

(ci+j A d j - 1 )  V y - (Cj V y) ,  if i >_ 1, 
(3.3) aij (Y)  = d j -1  - cj V y, if i = O, 

where x V y = max(x,  y) and x A y = rain(x, y). Then (3.2) implies tha t  

f c~+j A d5_1 - c~, if  i >_ 1, (3.4) a i j ( c j )  I dy_l - c y ,  i f / =  0. 

For n > 2, define two sets of part i t ions of n by 

(3.5) 9 ~  = i l , .  .. , i k )  : ij  = n , k  >_ l , i j  >_ l 
j = l  

and 

(3.6) % = {( i1 , . . .  , ik): ( i~ , . . . , ik)  ~ % , i k  >_ 2}. 

For example, the  first few 9 n  and 9 "  are as follows: 

{ 91 = {(1)}, 92 = {(1, 1), (2)}, 93  = {(1, 1, 1), (1, 2), (2, 1), (3)}, 
(3.7) 94 = {(1,1,1,1),  (1,1, 2), (1, 2,1), (2,1,1), (3,1), (1,3), (2, 2), (4)}, 

9~ = {b, 9~ = {(2)}, 9~ = {(1,2),  (3)}, 
fft~ = {(1, 1, 2), (1, 3), (2, 2), (4)}. 
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For 1 < r < n, ( i l , . . . , i k )  E ~ ,  define 

(3.8) pl (b; n; r; i 1 , . . . ,  ik) - Pl (b; n; r; i t , . . . ,  ik; cj, dj_~, 1 < j < n) 

r! ' 

-- ainl-r'r(Cr)k a*,j(c*,j) a*k(b), if k _> 2, 

~Ij~l ij! ( j~-2 ) 

and for 2 < l < r < n, ( i l , . . . , i k )  E qr 

(3.9) p ~ ( b ; n ; r ; I ; i l , . . . , i k )  

=-- p~(b;n;r; l ; i l ,  . . . , i k ; C j , d j _ l , I  <_ j <_ n) 

- ~ IIG~_lll, if  k = 1, 

k . a~*j(e:,~) a;,k(d~-z)llG~-zll, if k _ 2, 
1-Ij=l ~j! (3=2 

ij 
where io = O, i(j) = io + il + . . .  § ij, a;,j(.) = aij_~,~_i(j) (.), aij(.) is given by 

(3.3), c~,j* = c~-i(r , and YI~=2 . = 1. 
The following lemma will be used in the proof of Lemma 3.2. It also provides 

the number  of terms in the formula for ]lGnll. 

LEMMA 3.1. The numbers of elements in ~9~ and ~ are 

(3.1_0) # { ~ n }  = 2 n-1 and #{ko~} __- 2 n-2,  

respectively. Furthermore, we have the following recursive formulas: 

(3.11) ~ + 1  = U { ( i~ , . . . , i ~  + 1 ) , ( i ~ , . . . , i ~ , 1 ) } ,  
(i~ ,...,ik)Eg~,~ 

(3.12) fit*+ 1 = U { ( i1 , . . . ,  ik + 1)}. 
(i~,...,ik)E~ 

PROOF. See Appendix  A.2. [] 

LEMMA 3.2. The volume of G~ (n > 1) is 

(3.13) IIGnlt = E p l ( b ; n ; n ; i l , . . .  , ik) 

l=2 (i~ ..... ik)e~ 7 
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where pl(b; n; n; i 1 , . . . ,  ik) and p2(b; n; n; l; i 1 , . . . ,  ik) are given by (3.8) and (3.9), 
respectively. 

PROOF. See Appendix A.2. [] 

In equation (3.9), IIGIlI,...,  and IIGn-211 appear.  Therefore, (3 .13) i s  essen- 
tially providing an iterative algorithm for their computat ion.  Using (3.10), the 
total  number  of terms in (3.13) is 2 n-1 + }-~.~=2 21-2 = 2n - 1. 

3.3 Evaluation of risks 
Define I t (x ;  y) = f~ tZ - l e - td t ,  for x, y > 0. 

LEMMA 3.3. For any fixed # > 0, we have 

( ~ ) / F ( a ) ,  (3.14) F(O > #) = Ir a, 

io- t  
(3 .15)  P(Aj0)=  ~ [jcnti { d~_-b~ Qn(O) exp , 0 > O, 

~=o Q(6) J 
and 

( (3.16) P((O _> It) n A) = ~ ballG~lla+~r ~'  I r  a + n, d n  . 

n=O dn (~j 

PROOF. See Appendix A.2. [] 

The following theorem concerning the rejection and acceptance probabil i t ies 
follows from Lemma 3.3 and the fact tha t  P( ,4)  = lira,__.0 P((O > I t) A A). 

THEOREM 3.2. The rejection probability is 

io-1 b~F( a + n) 
(3.17) P ( n )  = 1 - P ( A )  = 1 - E d~+nrra~ IIG~II. 

n=0 n k / 

THEOREM 3.3. The classical risks are 

,o-1 / d --b 
(3.18) 7 = P ( n  I 02) = 1 - E Ila,~ll exp L ' 

,~=o Qn(e~) Q(62) J 
,o-1 { d ~ - b }  

(3.19) 5 = P(A I 01) = ~ Ila~l____LI exp . 

~=o Q~(el) q(o~) 

PROOF. The results follow immediately from (3.15). [] 
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THEOREM 3.4. The average risks are 

(3.20) 

(3.21) 

io--I 
= P ( ~ i o  > o~) = 1 - ~ b~ h.(~+~,d,~/q(O~))  

- a~+'~ I t (a ,  b/Q(02)) ' n = 0  ~ n  

io--1 ba 
= P(`4 I 0 < 01) : Z []Gn] [ F(a +~v--,--c--;-,---.--~,-w-w~n) - Ir(a + n, dn/Q(01)) 

'r~O ~T~ 

PROOF. Note that 

(3.22) ;y = P ( n  I o > o~) = 1 - P((O >_ o2) n `4) /P(O >_ o~). 

So (3.20) fol]ows by substi tut ing (3.14) and (3.16) into (3.22). Similarly, 

= P(`4 [ 0 < 01) = P(`4) - P((O >_ 01) N A) 
- 1 - P(O > 01) 

Combining this, (3.14), (3.16) and (3.17), we get (3.21). [] 

THEOREM 3.5. The posterior risks are 

(3.23) 

(3.24) 

7" = P(O >_ 02 JR.) 

(&) I F  a ,  --  A-.~n=0 b'~llGn[lIr (a "~n,~)/da+n 
X "~i~ ba[lGn][r(a + n)/d~ +~ r ( a )  - z-~n=0 

~* = P(O <_ 01 I `4) = o~1. 

PROOF. Note that 

(3.25) 7* = P(O >_ 02 I T~) = P(O > 02) - P ( (O  > 02) N `4) 
P ( ~ )  

Substi tut ing (3.14), (3.16) and (3.17) into (3.25), one gets (3.23). Similarly, 

(3.26) ~* = P(0 _< 01 I A) 
~o-1 Ilanllf ( 
n=O 

n 1 iia~llr( a 
n=o ~ + n). 

Since dn/Q(01) = (1/2)X~(~+n)(1 - al) ,  I r ( a + n ,  dn/Q(O1))/F(a+n) = P(X~(~+~) 
2 1 <- X2(a+n)( - a l ) )  = 1 - a l .  Therefore, /~* = a l .  This completes the proof of 

Theorem 3.5. [] 

Intuitively, it is easy to unders tand why P(O < 01 [ `4) = al .  Indeed, ,4 = 
{data : P(O <_ 01 I data)  = ~1}, and a s tandard  measure-theoretic argument  
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immediately gives the conclusion. Similarly, since 7~ = {data:  P(O >_ 02 t data) _< 
a2, with a positive probability that strict inequality holds}, we conclude that 

Fact 3.1. P(O >__ 02 17E) < a2. 

From (3.24) and Fact 3.1, one is able to control the two posterior risks by 
choosing a l  and a2. 

3.4 Distribution and expected value of the number of failures 
Recall that N is the number of failures at the time we stop the test, and make 

a decision. It is easy to see that  0 _< N ~ io. The distribution and the expected 
value of N are as follows. 

THEOREM 3.6. 
given 0 is 

exp{  ~-~)- j , 

(3.27) Po(N < n) = ~ ]]Gill di - b 
1 -  so,~ + ~ exp 

the expected number of failed units for given 0 is 

io-1 io-2 llG~f] { d ~ - b ~  
(3.2s) S ( N  I e ) =  Z Zo,~ - 2 ~ exp 

,~=o ,~:o Q~(O) -Q-~) J 

IlCio-lll exp 
Q~o- l ( o ) --O-(o-S ' 

the marginal cumulative distribution of N is 

(3.29) P ( N < _ n ) =  (-doo) ' 
l - a +  s ilG~ll bar(a+i )  

i=n--1 d~ +iF(a) ' 

and the expected number of failed units is 

i0--1 i0--2 baF(a + n) 
(3.30) E(N)  = E J~ - 2 E I tCnl l  

,~=o ,~=o d~a+~r(a) 

Let Po(') = P(" I 0). The cumulative distribution of N for 

i f  n -~- O, 

if l _<n< i 0 ;  

i f  n : O, 

if l _ < n < i o ;  

baF(a + io - 1) 

where IlColl = 1, IlCnll is the volume of On, E o  1. - 0, Je,o - Jo - 1, 

(3.31) Je,~ = 1 (c~ - b) v sn-1 
Q(O)n_ 1 . . .  exp e ( o )  dyn-l  " "" dy,, 

i fn>_2,  
and 
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(3.32) 

ba 
(Cl V b) a' i f n  = 1, 

b~ + n-1) / . s d y n - l ' " d y l  
F(a)  ~-1 [cn V (Sn-1 ~-b)] a + n - l '  

i f n>_2 .  

Here  So = b, 8n_ 1 ~- Yl "~- "'" "~ Yn--1. 

PROOF. See Appendix A.2. [] 

The formulas for computing Jo,~ and J~ are given by the following lemma. 

LEMMA 3.4. For 2 < n < io - 1, we have 

(3.33) Jo,n = exp { c n V b - b }  --Q-~) Q(O) - ~ @(o) Ila~ll 
i=0  

f c , ~ - b  ~-1 ~,~ + e x p  l 
and 

(3.34) & -  b~ 
(c~ V b) ~ 

~-X-~ bar(a + i)]lGill ~-~ bar(a + r) + ca+r _~ ~n,r, = r(a)(c~ v 6)a+~ z__,~=~ ~ r(~j  

where  

(3.35) ~n,r = E p l ( b ; n ; r ; i l , . . . , i k )  

- f i  E p 2 ( b ; n ; r ; l ; i l , . . . , i k ) .  
l=2 (i1,...,ik)Er 

Here pl (b; n; r; i 1 , . . . ,  ik ) and p2(b; n; r; I; Q, . . . , ik ) are defined by (3.8) and (3.9), 
respectively. 

PROOF. See Appendix A.2. [] 

The above computat ion is quite complicated, but  there is a simple inequality 
for &: 

b~lIG~llr(a + n - 1) < & < b~llG~llr'(a + n - 1) 

(c, V d ,_2)~+~-lp(a)  &+n-lF'n La)" 

I f d n - 2  ~_ cn, then J~ = ballG, l l r ( a + n -  1 ) / { c t + ~ - l r ( a ) } .  Since dio-1 _~ Cio, we 
have d~-2 _< cn for somewhat large n. 
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3.5 Expected stopping time E(T) 
The expected stopping time in general cannot be evaluated in closed form. In 

this section, an upper bound and a lower bound for E(T ] 0) are found. By using a 
result about Poisson processes, a closed form is given for exponential failure time. 
3.5.1 Bounds for E(T) 

Note that 

E(Nj(T) [ O)E(tlz [ O) <_ E(T I O) <_ E(Nj(T) + 1 [ O)E(tn ] 0), 

where Nj (T) is the number of failure units for machine j at time T. Therefore, 

1 E ( N  [ O)E(hl I O) <- E(T I O) ( 1 E ( N  I O) + I)  E(tn I O)' 

where N is the total number of failure units. Note that E(N 0) can be evaluated 
by (3.28), and 

E(t11 ]0) -- t f ( t  l O)dt = tH'(t) H(t) Q(o) exp Q(0) dr. 

Remark 3.1. For the Weibull distribution, W(O,/3), 

E(tu [ O) = t ~ exp{-t~/O~}dt = F(1 + 1//3)0, 

0 <_ E(T I O) - T~ < E(tn ] 0), 
[baF(a-1//3)lUZ 

0 <_ E(T) - T* < E ( t n )  -- F(t  + 1//3) [ ~ ) -  j 

where 

(3.36) 

(3.37) 

T; = 

T* = 

2  o-2,,Cn,,exp{z 0+ld b}0  
m k n=0  n=0  

O(io-a)~ -1 O~ ' 

F ( 1 + ~ /  / i ~ l  io-2 b a F ( a + n - ~ l  

m [ n=o J *  - 2 ~=o ~ IIG~II d~+~_~/~r(a ) 

-]]G'o-l[[ d:T_/~i--- ]-7-~,?a; , 
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IlColI = 1, ~-~o 1. --- o, Jo,~ is given by (3.31), and 

bl/Zr(a - 1 / /3 )  

r(a) 
b~I'(a- 1//3) 

F(a)(c l  V b) ~-1/~' 
J~ = b a ~ P ( a - 1 / / 9 )  _ ~z~ IIC~lll~(a + i = 1 / / 3 )  

r (a)  [ (c n V b) a-1/13 ~ (Cn V di) a§ 

n-1 I 

v----1 Cn 

if n = 0, 

if n =  1, 

if n >  2. 

3.5.2 E(T) for exponential failure time 
Suppose tha t  M(t) (t _> 0) is a Poisson process with intensity 1/0. Thus 

M(t) has a Poisson distr ibution with mean t/O. For two increasing sequences of 
constants {a~}n>_o and {b~}~___0 satisfying a0 < 0 < bo, define 

T = inf{t > 0 : t > bM(t) or t < aM(t)}. 

LEMMA 3.5. If 3i0 such that b{o_ 1 <_ a~o, then 

(3.38) E{M(T)}  = E(T)/O. 

PROOF. See Appendix A.2. [] 

Note that ,  for an arbi t rary stopping t ime T, equat ion (3.38) may be invalid. 
For example, if T = inf{t > 0 : t > M ( t )  + 1}, then it is easy to show tha t  
T = M(T) + 1 and T = M(2P) + 1 for T = win(T,  3). Thus  E{M(T)}  ~ E(T)/O 
and E{M(2P)} 5~ E(T)/O. 

THEOREM 3.7. 
tributed, then E(T [ 0) = T~ and 

~ : 1  �9 io-2 b a r ( a + n  - 1) 
E(T) : 1 Jn 2 E IIG~[I ~ l - ~ j  

m [ n=0 n:O 

_ - .bar (a+ io -  1--1) }, 
H{Jio -11[ dTo+ ~-T-i-14 ( a ) 

where T~ is given by (3.36) with/3 = 1 and 

b 
a - l '  

b a 
j~, = (a -- 1)(C1 V b) a - l '  

b~ { r(a-1) ~ llG~llr(a + i-1) 
(Cn V b) a-1 i=0 (~n ~-i-~ T/-Cf 

For the BSRDT plan, if the product lifetime is g(0) dis- 

i f n=O,  

i f  n = 1, 

ca+r - 1 r-~l n 
i f n >  2. 
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Fig. 2. Classical and  average risks. 

PROOF. The  first result  follows from Lemm a  3.5 immediately.  The  rest fol- 
lows from the expression of T~ and the assumption 8 ~ fiG(a, b). [] 

3.6 Numerical examples 
A Fort ran program has been developed to  compute  the  cumulat ive  dis tr ibut ion 

of N, E(N), T*, and all the risks. For fixed 81, 82, c~1 and c~2, if i0 = 10, 
the comput ing t ime is about  two seconds to  compute  all the  risks and stopping 
quanti t ies  on a Sun 3/60 workstation. It  takes abou t  15 seconds if io = 15 and 30 
minutes for i0 -- 30. 

Example. Suppose tha t  the  p.d.f, of failure t ime is W(0,  fl), a guess for the 
mean  of 8 is 80 = 8,000 (hours), and a guess for the s tandard  deviat ion of 0 is 
a0 = 6,000 (hours). Assume tha t  fl = 1.35. Then  we can compute  tha t  the  
parameters  a and b in the  prior distr ibution are 2.5 and 304,931, respectively. 

Choose a l  -- 0.10 and c~2 = 0.10, and 81 = k82 for various k ment ioned below. 
We choose 01 to  be propor t ional  to 82 for convenience in graphing the  results. 
Various risks, T* (with m = 1), E ( N ) ,  and the cumulat ive dis tr ibut ions of N with 
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Fig. 3. P(flL), P(O >_ 02 ITS), E(N) and T* 

respect to 02 are shown in Figs. 2-4 for k = 0.70 (with a dashed curve),  k = 0.75 
(with a solid curve) and k = 0.80 (with a do t ted  curve). 

The  classical consumer 's  risk, average consumer 's  risk and the acceptance  
probabi l i ty  have a similar shape for these three situations. Almost  all the  curves 
bend at the value 02 = [2b/x~(a+l)(1 -OZl)] 1/B. The  curve of the poster ior  con- 

sumer 's  risk, P(O < 01 ] A), has not been drawn since it is the constant  a l .  Th e  
poster ior  producer ' s  risk P(O > 02 I ~) is not  monotone  with respect  to  02 and is 
always less t ha n  a2 = 0.10, as shown in Fact 3.1. Also, it reaches its local min- 
imum at 02 = {2b/X~(a+~)(a2)} 1/~, i = 0, 1 , . . . .  Here T* is the lower bound  for 

E(T), and the upper  bound is T* + E ( t l l ) ,  where E ( t l l )  = 7,335.91. As intui t ion 
would suggest, a larger k induces a larger rejection region, and hence increases 
all the producer ' s  risks, the expected number  of failures and the  expected  test ing 
time, but  decreases all the  consumer 's  risks. 
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A p p e n d i x  

A.1 Selecting a prior from the conjugate family 

Option 1: Ask for Qo (the best guess for the mean of Q(O)) and aQo (the 
standard deviation for the guess). Then a and b can be determined by the equations 

Q0 = b r ( a  - 1) / r (a ) ,  

~o  + Qg = F r ( a -  2)/r(a), ~ { 
2 2 

a = 2 + Qo/CTQo, 

b = Q o ( a -  1). 

Option 2: For the Weibull case with known/~, Q(0) = 0 z. Ask for 0o (the 
best guess for the mean of 0), and (7o (the standard deviation for the guess). Then 
a and b can be determined by the equations 
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Oo = r ~  ' r2(a-  1/9) ~ '  

_;) " r ooi  a, 1' 
b2/~r b = L r ( a -  1/9)J " 

o~ + ~ = r (a )  ' 

Note that an approximate value of a can be determined by iteratively solving 

o , . , .  (. o.- ,:o _1,.), a.=O.5+[ln(l+Oo2)+ l n 1 1 ) ] / ln (1  1 

starting with the initial estimate 

1 { 3 + e x P l a i n (  1 +  } 
a =  V o~)J  " 

Actually, 5 is often a very reasonable approximation to a itself. 

Option 3: For the Weibull p.d.f, with known 9, ask for the 0.5 quantile, 
q(0.5), and the 0.75 quantile, q(0.75), of the predictive distribution. Then it can 
be shown that the matching choices of a and b are 

a = in 2 / I n {  [ q ( O . 7 5 ) / q ( 0 . 5 ) ]  ~ - 1},  

b = [ q ( 0 . 5 ) ] ~ / ( 2 1 / a  - 1 ) ,  

assuming that q(0.75) > 21/Zq(0.5). If this is not satisfied, the given functional 
form for the prior may not be suitable. 

For example, assume that the p.d.f, of lifetime is 14;(0, 9) with 9 -- 1.35. If we 
have from engineering knowledge and/or knowledge of previous similar products 
that the best guess for the mean of 0 is O0 = 8,000 (hours) and the standard 
deviation for the guess is a0 = 6,000 (hours), then a = 2.5 and b = 304,931. If we 
know that q(0.5) = 5,000 (hours) and q(0.75) -- 9,147 (hours), then a -- 3.0 and 
b = 379,112. 

A.2 Proofs of theorems and lemmas 
Note that  ,4 and T~ can be written as disjoint unions: 

io--I io 

(A.1) A =  U A N ( N = n ) ,  7~=  U 7 ~ A ( N = n ) ,  
n ~ 0  n = l  

where 

(A.2) .AN (N = n) = {cj < Wj + b < d j - l , j  = 1, . . .  ,n, Wn+l -~- b > dn}, 

(A.3) ~ N ( N = n ) = { c j  < W j + b < d j - l , j = l , . . . , n - l ,  W n + b < c n } .  
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Here Wn = V(T~), and V(.) is defined by (2.5) and T~ is the n-th failure time. 
It is easy to see that  evaluation of E(N) and all the risks depends on the joint 
distribution of (W1, W2, . . . ,  Wio), which is given by Lemma A.1 in the following 
subsection. We will use the notation, Y1 = W1, Yj = Wj - Wj-1 (j >__ 2). Also, 
let Po(') denote the conditional probability P(.  I 0) for fixed 0. 
A.2.1 A crucial lemma 

The following lemma gives the distribution of !(-1,. �9 Yn and is of independent 
interest. 

LEMMA A.1. ForgivenO andanyn,  Y1,Y2, . . . ,Yn arei.i.d, exponentialran- 
dom variables with common mean Q(O). 

In order to prove the lemma, a known result about point processes will be 
stated here. Let M(t)  be a point process which is right continuous and piecewise 
constant with jump 1, and satisfy M(0) = 0. Assume that ;~(t) is an intensity 
for this process, i.e., for fixed t > 0, A(t) is measurable with respect to the a-field 
m ~ -  - ~  : 0 < s < t}, and satisfies 

lim P(M( t  + At) - M(t) _> 1 I Y t - )  = A ( t ) ,  
At---+O 

a .s .  

The following theorem follows from Theorem T16 of Bremaud ((1981), p. 41), 

THEOREM A.1. Define •(t) = inf{s >_ 0 : fo )~(r)dr = t} (t > 0). Then, 
M(m(t)) (t > O) is a standard Poisson process with the intensity 1. 

PROOF OF LEMMA A.1. Since 0 is considered to be fixed, without loss of 
generality, assume that Q(0) = 1. It is easy to see that N(t), the total number 
of failures at time t, is a point process which is right continuous and piecewise 
constant with jump 1, and satisfies N(0) = 0. 

It follows from the assumptions on H(.) that V(t), defined by (2.5), is a 
strictly increasing and continuous function of t and satisfies that  V(0) = 0 and 
limt__.~ V(t) = ec. Note that  units are tested independently on all machines, 
it is easy to see that (d/dt)V(t) is an intensity for the process Ni t  ). Therefore 
re(t) = V- l ( t ) ,  where V- l ( . )  is the inverse function of V(-). From Theorem A.1, 
N(V- I ( t ) )  (t > 0) is a standard Poisson process with the intensity 1. Thus 
Y1, Y2, . . . ,  Yn are i.i.d, g(1) r.v.s. This completes the proof of Lemma A.1. [] 

A.2.2 Proofs of technical preliminaries 

PROOF OF LEMMA 3.1. First, for fixed 2 < k < n, we will show that 

(A.4) 

(A.5) 

r ( i l , i2 , . . . , ik )  : i j  > 1, i j  =- n = 
j = l  

(il, i 2 , . . . ,  ik) : ij > 1, ik >_ 2, ij -~ n -= 
j : l  
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Induction on k will be  used to prove (A.4). If k = 2 and n > k, 

# { ( i , j ) :  i , j  > 1,i + j  = n} = r  1), (2, n -  2 ) , . . . ,  ( n -  1,1)} 

---= n - -  i = 

So (A.4) holds for k = 2. Suppose,  next, tha t  (A.4) is t rue for all k _< n; then, for 
k + l < _ n ,  

( k+l } 
# i l , . . . ,  ik, ik+l) : ij ~ 1, E ij = n 

j=l 
n--k { k =Z# X, ij=n-I 
l=1 j=l 

, 

which equals, by the induction assumption,  y ~ - - ?  (n~-_t;1) ----- ( n ; 1 )  = ((k+l)--l)'n--1 

This means that  (A.4) is also true for k + 1 < n. The proof of (A.5) is similar. 
Since 

7t 
~{g/n} = # { ( n ) }  + E # { ( i l ' ' " ' i k ) :  ij _> 1,i l  + . . .  + i k  = n}, 

k-----2 

= ~ (k - l )  = . Similarly, #{lI/n} = equat ion (A.4) yields #{qd~} 1 q- 2k=2 n--1 2n--1 , 
2 n-2,  using (A.5). So (3.10) holds. Note that  the  right hand side of (3.11) is a 
subset  of ~n+ l ,  and the number  of elements in the right hand side of (3.11) is 
2(2 n - l )  = 2 (~+1)-1, by (3.10). Thus (3.11) is true. Similarly we can prove (3.12). 
This completes the proof. [] 

In order to prove Lemma 3.2, an integral formula is needed. 

LEMMA A.2.  For any integers i >_ 0 and j >_ 2, and any real number x > 0, 

(A.6) a~j(y)dy = aXj(cj)aj_l , l (b)  + a~?l  (b) _ 7 - - ~  x+l (do), 
1vb 

where a~j(.) is defined by (3.3). 

PROOF OF LEMMA A.2. We first consider the  case i = 0. Denote 

jfa d~ jfc d~ Ao - a~y (y)dy = ( d j - t  - cj V y)Xdy. 
1vb 1vb 

Since j > 2 and co < b < do, there are 3 different situations to consider: co < b < 
cj < do, Co < cj < b < do, and Co < b < do _< cj. By a s i m p l e  calculation, Ao 
equals 



242 D O N G C H U  S U N  A N D  J A M E S  O. B E R G E R  

1 _ 1 (d j -1  - do) x+l ( d j - 1  - c j ) X ( c j  - c1 V b) + - ~ - - ~ ( d j _  1 - c j )  x + l  x -~fi 

c o < b < c j  < d o  

- --~.~(dj-1 - b) x + l  - - .~--~-l-(dJ-1 - do) x+l,  if Co < cj < b < do 

(dj-1 - cj)X(do - cl V b), if co < b < do <_ cj 

= (d j -1  - cj)X{(cj A do) V b -  cl V b} 

4- (d j -1  - cj V b) x+l _ (dy-1 - cj V do) x+l 

x 4 - 1  x 4 - 1  
1 

1 

by the definition of (3.3). So (A.6) holds for i = 0. Similarly, we get for i > 1 tha t  /; /'o 
a~j(y)dy  = {(ci+j A d j - 1 )  V y - cj V y}:~dy 

b ~vb 

1 
(Ci+ j -- Cj )X(Cj  --  C 1 V b) 4- ~ - -~(c , s+j  - ~ , x + l  cj 1 

if C0 < b _< cj < Ci+ j < do,  

x ~ ( C i +  j - c O < cj  < ~ ci_kj < do, b) z+l ,  if b 

0, i f  c O < c j  < ci+ j < b < do, 
_ (ci+j A d j -x  - cj)~(cj  - Cl V b) 
- 1 1 

4-x-~--~(ci+j A d j - t  - cj) ~+1 - x +-----~(ci+j A d j -1  - do) ~+l, 

if co < b << cj < do <_ C~+y, 
1 b)X+ 1 1 

- ~ - ~ ( C i + j  A d j - 1  - x 4 . 1  (ci+j A d j -1  - do) x+l,  

if c 0 < c j  < b < d o < _ C ~ + j ,  
(ci+j A d j -1  - c j)~(do - cl V b), if Co < b < do < cj, 

= (ci+j A d j -1  - c j )X((c j  A do) V b - cl V b) 
1 

+ - -  ((ci+j A d j - 1 )  V b -  cj V b) x+l 
x +-s 

1 
x 4- 1 ((ci+j A d j - 1 )  V do - cj V do) x+l,  

which also equals the right hand  side of (A.6). Thus  Lem m a  A.2 is proved. [] 

PROOF OF LEMMA 3.2. We will also use induct ion to prove Lem m a  3.2. 
Note tha t  

f d o - b  f d l - - ( b + m )  . . fd~_l--(b+vl+. . .+y~_l)  
HGn[[ - -  J O V ( c l - b )  J o v ( c 2 - ( b + y l ) )  "JOV(cn--(b+y14-...+y~-l)) d y e " "  dy2dyl .  

If we write [IG~I] = IIG~lt(b; C l , . . . ,  cn; d o , . . . ,  dn -1 ) ,  then  

f 
do--b 

(A.7) IIGn+l[I J0v(c~-b) 1 ] G n [ I ( b + y l ' c 2 " " . ,  cn+l; d l , . . . , d n ) d y l  

= I I G n l l ( y ; c 2 , . . . , C ~ + l ; d l , . . . , d ~ ) d y .  
1vb 
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Now, for n -- i, IIGIII -- am(b), so (3.13) holds. For n = 2, it follows from (A.7) 

that 

#~ #~ 
[[G2[I = [IGtll(y;c2;dl)dy : ao2(y)dy 

1vb 1vb 
1 2  1 2  

= ao2(c2)al,l(b) + ~ao2(b) - ~ao2(do). 

The last equality follows from (A.6). Thus (3.13) is true for n = 2. Suppose (3.13) 
is true for n. Prom (A.7), we then know that, for n + 1, 

(A.8) HGn+I]] = (il ~ '  c~= ~c;Pl (y ;n ;n ; i l "" ' i k ;b  

c j ,d j - l ,2  < j < n +  1)dy 

n fcdO - - E  E p2(y;n;n;l;i l , . . . , ik; 
/=2 (il,...,ik)elW~ lVb 

cj,dj_t,2 <_ j <_ n +  1)dy. 

By the definition of Pl and the fact that n + 1 - ~k+l"+ = ik + 1, /do 
(A.9) pl (y;n;n; i l , . . . , i k ;c j ,d j - l ,2  < j < n +  1)dy 

~vb 

1 /~u i  1 } f d o  -- k a*+l,y (c;+1, j ) a;+l, k (y)dy 
I-Ih=l ih! ~.j=l ~vb 

k--1 
1 C* 

- -  k I I  an+l,J (n+l , j )  
1-Ih=l ih! 2=1 
�9 {a*+l,k(C*+l,k)a*+l,k+l(b) -4- a*+l,k(b) -- a*+l,k(do)} 

= pl(b;n + 1;n + 1 ; i t , . . . , i k ,  1) + pl(b;n + 1;n + 1 ; i l , . . . , i k  + 1) 

- p2(b;n+ 1 ; n +  1 ; n +  1 ; i l , . . . , i k  + 1), 

where the second equality follows from Lemma A.2. In addition, 

(A.10) f~i~bP2(Y;n;n;l ; i l" '" ik;cj 'd j - l '2  < j <-n + l)dy 

f k-1 / 
1 

-- k -  I I I  a*+l,J(C*+l,k) a*+l,k(dn+l-/) 
r lh=l ih! ( j = l  ) 

= p2(b;n+ 1 ; n +  1 ; / ; i l , . . .  ,ik). 

Substituting (A.9) and (A.10) into (A.8), I[Gn+l [1 equals 

E { p l ( b ; n + l ; n + l ; i l , . . . , i k , 1 ) + p l ( b ; n + l ; n + l ; i l , . . . , i k + l ) }  
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- E p2 (b ;n+l ;n+l ;n+l ; i i , . . . , i k+ l )  
(il,...,ik)Cg~n 

- s E p2(b;n 4- 1;n 4- 1 ; l ; i l , . . . , i k )  
�9 . l i ] ,  / = 2  ( z i , . . . , ~ k ) E  t 

= E pl (b;n+l;n+l; i l , . . . , ik )  
(il,...,ik)Eg2n+l 

n + l  

-E E p2(b;n4-1;n4-1;1;ii,...,ik). 
1=2 (~1 ..... ik)e~T 

The last equality follows from (3.11) and (3.12). So (3.13) is true for n 4- 1. This 
completes the induction argument. [] 

A.2.3 Proof of lemma about risks 

PROOF OF LEMMA 3.3. Since Q(O) ~ Z6(a,b), i.e., IlQ(O) ,.o r (a ,b) ,  we 
have b/Q(O) ~ r(a, 1). Thus 

I [b/Q(v) ( Q @ ~ ) ) /  
P(O > p) - r(a) Jo xa-Ze-~dx = I r  ;a F(a). 

So (3.14) is true. Since 

(A.11) Po(AN(N=O))=Po(mT1 > d o - b ) = e x p {  d~ } ,  

(3.15) follows from (A.1) and (A.11), for io = 1. If i0 >_ 2, it follows from (A.2) 
that,  for 1 < n < io, Po(A ;4 (N = n)) equals 

{ ( , 1 )  ,1 
(A.12) P0 0v c j - b - ~ Y ~  <~<_d~-l-b-~Yk, l<_j<_~, 

k = l  k = l  ~ } 
E Y k  > d n - b  
k = l  ( ") 

n k = l  

1 { y l + ' " + y n }  
�9 0-- ~ exp -0 dyn"- dyl 

IIGnll . ex { 
So (3.15) holds for io _> 2. Finally, 

(A.13) P((O > #) ;3 A) = P(AiO)~r(O)dO 

and 
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~ e-(d,~-b)/Q(O) b ~ / Q  e-d~/s 
(A.14) o Qn(O ) zc(O)dO- F(a) (,) s ~+----~-ds 

-- a bn~7 - I r ( a + n , ~ )  
d~ + r(a) 

Equation (3.16) follows from combining (3.15), (A.13) and (A.14). [] 

A.2.4 Proofs about E(N) 

PROOF OF T H E O R E M  3.6. First we have 

(A.15) Po(n) = Po(,An (N = n)) + Po(T~n (N = n)). 

For io = 1, equation (3.27) follows from combining (A.1), (A.2) and (A.11). If 
i o ~ 2 ,  

0V ( c z - b ) }  Po(7"t N (N = 1)) = Po(Y1 + b _< cl) = 1 - exp Q--~ . 

Combining this and (A.12) establishes (3.27) for io = 2. Ifio >_ 3, Po(7~A(N = n)) 
equals 

Po 
(( j l )  

OV cj - b -  E Y  k 
k=l  

j -1  
< Yj <_dj_l-b- EYk ,  l <_j < n-1 ,  

k=l  

k=l  

= / . . . ~  { 1 -  Po[Y~>OV(c~-b-sn_l)]} 
n - 1  

Q(0)n_ 1 exp - Q - - ~  dy~-l.', dyl 

1 f s { (Cn-l-b) Vsn_2} 
- Q(0)~_ 2 ..- exp Q(O) dye_2.., dyl 

n - 2  

( c , ~  - b) v s~-i "1 
-Q-~ f dyn-i'" "dyl Q(OI)~-z / "  ' s  exp { - 

" G n - 2 ] [  exp{  dn-2-b} 
O(Oln-  

dn-2 - b} = Jo,n-1 - Jo,~ Q(o) ~-~lla~-211 exp { 

for 2 < n < i0, where s~ = Yl + "'" + Yn. Equations (3.27) and (3.28) follow by 
algebra and from (A.12). Equations (3.29) and (3.30) follow immediately from the 
assumption on the prior. [] 
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PROOF OF LEMMA 3.4. It is enough to prove (3.33). The proof is similar to 
the proof of Lemma 3.2 and is hence only outlined. 

I. By an argument similar to that leading to (A.6), the following integral 
formula can be established: 

(A.16) exp{ e j V Y } d y : a j _ l , l ( b ) e x p { _ ~  } + A e x p  
~vb A A 

- Aexp { cj V do } 
A ' 

for j = 2, 3 , . . . ,  and A > 0, where aj-l , , ( . )  is given by (3.3). 
2. Define 

J~ = e-b/Q(O) Jo,n 

1 / g ~  f gn-2 { C n V S n - i }  
. . . .  exp dsn-1 "'" d81. 

( ~ ( 0 )  n - 1  1vb JCn--lVsn--2 Q(O) 

Then prove (3.aa) by induction, Lemma 3.6 and equation (A.16). 

A.2.5 Proof of the lemma about a Poisson process 

PROOF OF LEMMA 3.5. Replace cj - b and dj-1 - b in (3.1) by aj and bj-1, 
respectively. From Theorem 3.6, 

(A.17) E(M(T) )  = E J e , n -  2 E Ilanll On exp -- 
n=O n=O 

liGio-ilI exp 
0~o-i 0 

Let YI, Y2,..., be iid exponential random variables with common mean i/0. Then 

io 

(A.18) T =  E { H l n  + H2,}, 
n=-I 

where 

H n  = boI(Y1 > bo), 

HI~ = bn- l I { ( (Y1 , . . . ,Yn-1 )  e Gn-1) D (Sn > bn-1)}, 2 < n < io, 
H21 = YII(Y1 <_ al), 

H2,~ = SnI{((Y1, . . .  ,Yn-1) E Gn-1) D (Sn <_ an)}, 2 <_ n < io, 

H2~o = & o - l I { ( ( Y , , . . . ,  Yio-*) E Gr ) D (Sn _ b~o_l)}. 

Note that, for 1 < n < io, 

EHln b~-lllGnll 
- O n - '  
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Define H31 = Hll  and 

Han : S~I{((YI , . . .  ,Yn-1) C Gn-1) A (S~ _< bn)}, for 2 < n < io. 

Then 

n 

EH3n : EH3 n-i - EH2,~-I - EHI,~ + OJo,n - E tIG/I[ 
, 0 i 

i=n--1 

_ox { 
which implies that 

E(H3~ - H3,n-1) + EH2,n-1 + EHI,n = OJo,~ - Z Itaill Oi exp 
i=n--1 

Therefore 

io i0 

n = l  n----I 

i0 i0 io 

= E EHI,n + E E(Ha,~ - Ha,~-I) + EH3,1 + E EH2,~-I 
n = l  n = l  i=2 

~- EHl l  "~ EH31 + E OJo'n-1- O E E I lai[ l  0i exp - . 
i=2 n=2 i=n--2 

Since E(Hll  +//31) = 0(1 - exp{-bn/O}), 

i0--1 io--2 

E T  = 0 E Jo,n - 20 E [[G~II 
O n 

n=0 n=0 

lla 0-1fl } e x p { - ~ } - 0  0 i o _ ~ e x p {  bio-1 
0 " 

Thus (3.38) holds. [] 
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