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Abstract. In this paper, the joint distribution of some special linear com- 
binations of the (internally) studentized order statistics are derived for both 
normal and exponential populations; the exact relationship between their pdf's 
is also obtained. The exact sampling distributions of studentized extreme devi- 
ation statistic, which has been proposed by Pearson and Chandra Sekar (1936, 
Bio~netrika, 28, 308 320), are derived for these two populations. An applica- 
tion to the most powerful location and scale invariant test is discussed briefly. 
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1. Introduction 

The problem of testing for outlying observations is of considerable importance 
in applied statistics, and the proper treatment of outliers has long been a subject 
for study (see, Barnett and Lewis (1984) and David (1981) and the references 
therein). For testing the significance of the smallest (or largest) observation in a 
sample of size n from a normal population, Pearson and Chandra Sekar (1936) 
proposed the studentized extreme deviation statistic, and Grubbs (1950) obtained 
its exact sampling distribution for the normal population by using two well-known 
transformations. The joint distribution of (internally) studentized order statistics 
for the normal population is still unknown. In this paper, a very simple and 
concise expression for exact sampling distribution of some special linear functions 
of these studentized order statistics will be derived for both normal and exponential 
populations. It can be used to obtain the distribution of the studentized order 
statistics. 

Let  the proposed nonlinear t ransformat ions  as follows: 
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(1.1) 

t{ = (n - l)(n -/)J 

[ • Y i - - Y n  4 -  - -  Y k - - Y n  

Sn n -- i + 1 k : l  Sn 

W l  : Y n  , 

W 2 = 8n~  

, l < i < n - 2 ,  

2 = E i : l ( Y i  - ~ln)2/( n 1) and Yl ~ Y2 ~ ~ Yn. where 0n = ~{=1 y~/n, and s~ ~ . . . .  
Note tha t  the summat ion  in (1.1) will be taken as zero for i = 1. 

The key point of this paper  is the inverse relat ionship of the nonlinear trans- 
formations given in (1.1). The  inverse t ransformat ions  of (1.1), its derivation will 
be presented in Theorem 2.1, are as follows: 

(1.2) 

Y i  - -  Y n  

s ~ / n - 1  

snV~ - 1 

- -  n - i + l  . t i  

i - -1  
tk 

- k + 
k = l  

n - 2  

l < i < n - 2 ,  

tk 
- -  -- E [(r~ -- k)(rt -- k q- 1)]1/2 - - [ fn-2/211/2 '  

k=l 
n--2  

tk 
- -  -- E [(Tt - k)(n - k q- 1)]1/2 q- [fn-2/211/2 

k = l  

where f~-2  1 - ~ 2 . . . . .  ~n--2" 
In Section 2, we discuss some propert ies  of these t ransformat ions  and then  use 

those results to find their  Jacobian which makes the derivation of the pdf  of the 
related T 1 , . . . ,  Tn-2 statistics possible. A similar t ransformat ion  tha t  can be used 
to deal with exponential  populat ion is also given. 

In Section 3, the joint  pdf ' s  of the s tudentized order statistics for bo th  normal  
and exponential  populat ions are obtained; the exact  relat ionship between their  
pdf ' s  is also established. An application to the most  powerful location and scale 
invariant test  is briefly discussed in this section. 

In Section 4, the exact  sampling distr ibutions of the s tudent ized ext reme de- 
viat ion statistic are derived for bo th  the normal and exponential  populations.  

Finally, we note tha t  the approach given here can be extended to deal with a 
larger class of distributions; for example, when the original r andom vector  follows 
spherical distributions (see Muirhead (1982), p. 37) or is uniformly dis t r ibuted 
over a positive simplex in ~n (see Aitehison (1982, 198511. 
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2. Properties of the proposed transformations 

In this section, some properties of the set of nonlinear t ransformat ions  given 

in (1.1) are discussed, and then we show that  the t ransformat ion is a one-to- 

one correspondence between its domain and range except possibly for a set of 
n-dimensional Lebesgue measure zero. A similar t ransformat ion tha t  can be used 
to deal with the exponential  populat ion is also given. 

In the following, the variables Yl, • • •, Y~ are assumed not all equal and Yl 
• .- _< y~ and n >_ 3. First, we note tha t  the studentized order variables (yl - 
[ j~ ) / s~ , . . . ,  (Yn - f]~)/s~ are clearly bounded,  for example (n - 1) 1/2 is an upper  

bound for all these studentized order variables. The sharpest  bounds  for each of 
the studentized ordered variables were provided in Theorems 3.8 and 3.9 of Arnold 
and Balakrishnan ((1989), pp. 48-49). As a consequence, we have the following 

2 used in the present discussion. 2 is ( n - 1 ) / n  times the s n lemmas. Note tha t  their s~ 

LEMMA 2.1. (1) -1  < t l  _~ - 1 / ( n  - 1), (2) tl = - 1  i f  and only i f  yl < Y2 = 

. . . .  y~, (3) tl = - 1 / ( n  - 1) if  and only if  yl . . . . .  Yn-1 < Yn. 

LEMMA 2.2. (1) 0 >_ ti >_ --[n/i(Tz--i@l)] 1/2, 2 < i < n - - 2 ,  (2) the maximum 
value of t i  can be attained i f  and only if  yi = Y{+I . . . . .  y~, and (3) the min imum 
of ti can be attained if and only if Yl . . . . .  Yi < Yi+l . . . . .  Y~. 

A non-trivial lower bound  for []~/sn which will be used in Theorem 2.2 below 

is presented as the following 

LEMMA 2.3. For 0 <_ Yl <_ "'" <_ Yn, we have 9n/s~ > 1/~/~ and the equality 
holds if  and only if  0 = Yl . . . . .  Y~-I < Yn. 

PROOF. The proof of this lemma is straightforward and therefore omit ted 

here. [] 

LEMMA 2.4. 

Zt =Z j + 
i=1 i=1 i=1 

l < k < n - 2 .  

PROOF. For convenience, let us define 

1 
ak = ei + ~ ei , 

i=1 l i = l  

bk= - -  • c n - k + k +  1 

n--k--1 ] 
Zcq, 
i = 1  / 

1 < k < n - 1, where c l , . . . ,  c~-1 are arbi t rary  real variables, and set a0 = 0 and 
b~ 1 x /n -c l /x fn  - 1. Then we have ak 2 ,~-1 2 = =bk+ak+l ,  ak=}-~,i k b ~ , l < k < n - 1 .  
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Let 's  choose ci = (Yi - y ~ ) / v ~  - l " s n .  Then  bn-i = ti, 1 < i < n - 2, and Lemma 
2.4 is established. [] 

LEMMA 2.5. Let  f i = 1 - t~ . . . . .  t?~ , 1 < i < n -  2. Then  the .following two 
condi t ions  are equivalent. 

(A )  - 1 < t l  _< - 1 / ( n -  1), 

k ' tk--1 ~ tk' 

t n - 2  <_ - - ( f n - 2 / 3 )  1/2, I n - 2  >-- O. 

(B) - 1 _< t l  _< - 1 / ( n -  1), 

max  • tk -  i, n E ~ --Jk--1 

2 < k < n - 2 ,  

.1/2 1/ ]~). 
<_ tk <_ - - y k _ l / ~ n - -  

PROOF. t=-2 <_ - ( f ~ - 2 / 3 )  1/2 a n d f ~ _ 2  f~-3 2 _ ~1 /2 /2  = - t ~ _  2 gives t~-2 < - J ~ - 3 /  , 
1/2 

and combining the last inequali ty with x/2t~-a _< t~-2,  we have v ~ t ~ - 3  _< - f ~ _ 3 / 2  
~ i / 2 / q  

and t~-a  < - J n _ 4 / o  since f~-3  fn -4  2 _ = - t n _  3. F o r 2 < k < n - 3 ,  w e h a v e  

el/2 //  
• t k -1  < tk < - J k _ l / t n -  k) 

gives 
[ n - -  k-t- 2] 1/2 , 1 /2 / /  

1/2 
By the same process, fur thermore  re-1 _< - f £ _ 2 / ( n  - k + 1), since fk-1  = fk-2  - 
t~ - l ,  and finally for 2 _< k <_ n - 3 

. 1 / 2 .  k). 
tk _< -7k_11[n- 

2 _ _ ~ 1 / 2  Next,  fn -2  _> 0 implies f n -3  _> t~-2 or t n - 2  > Jn--3, thus fk -> 0 gives 

tk >_ -Jk-l~l/2 for 2 < k < n - 2 by the same process. Combining with (2.1) we have 

f o r 2 < k < n - 2  

{En  2jlJ2 ,lj2}  lj2./ 
max ~ -- ~ • t k - 1 , - - J k - 1  <_ tk <_ - - J k _ l / k n  -- k ) .  

Hence condit ion (A) implies condit ion (B). The  converse is obvious, and Lem m a  
2.5 is established. [] 

Using the above lemmas, we prove the following main theorem which makes 
the proposed t ransformat ions useful in the derivation of exact  sampling distribu- 
tions of the related statistics T1, • • •, T~-2. For notat ional  convenience, the vector  
( t l , . . . ,  t~-2,  Wl, w2) is denoted by t. 
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THEOREM 2.1. Let t l , . . .  , t n - -2  and wl ,  w2 be defined as in (1.1) and let 
f i  = 1 -  t21 . . . . .  t?~, 1 < i < n - 2 .  Then there exists a one-to-one correspondence 
between the domain D ~ ( y )  and the range R ~ ( t )  except for  a set of n -d imens ional  

Lebesgue measure zero, where 

(2.2) 
and 

(2.3) 

D ~ ( y )  = { y :  Yl _<""  _< Y n }  

R~(t) = It: 

- 1  <_ t I ~_ - 1 / ( n  - I) ] 

/ 

max -- • tk-1 : --Jk-1 
n k 

. 1 / 2 .  k) < tk <_ - - ] k _ l / [ n -  

2 < k < n - 2 ,  wl E ]~, w2>_0 

Furthermore,  the inverse transformation is given as in (1.2), and the absolute value 

of Jacobian is 

(2.4) n-2 r - 1 / 2  IJl = ~ - ( ~ -  1) (~-1)/2w2 J~-2 

PROOF. The  set of t ransformat ions  can be divided into the following three 
sets of t ransformations:  

and 

and 

v i = y i - y n ,  1 < i < n - 2 ,  v ~ - i  = ~ ,  v ~ = s ~  

[ . . . .  1 ] 
Ui = n -- i vi + vk , 

n - i + l k =  1 

Un 1 = Un--1, Un = Vn 

l < i < n - 2 ,  

Ui 

ti -- ~/(n'~- - 1-un') 1 < i < n - 2, W 1 ~-- Un_l, W 2 = U n . 

Thus their  Jacobians can be respectively computed  as follows: 

4 = (2/~) ~/2, 
r~--2 

J3 = ( n -  1) (~-2)/2 .w  2 

and the multiplicative theorem of Jacobians and Lem m a  2.4 with k = n - 2 yields 
the absolute value of Jacobian given in (2.4). Similarly, the inverse t ransforma-  
t ion (1.2) can be obta ined by using the inverse relat ionship of the above three  
t ransformat ions  and Lemma  2.4. 

The  proposed t ransformat ions  actually is a one-to-one correspondence between 
D ~ ( y )  and R ~ ( t )  except f o r a  set of n-dimensional  Lebesgue measure zero since 
the Jacobian (2.4) is not equal to zero on D ~ ( y )  except  tha t  y~ = 0 or s~ = 0 or 

f~-2 =0.  
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To show the onto part ,  it follows from Lemma 2.4 with k = n - 2 tha t  

~-2 (Y~-I - y~)2 ~_ 1 
E t a =  1 2 ( n - 1 ) - s ~  
i = 1  

or equivalently f~-2  _> 0. 
t ransformat ion we have for 2 < i < n - 2, 

y~ - yi-1 = v ~ - -  1 "w2 • 
n 7<1 

(2.5) [ 3. t~_~ 

Yn - Y ~ - I  = x / n -  1 " w2 " ( 2 - f n _ 2 )  i/2. 

Note tha t  f n - a  = 0 if and only if Y~-I = Yn. By inverse 

[ ~ - i + 2 ]  1/2 ] 
- t i -  i + 1  " t i -1  , 

(f~-~/2)1/21 , 

Since w2 is non-negative, thus we have Yl _< Y2 _< • • • _< Yn if and only if Yk -Yk-1  _> 
0 for 2 < k < n; therefore we have from (2.5) and Lem m a  2.2 

[ n - i + 2 ]  U2 
n - i ti--1 <- ti '  2 < i < n -- 2, 

t~-2 <_ - ( f ~ - 2 / 3 )  1/2. 

Combining the above arguments  and Lemmas 2.1 and 2.5, the desired result follows 
and the proof  of Theorem 2.1 is completed.  [] 

From Lemma 2.3 and the same arguments  as tha t  of Theorem 2.1, we have 
the following theorem. 

THEOREM 2.2. Let  w3 = f l~ /sn  and w l  and ti %, 1 < i < n - 2 be as defined 
in (1.1). Then., there exists  a one- to-one  correspondence  between D ~ ( y )  and R ~ ( t )  

except  f o r  a set  o f  n - d i m e n s i o n a l  Lebesgue measure  zero, where  

(2.6) 
and 

D ~ ( y )  = { y  : O <_ yl  <_ " "  <_ Yn} 

m x{ 1 
f F ~ - k + 2 1 1 / ~  . ~ , / ~ ]  

<_ t~ < - . f~L~l (~-  k) 
2 < k < n - 2 ,  wx>O, w3>l /~ f~  

Fur thermore ,  the inverse  t rans fo rma t ion  is exact ly  given as in (1.2), and the ab- 
solute value o f  Jacobian is 

~-1 - . i-ll2 IJI = ~ / ~ ( n -  1) (~- l ) /2 .w~ .w3 ~ ~-2 • 
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3. The joint pdf of studentized order statistics 

In this section, we derive the exact joint pdf  of linear combinations of the 
studentized order statistics defined in Section 1 for both  normal and exponential  
populations; the relationship between their pdf 's  is also established. The ap- 
proach given below can be extended to deal with a larger class of distributions, 
for example, when the original random vector follows spherical distributions or is 
uniformly distr ibuted over a positive simplex in R ~. Finally, an application to the 
most powerful location and scale invariant test  is briefly discussed. 

The part  of linear combination of the studentized order statistics T1, • • •, T~ 2 
given as in the non-linear t ransformations (1.1) is equivalent to the studentized 
order statistics (Y(z) - Y ~ ) / S ~ , . . . ,  (Y(~) - ~ ) / S ~ .  This fact can be seen from the 
following two conditions: 

- Y ~ )  /S~ : n-1. Z ( Y ( i )  - ~)/sn = o, Z ( Y ( ~ )  - 2 
i:I i:l 

First, we will show tha t  the joint distribution of (T1, . . .  ,T~-2) is uniformly dis- 
t r ibuted over a subset of the unit  sphere in ~n-1 under the normal parent  distri- 
bution. This remarkable property can be seen from the following theorem. 

THEOREM 3.1. Let  Y1, . . . , Y~ be iid r a n d o m  variables f r o m  s tandard  n o r m a l  

distribution, and leg Y(1) <_ Y(2) <_ "'" <_ Y(n) be their  order statistics.  T h e n  

(3.1) Ti = <n : i;C  : i) L sn + Z - Y n  n - i +  l k=l S~ ' 

1 < i < n - 2, have j o in t  pd f  as fol lows 

(3.2) . r l / 2  " ] R * ( t l  . . . . .  t , ~ - 2 )  
2 7r(~-l)/z  "a~-2 

where  I is the indicator  f u n c t i o n  and 

(3.3) R*(t~,... ,t~_~) ={ ( t l , . . - , t n - - 2 )  : 

--1 ~ t 1 ~ - - Z / ( n  -- 1), ] 

/ {E } n - k + 2 _ f l / 2  
m a x  - -  " t k - - 1 ,  k - 1  

n k 

r l / 2  1/ k ) ,  
<_ tk <_ - - Y k _ l / ( n -  

2 < k < n - 2  

and f i  : l - t 2 . . . . .  t 2, 1 <  i < n -  2. 
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PROOF. By Theorem 2.1, we have the joint pdf of (2171,..., T~-2, W1, W2) as 
following 

n!'v~'(n-1)(n-1)/2"w~ -2 {~_~ 
~1/2 . (27r)n/2 exp [(n - 1)w~ 
Jr~--2 

+ n } 

where (tl,. . . ,t~_2) E ~ * ( t l , . . . , t n - 2 ) ,  - o c  < Wl < -~-0(3 and w2 > 0. Since 
n ~ = 1  Y~ = Y~-i=l (Yi - ~)~)2 + n. ~ .  Theorem 3.1 follows immediately by integrating 

out Wl and w2. [] 

A simple and concise expression of the joint distribution of (T1,.. .  ,Tn-2) 
for the normal population is given in the following Corollary 3.1; its proof is 
straightforward and omitted here. For notational convenience, we define a statistic 
T~-I using (3.1) with i = n - 1, and it can be shown that T~ + . . .  + T~_ 1 = 1. 

COROLLARY 3.1. When the parent distribution is normal, the joint distribu- 
tion ofT1,.. . ,  T~-i given in (3.1) is uniformly distributed over the subset A of the 
unit sphere in ~ - 1 ,  where 

(3.4) A = { ( t l , . . . , t n - 1 )  : 

2 ;  } t~ + .-. + t~_ I 1, 

n - - k  .tk_l <tk <_O, 2 < k < n - 1  

It is well-known that the uniform distribution on the unit sphere 

2 = 1 }  An-1 = {( t l , . . . , t n - -1 ) :  t 2 + ' " +  tn--1 

in N~-I is the unique distribution on A~-I  which is invariant under orthogonal 
transformations (see, for example, Muirhead (1982), p. 37), and that the surface 
area of the unit sphere A~-I  in N~-I,  denoted by IAn_l], is given by 

[ A ~ - I [  - 
2 • %(~-1)/2 

Similar result of the surface area of the subset A of the unit sphere in ~n-1 given 
as in (3.4), can be computed from Theorem 3.1; that is 

2 • 71" ( n - 1 ) / 2  1 

For convenience, we give the following notation. 

DEFINITION. The uniform distribution over the subset A of the unit sphere 
in N~-I is denoted by ~ I(A), where the subset A is given as in (3.4). 
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Similar approach, as mentioned before, can be used to deal with a larger class 
of distributions by using the main Theorem 2.1. For example, it can be shown 
that Theorem 3.1 and Corollary 3.1 still hold, when the original random vector 
(Y1,. . . ,Y~) follows a spherical distribution (see, for example, Muirhead (1982), 
p. 34) 

Next, we will deal with non-normal parent distributions by means of Theorem 
2.2. In order to avoid complications, we confine ourselves to the case when parent 
distribution is exponential. Now, by the same approach as mentioned before, we 
have 

THEOREM 3.2. Let Y1, .. •, Y~ be iid random variables from the ezponential 
distribution with parameter 0, and the statistics Ti, 1 < i < n - 2, be defined as in 
(3.1). Then, the joint  pdf of ( r l , . . .  ,Zn_2) i8 given by 

(3.5) b~(-tl)-(~-l) 
(1-t~ . . . . .  t ~ _ 2 ) 1 / 2  "[R*(tl ..... t~-2) 

where the set ~ * ( ~ 1 , - . . , ~ n - 2 )  i8 given as in (3.3) ,  and 

(~! )2  
(3 .6)  b~ = n ( ~ + 2 ) / 2  " ( n  - 1 ) (~+1) /2"  

PROOF. 
as following 

From Theorem 2.2, we have the joint pdf of (T1,. • •, T~_2, WI, W3) 

n 1 O n. n!. x/~- (n - 1) (n-1)/2 ' W  1 

~1/2 . e x p { - n O w l  } " I i~(t)  
WE " Jn--2 

w h e r e / ~ ( t )  is given as in (2.7). Thus Theorem 3.2 is established by integrating 
out wl and w3. Note that w3 _> - ( n  - 1 ) t l /V~  by (2.7). [] 

A concise expression of Theorem 3.2 is the following corollary, its proof is 
straightforward and therefore is omitted. 

COROLLARY 3.2. Define Tn-1 by (3.1) with i = n - 1 and assume that the 
conditions of Theorem 3.2 hold. Then the joint  pdf of (T1, . . . ,  T~_I) is 

(3.7) 

where the constant b~ is 

b ; .  ( - t l )  - (n- l )  - d ¢ n - l ( A )  

(3.8) b;= 
2. n! . 7r (~-1)/2 

n(n+2)/2 . ( n -1 ) (n+x) /2  . F ( ~ 2  1 ) " 

By a similar approach, it can be shown that Theorem 3.2 and Corollary 3.2 
still hold, when the original random vector is uniformly distributed over a positive 
simplex in Nn. 
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Finally, we establish directly from Corollaries 3.1 and 3.2 an exact relationship 
between the joint pdf's of (T1,...  ,Tn-1) for the normal and exponential popula- 
tions. 

THEOREM 3.3. Let f(N) and f(E) be the joint pdf's of (T1 , . . . ,  Tn-1) for the 
normal and exponential populations, respectively. Then, we have 

(3.9) f ( s ) ( t l , . . . , t n - 1 )  = b'n" ( - h )  -(~-1)" f ( N ) ( h , . . . , t ~ - l )  

where the constant b~ is given as in (3.8). 

Theorem 3.3 can be used to find the most powerful location and scale in- 
variant test of normality against the exponential alternative. This most powerful 
invariant test is already obtained by Uthoff (1970). His method of derivation is 
an application of a technique originated by Stein (1956) and further developed by 
Wijsman (1967), H~jek and Sidak (1967), and Koehn (1970). Here we provide an 
alternative derivation of the test. The advantage of our approach is that  the exact 
sampling distributions of various test statistics can be found out directly for some 
cases from Theorem 2.1. 

For testing normality against the exponential alternative, it can be shown 
that (T1, . . . ,  Tn-1) is a maximal invariant for the group of translation and scale 
changes, and hence the following corollary follows immediately from the Neyman- 
Pearson lemma and Theorem 3.3. 

COROLLARY 3.3. (Uthoff (1970)) For testing normality against exponential 
alternative, the most powerful location and scale invariant test is based on the 
Tl-statistic. 

The exact sampling distributions of the T1 statistic under both null and alter- 
native hypotheses will be discussed in the next section; and the complete descrip- 
tions of our approach is deferred to a future article. 

4. The marginal pdf of T1 

In this section, we discuss the sampling distributions of the T1 statistic for 
both normal and exponential populations. 

For the normal population case, the exact sampling distribution of T1 already 
provided in the works of Pearson and Chandra Sekar (1936) and Grubbs (1950) and 
Barnett and Lewis (1984). Incidentally-, Shapiro and Wilk (1972) and Stephens 
(1978) gave a test for exponentiality by using statistic WE, which is equal to 
the statistic T~ in our notations. The exact sampling distribution of WE (or 
equivalently T1) for exponential population is still unknown (see, Stephens (1978), 
p. 33). This distribution will be given below (see, Theorem 4.2). 

First, we note that the sampling distribution of T1 for the exponential popu- 
lation case can be derived directly from the normal population case by means of 
the following relationship, 

= * r ( ~ ' ) ( t l )  (4.1) f(TE)(h) b n • ( - -h) - (~- l )  "jT1 
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where r(N) and f(E) JT1 JT1 are the pdf of T1 for normal and exponential populations, 
respectively, and the constant b; is given as in (3.8). The relationship (4.1) follows 
immediately from Theorem 3.3 by integrating out t2,. .  •, t~- i  in (3.9). 

For the sake of completeness, in the following we will derive somewhat new 
formulations of the exact sampling distributions of T1 for both normal and expo- 
nential populations; the formulation of the normal population case is essentially 
different from that of Grubbs (1950) and Barnett and Lewis (1984). 

For that purpose, we define a function G~ as follows: Let G ; ( t l )  ---- (1--t12) - 1 / 2  

for - 1  < tl < - 1 / 2  and zero otherwise; and for n > 4, 

(4.2) G ~ ( t l ) =  / R ; ( t 0 " " / f ~ z - 2 2 d t 2 ' " d t n - 2  

for - 1  < t l < - 1 / ( n - 1 )  and zero otherwise, where R* (tl) is the set by integrating 
out t2 , . . . ,  t~-2 over R*(t~ , . . . ,  t~-2), given as in (3.3), for each fixed tl. 

The function G~ defined above plays an important role in the derivation of 
the sampling distributions of T1 for both the normal and exponential populations. 
It is clear that the function G* is well-defined and continuous on the open interval 
( - 1 , - 1 / ( n -  1)). The following lemma gives an iterative relationship for the 
function G*. 

LEMMA 4.1. Let ~*( t l )  be defined a s  in (4.2), and let G~(tl) = (1 - t~) -1/2 
for - 1  < tl < - 1 / 2  and zero otherwise. Then, for n >_ 3 

• f-1/(~-1)a;(x)dx, a ; + x ( t l )  = (1 - t~)(  ~ 3)/~ ~ ( ~ )  - 1  < tl < - 1 / n ,  

and zero otherwise, where 

} (4.3) gn(tl) = m a x  L~ - l j  lx/y_:~_t~,-1 . 

PROOF. Use the definition of G;+ 1 and apply the transformation (tl, t 2 , . . . ,  
tn-1) ~ ( tx ,x2 , . . . , x~_ l ) ,  where xi = t i / ( 1 -  t21) 1/2, 2 < i < n -  1, which has the 
Jacobian ]JI = (1 - t~ ) (~-2) /2 ,  and the result follows by an application of Fubini's 
theorem and a convenient change of variables• [] 

From Theorem 3.1 and the definition of G* the pdf of T1 for the normal 
population can be rewritten as 

(4.4) f(r~)(tl) = 2 . ~ ( n - 1 ) / 2  . a ; ( t l ) .  

The following Theorems 4.1 and 4.2 give the formulations of the pdf of T1 
for both the normal and exponential populations, respectively. For notational 
convenience, the suffix in r(N) and #(E) will be omitted• J T1 J T1 
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THEOREM 4.1. (Normal case) Let f,~ be the pdf of T1 for the sample size n. 
When the population is normal, for n >_ 3, 

( n +  1 ) . F  ( 2 )  
fn+i(tz) = • (1 -- t2) (n-3)/2 • fn(x)dx,  

- 1  < t] < - i / n ,  and zero otherwise, where g~(tl) is given as in (4.3). The initial 
pd f forn  = 3 is fa ( t l )  = (3/Tr)(1-t~) -1/2, f o r - 1  < tl  < - 1 / 2  and zero otherwise. 

PROOF. This theorem follows from Lemma 4.1 and (4.4). [] 

THEOREM 4.2. (Exponential  case) LeE f~ be the pdf of T1 for the sample of 
size n from the exponential population. For n >_ 3, 

(?), - -  1 )  ( n + 1 ) / 2  " (1 - t12) (n-a)/2 . f-1/(~-1) 
fn+Z ( t l )  (n + 1)(~-1)/2. ( - t l )  ~ Jg'~(tl) (--X) n - l "  f~(x)dx, 

- 1  < tl < - 1 / n ,  and zero otherwise, where 9~(tl) is given as in (4.3). The initial 
pdf for  n = 3 is f3(tx) ---- (1/x/~)t1-2" (1 - t2) -1 /2 ,  for - 1  < E 1 < --1/2 and zero 

otherwise. 

PROOF. This theorem follows from (4.1) and Theorem 4.1. [] 

Finally, we note that  Theorems 4.1 and 4.2 still hold, when the original random 
vector follows a spherical distr ibution and the uniform distr ibution over a positive 
simplex in R ~, respectively. The proofs are essentially the same as given here. 
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