
Ann. Inst. Statist. Math. 

Vol. 46, No. 1, 147-164 (1994) 

ON m-DEPENDENCE AND EDGEWORTH EXPANSIONS* 

WEI-LIEM LOH 

Department of Statistics, Purdue University, West Lafayette, IN ~7907-1399, U.S.A. 

(Received September 25, 1992; revised April 27, 1993) 

A b s t r a c t .  This paper contains two results. The first establishes, under mild 
assumptions, the validity of an Edgeworth expansion with remainder o(N -1/2) 
for a U-statistic with a kernel of degree two using observations from an m- 
dependent shift. The second result gives a necessary and sufficient condition 
for the distribution of a sum of m-dependent random variables to possess an 
Edgeworth expansion. This generalizes a result of Bickel and Robinson from 
the i.i.d, case to the m-dependent case. 
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1. Introduction 

This paper contains essentially two results on m-dependence and Edgeworth  
expansions. The first establishes suKicient conditions for the validity of a one te rm 
Edgeworth  expansion with remainder o(N -1/2) for a U-stat ist ic with a kernel 

h of degree two using observations from an m-dependent  shift. More precisely, 

let ~ i , @ , . . .  be a sequence of independent  and identically distr ibuted random 
variables and f : R m+l --+ R be a measurable function. For j _> 1, let 

(1.1) Xj  = f (~ j , . . . , ~ j+~) .  

The sequence 2 1 , 2 2 ,  . . . is said to be an m-dependent  shift and an immediate  con- 
sequence is tha t  ( X 1 , . . . ,  X~) and (Xs, X ~ + I , . . . )  are stochastically independent  
whenever s - r > m. Next let h : R 2 --~ R be a measurable function symmetr ic  in 
its two arguments.  We shall assume th roughout  this paper  tha t  for some p > 5/3, 

(1.2) EIh(xl ,xj) lP < V l < j _ _ m + 2 .  

Then Eh(Xj ,  Xk) exists for all j < k and we write 

hj,k(x,y) = h(x,y) - E h ( X j , X k ) ,  Vx, y c R. 

* This research was supported in part by National Science Foundation, Grant DMS 89-23071. 
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Now for N _> 2, define a U-statistic with a kernel h of degree two as 

(1.3) 
N-1 N 

j= l  k=j÷l  

Theorem 2.1 establishes mild conditions such that 

s u p ] P ( o ' N I u  N ~ X) --  FN(X) I = O(]~ -1 /2)  
3J 

as N ~ oc, with FN and ~N as in (2.4) and (2.6) respectively. We think that a 
result such as the above would be useful in the investigation of the robustness of 
U-statistics when the independence of observations assumption is violated in the 
direction of an m-dependent shift (of which a moving average process of order m 
is a non-trivial special case). 

There has been a great deal of research done on U-statistics based on indepen- 
dent and identically distributed observations. In this paragraph, we shall assume 
that the observations are independent and identically distributed. U-statistics 
were first discussed by Hoeffding (1948) who also showed the asymptotic normal- 
ity of ~IUN under very weak conditions. The rate of convergence to normal- 
ity was investigated in increasing generality and precision by Grams and Settling 
(1973), Bickel (1974), Chan and Wierman (1977), Callaert and Janssen (1978) and 
Helmets and van Zwet (1982). In particular, Helmers and van Zwet showed that 
if p > 5/3 and (1.2) and (2.3) hold, then 

(1.4) sup IP(   uN < x) - ¢ (x) l  = 

as N --+ ~ where q~ denotes the distribution function of a standard normal random 
variable. If furthermore we have Eh2(X1, X2) < co, then ~N can be replaced by 
the standard deviation of UN in (1.4). 

Berry-Esseen type bounds have been obtained by Yoshihara (1984) for U- 
statistics generated by absolutely regular processes, Rhee (1988) for U-statistics 
based on m-dependent observations and Zhao and Chen (1987) for finite popula- 
tion U-statistics. 

Regarding the corresponding more involved problem of Edgeworth expansions, 
Callaert et al. (1980) and Bickel et al. (1986) established for a U-statistic with in- 
dependent and identically distributed observations, the validity of a one (and two) 
term Edgeworth expansion with remainder o(N -1/2) (and o(N-~)) respectively. 

With dependent observations, the only result that  we are aware of is by Kokic 
and W-eber (1990) who established the validity of a one term Edgeworth expansion 
for U-statistics based on samples from finite populations. Recently Loh (1991) 
has obtained conditions for the vaildity of a one term Edgeworth expansion for 
U-statistics using weakly dependent observations. However the conditions given 
in that paper are stronger than those given here. 

The second result of this paper gives a necessary and sufficient condition for 
the distribution of a sum of m-dependent random variables to possess an Edge- 
worth expansion. This generalizes a result of Bickel and Robinson (1982) from the 
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independent and identically distributed case to the m-dependent case. Sufficient 
conditions for the validity of an Edgeworth expansion for a sum of m-dependent 
random variables have been obtained by Heinrich (1982, 1984 and 1985) but we 
are not aware of the existence of a necessary and sufficient condition except for 
the independent and identically distributed case. On the other hand as Bickel 
and Robinson observed, this result does not appear to give a practical criterion 
although it does pinpoint the relationship between the smoothness of the distri- 
bution function of the normalized sum of m-dependent random variables and its 
Edgeworth expansion. 

The rest of the paper is organized as follows. Section 2 establishes the validity 
of an Edgeworth expansion with remainder o(N -1/2) for a U-statistic with a kernel 
of degree two using observations from an m-dependent shift. Theorems 2.1 and 
2.2 contain the precise statements of these results. Section 3 gives a necessary 
and sufficient condition for the distribution of a sum of m-dependent random 
variables to have an Edgeworth expansion. This condition is stated in Theorem 
3.1. Proofs of Theorems 2.1 and 3.1 are found in Sections 4 and 5 respectively. 
Finally the Appendix contains somewhat technical lemmas which are needed in 
previous sections. 

2. U-statistics and Edgeworth expansions 

The main objective of this section is to establish, under mild conditions, the 
validity of a one term Edgeworth expansion with remainder o(N -1/2) for a U- 
statistic with kernel h of degree two using observations from an m-dependent shift. 
Let Xj, j _> 1~ be as in (1.1) and h and UN be as in (1.2) and (1.3) respectively. 

For N > 6m + 1, we define 

(2.1) 

g(~) = E[hj,~(x~, x~) I x j  = ~], 
~(~, y) = h~,k(~, y) - g(~) - g(y), 

N 

~ = ( x -  6 m -  1) Z g(X~), 
j = l  

Z~ N z 

V k -  j > m, 
V k - j  > m ,  

N - - 3 m - 1  N N--1 ( j+3m)AN 

j = l  k=3rn+j+l  j = l  k = j + l  

3m N 

+ ~ ( 3 m -  j + 1)g(XS) + ~ (3m + j - X)g(Xj). 
j = l  j = N - 3 m - - 1  

Straightforward calculations show that  UN = US + AN. We suppose that  

2 = E  g2(x l )+2  g(xl)g(xj+l >0  (79 
j = l  

(2.2) 

and 

(2.3) E]g(Xl ) l  3 < oo. 
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Let &~v denote the variance of UN. Then by the stationarity of the Xj's ,  we have 

Xg2(Xl) -~- 2 E(N -- j)g(X1)g(Xj+]) 
j = l  

(2.4) &~v = ( X  - 6 m  - 1 ) 2 E  

3 2 = N % + O(N2) ,  

as N --~ ~ .  Next let 

(2.5) { ~3 = 0" 9 3j~ g3(X1) _]_ 3 g [ g 2 ( X j _ ) g ( X j , l )  + g(X1)g2(Xj--1)] 
j= l  

rn+l j+rn 

+6 Z Z g(Xl)g(xj)g(x ) 
j=2 k=j+l 
2m+1 5m+2 } 

-F 3 E E ~)(Xm*l'X4rn+2)g(Xj)g(Xk) " 
j= l  k=3m+2 

We observe that if EI h(Xj ,  Xk)13 < oc whenever j < k, then ~3 N-1/2  is an asymp- 
totic approximation (with error O(N-a/2))  for the third cumulant of &N1UN. De- 
fine 

FN(X ) ~- ~(X) -- @(x) 6]V-1/2(x2 - 1), (2.6) 

where ¢ and • denote the standard normal density and distribution function 
respectively. Then we have 

THEOREM 2.1. Suppose (1.2), (2.2), (2.3) are satisfied and 

rn+l 
(2.7) l imsupEiE[ei tE~=l g(Xj) I ~1 , ' ' '  ,~rn,~rn--2,...  ,~2m+l]l < 1. 

Itl~oc 

Then 

as N ~ o c .  

suplP(~rNIUN ( z )  -- FN(z)I  = o ( N - 1 / 2 ) ,  
z 

Theorem 2.1 though simple to state, has a somewhat tedious proof and hence 
we shall defer the proof to Section 4. 

Remark. GStze and Hipp (1983) showed that (2.7) holds if ~1 has a prob- 
ability density f~l with respect to Lebesgue measure and g f  : R "~+1 --~ R is 
continuously differentiable such that there exist Yl , . . . ,  Y2,~+l E R and an open 
subset ft D {Yl,- . . ,  Y2,¢+1} satisfying f{1 ) 0 o n  ~ and 

rn+l 
E O--~j g f ( x l ' ' ' ' '  Xl+m)l(x~ ..... x~+.~)=(yj ..... yj+~) # O. 
j= l  
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Remark. If the observations are independent and identically distributed (that 
is m = 0), (2.7) reduces to the well known Cram~r's condition. 

In the case where Eh 2 (X1, Xj) < oc whenever 1 < j _< m + 2, the variance 
cr~v of UN exists and ~v = N3ag2 + O(N 2) as N -+ oc. Then we have 

THEOREM 2.2. Suppose that (2.2), (2.3) are satisfied, 

and 

] ~ h 2 ( X l , X j )  < oo, V[ < j ~ m ~- 2 

l lmsupEtE[  e 2_~=~ g(xj) l~ l , . .  . ,~ ,~m+2, . . . ,~2~+111 < 1. 
Itl~oc 

Then 

as N---~ oc. 

s u p  IP( } yx _< - F N ( x ) l  = o(N-1/2), 
x 

PROOF. The proof of Theorem 2.2 is similar to that  of Theorem 2.1 and 
hence is omitted. [] 

3. Smoothness and Edgeworth expansions 

This section gives a necessary and sufficient condition for the distribution 
of a normalized sum of m-dependent random variables to possess an Edgeworth 
expansion. We begin by recalling the definition of m-dependence. 

DEFINITION. A sequence Y1,Y2, . . .  of random variables is m-dependent, 
where m is a nonnegative integer, if for any two subsets A, B C {1, 2 , . . .}  for 
which infieAdcB li  - J l  > m holds, the s e t s  of random variables {Xi : i E A} and 
{Xj  : j C B}  are independent• 

From the above definition, we note that an independent sequence of ran- 
dom variables is 0-dependent and an m-dependent shift is also m-dependent. 
Let Y1,Y2, . . .  be a sequence of m-dependent random variables with EYi = 0, 
i = 1 , 2 , . . . .  We write 

Mk,~ = max EIYjl ~, 
l < j < n  

= 3<m 2÷3 ( Mj,n/ S{) 1/(5-2  

Let FS~/B ~ denote the distribution function of Sn/Bn and F~(S~) denote the u-th 
order cumulant of S~. 

Next, for any G : R --+ R and ~ > 0, we define the first difference operator Am 
by 
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and the k-th difference operator A~ as the k-th iterate of this. Thus 

k 

j=0 

The interpolating polynomial to G(y) of degree k at the points x, x + a , . . . ,  x + ha  
is 

k j 

P k , , ( y ; x , G )  = G(x) + E a - J ( J ! ) - l A J G ( x )  I I  (y - x -  ( i -  1)or). 
j=l  i=1 

It is well known (see for example Bickel and Robinson (1982)) tha t  if C has a 
bounded (k + 1)-th derivative, then for all x and y, 

(3.1) I t ( y )  - P~,~(y; x, o)1 _< c0( Iv  - xl k+~ + a k+~) sup Ic(~+l) (z) l ,  
z 

where C0 is a positive constant  depending only on k and G(k+l)(z) = dk+lG(z ) /  
dz ~+1. Also in the remainder of this section, the symbol C is used generically as 
a positive constant  independent of n. 

THEOREM 3.1. Let Y1, ]/2, • • • be a sequence of re-dependent random variables 
with EYj = 0, j = 1, 2 , . . . .  Suppose ak,~ ~ 0 as n ~ oc. Then the following 
statements are equivalent: 

(a) FSn/B~ possesses an Edgeworth expansion to k terms. More precisely, 

x 

where 

k 1 _~2/2 ~ 1 
2_, ~ , , ~ ( ~ )  : ~ ( ~ )  - Z ~B~ e q! 

z~=l q = l  

q 6,~+2,n 
× Z H~+2q-l(x) I ]  (~ + 2)!, 

Vl--'"~-l]q=V,Vj ~ l i = 1  

with 
[,/2] ( _ l ) i z , _ 2 i  

H.(x) = .! Z i V - - ~  
i=O 

P . ( S ~ )  
and ~""~ - B~ 

(b) For all x, y and n, there exists a constant C1, independent of x, y and n, 
such that 

_k+lh IFs~/B~(y) -- Pk,,k,~(y;x,  Fs~/B~)] < CI(ly - x] k+l + %,~ j- 

Remark. H , ,  v = 1, 2 , . . .  are the Chebyshev-Hermite polynomials. 
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We now specialize Theorem 3.1 to the case of a s ta t ionary  sequence of m- 

dependent  random variables. 

DEFINITION. A sequence Y1, Y2, • • - of r andom variables is said to be stat ion- 
ary if, for every pair t, j of na tura l  numbers,  the sequence Yt+l, •. •, Yt+j has the 
same distr ibution as YI , . .  •, Yj- 

COROLLARY 3.1. Let Y1, Y2, . . . be a stationary sequence of rn-dependent ran- 
dom variables with EY1 = O, EY~  = 1 and l i m B ~ / n  > O. If  EIYll k+3 < oo, then 
the following statements are equivalent: 

(a) supx IFsn/   (x) - _< Cn -(k+1)/2 
(b) For all x, y and n, there exists a constant C1, independent of x, y and n, 

such that 

IFS~/B~ (Y) -- P~,I/~/~(Y; z, FS~/B~)I <_ CI(lY - xl k+l + n-(k+l) /2) .  

We shall defer the proofs of Theorem 3.1 and Corollary 3.1 to Section 5. 

4. Proof of Theorem 2.1 

PROOF OF THEOREM 2.1. Wi thou t  loss of generality, we assume tha t  5/3 < 
p _< 2. To prove Theorem 2.1, we shall s tudy the characterist ic  function (c.f.) of 
~r}XuN. Let 4N denote  the c.f. of ~rN1UN, tha t  is 

~N(t) = E exp(i t&~luN),  

and for ~3, as in (2.5), let 

% * N ( t ) : e - t 2 / 2 ( l - - i @ N  1/2ta) 

be the Fourier t ransform f exp ( i t x )dFN(x )  of FN in (2.6). By the smoothing 
lemma of Esseen (see for example,  Feller (1971), p. 538), it sumees to show tha t  

(4.1) , ~ dt = o(N-1/2) ,  
J - N 1 / 2  log N 

as N ~ oc. However (4.1) is an immedia te  consequence of Proposi t ions  4.1 and 
4.2 whose s ta tements  and proofs are provided below. [] 

PROPOSITION 4.1. Let 5/3 < p < 2 and 0 < e < (3p - 5) / (2p) .  Then 

f S  dt = 
 N(t) 

lv~ T 

as  N - - +  ( ~ .  
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PROOF. It is well known tha t  

(4.2) e~= £ ( ix)J<min {2  ixl~÷0 Ixl ~+1 } 
j=0 j - ~ ' ( r4-1)!  ' V 0 e  [0,1). 

Hence 

(4.~) CN(t) = Ee i te~TN (1 4- it~r~vlAN) 4-O(EltaNIANF) 

= Ee ite~`SN (1 + it~rN1AN) + O(ItFN2-aP/2). 

= EitS~ 1 AN e ite~v~ ON 

+ O(ItFN 2-3p/2) + o[(]tl 2 + Itl~)e-~=/4N ~/~], 

as N -~ oc uniformly over Itl _< N ~. It remains to approximate the te rm 

EitS~lANeite5 ~5~. Following a method of Tikhomirov (1980), we write 

N - 3 m - - 1  N 

(4.5) Z Z Eit~;/~(xj,x~) ~ ; ~  
j = l  k=3m+j-t-1 

N - - 3 m - 1  N 

= E E 
j = l  k=3m+j+l 

+ it~,}Xv(x~, xk) 

+ i ~ e ~ ¢ ( x j ,  xk)  

N-3m--1 N 

= E E 

. ^ _  S(1) E ita?v%(xj, Xk)e ~ 2  ~,~ 

4 r--i 

. . . .  -1,~(,-~) o~,), l l e i ~ s ] ~  ~ 
J 

r = 2  /=1 

4 . ^ -i (t-l) (0 

1-i[e~t~ (sj,~ -s,,~) ~ i~:~s!~, ) 
l=1 

4 

E it~rN1 
j = l  k=3m+j÷l r = 2  

× E~(Xs ,Xk)  H t ~  ~ N  '~,~ -~J,~' - 1] 
/=1 

× [F~eit~}lS~ ~,)k] 4- O ( ] t ] 6 N - 2 ) ,  

The last equality uses the fact that EIAN] p = O(N 2) (see for example Lemma 5-1 
of Rhee (1988)). Define for 1 _< a < b _< N, 

S(~) = ( N -  6 m -  1) E 9(Xj), V~' > 1, g~b 
l <_j<N, lj--alA[j--bl>r'm 

s(O) = (?N. a,b 

As UN ~(0) for all a < b, it follows from (4.3) and Lemma A.1 (see Ap- 
pendix) tha t  
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as N -~ ec uniformly in ~. The last equality uses Lemma A.3 and the independenc e 

of ~'j,kq'(r) and ¢(Xj, Xk) lll=l~r-l~ieit~"~(S!t7~)" ~,~ -S?!)~ . . . .  1]. Furthermore using Lemmas 
A.1, A.2 and A.3, we have 

(4.6) 
N-3m-1 N 4 ( 

E ' E  E iroN11 E~/)(Xj'Xk) 
j=l k=3m+j+l r = 2  

r--l~_ } 
1-r~ ito=~(s!zj~)-s?!) 1] [Eeite~s~ ~,)k] 
/ = 1  

N--3m--1 N 
= -  E E it3e-t~/2crg 3N-5/2 

j=l k=3m-Pj÷l 

E ] × E Z Z ~(Xj,X~)g(Xa)g(X~) 
a=(j--m)V1 b=k-m 

+ o[ItlT)(Itl)e-'~/4N -~/2] 

as N ~ cc uniformly over Itl _< x e, where 7)(Itl) is a generic linear combination 
(not depending on N )  of non-negative powers of Itl. Also for convenience of nota- 
tion, 7 ) may represent different linear combinations at different occurrences. Thus  
it follows from (4.5) and (4.6) that 

(4.7) 
N-3m-1 N 

Z Z Eit~'~(xj,x~) ~'~:~" 
j=l k=3rn+j÷l 

_t2/2 i N_I/2taE 

× a~2 ~ Z Z ¢(x.~+~,xn~+~)g(X~)g(X~) 
j=l k=3m--2 

+ O(Itl6N -2) + o[Itl7)(ltl)e-t2/4N-l/2], 

as N + oo uniformly over Itl _< N ~. In a similar though less tedious way, we have 

(4.s) 

and 

N - 1  (j+3m)AN 

Eit~N1 E E hJ'~(Xj'X~)ei~NlON 
j=l k=j÷l 

N-1 (j--3m)AN 
: E{hj ,k (Zj :  Zk)e  Y y,k 

j--1 k=j+l 
(s(O)_~(1)~ + hj,~(Xj, X~)[e i'~'~Vl' j,k --j,k ] -- 1]~ii~O'Nl~k ) } 

= o(ItI2x -~) 
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(4.9) E~i~;10Ni~e~ 1 (3-~ - j + 1)g(Xj) 
L j = l  

+ ~ (3.~+j-N)g(Xj) = O(It lN-3/2),  
j=N--3m÷l 

as N --+ oo uniformly in It]. Thus it follows from (2.1), (4.7), (4.8) and (4.9) tha t  

1 " ^ 1^ Eit~ N ANe~t~ UN 

=-e- t2 /26N-U2t3E 3o-2 3 E E ~(Xm-+-l'X4m+2)g(Xj)g(Xk) 
j = l  k = 3 m ÷ 2  

÷ O(]t]N -3/2 + [tI2N -1 + ItI6N -2) ÷ o[]tIT)(ItI)e-t2/4N-u2], 

as N ---+ oo uniformly over ]t] _< N ~. Hence we conclude from (4.4) tha t  

ON(t)--O*N(t)=ON(t)--e-?/2 (1-- i~-N U2t3) 

= O(I~IN-3/~ + itl2N-1 + itl6N-2 + ItFN 2 3p/2) 

+ o[It[P(]t])e-~/4N-1/2], 

as N --+ oc uniformly over It] < N ~ and hence 

J ~  dt = o(N-1/~), 
CN(t) ¢~v(t) 

N¢ t 

as N --+ oo. This completes the proof of Proposit ion 4.1. [] 

Next we observe from (2.7) tha t  there exists a constant  0 < 7 < 1 such tha t  

~ i t ~  ~+~ g(x~) 
(4.10) ~ [ e  j=1 ] ~1,. . . ,~,~,~m+2,--. ,~2~+111-< 1 - 7 ,  

for all It] _> 1/(2o-g). Also it follows from Lemma 3.2 of G6tze and Hipp (1983) 
tha t  there exists a constant  # > 0 such tha t  

(4.11) ~ E[e ~--~=1 I ( i , - - .  ,~,~,~,~+2,-.. ,~2~+111 -< e -ut2, 

for all I~1 -< 3/(2o-~). 

PROPOSITION 4.2. Let c be as in Proposition 4.1. Then 

fN  CN(~) - 4)~(t) dt = o(X-1/~) ,  
~<_lt[<_N1/2 log N 
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PROOF. Let n be a positive integer such tha t  for sufficiently large N 

i ~ :  z~ logy_ ] 
2(m + 1)1 - 3 = I - log(1 - ,-y)/ 

if iV 1/2 ~ Itl _< N 1/~ log N,  and n = K t - 2 X  log X if N ~ _< I~l _< N 1/~ where K is 
some constant  to be chosen later. Define 

and 

s(,~) = (x - 6~ - 1 ) £  g(x;) 
j = l  

A~(~) = 

nA(N--3m 1) N 

j = l  k=Sm+j+l 
hA(N--l)  (j+3m)AN 3rn 

+ ~ Z hs,~(xj,x~) + ~(a.~- j + 1)g(xj). 
j : l  k : j + l  j : l  

Then 

(4.12) I¢~(t)l = I F-lei~l(ujg-AN(n)) [1 + it~z/xN(n)]l ÷ O(ItlPnN 1 3p/2) 

as N ---, oc uniformly in t, since EI/XN(n)IP = O(nN) (see Rhee (1988)). 
We shall now approximate the first term of the r.h.s, of (4.12). For simplicity 

we let Aj,k,~ denote the a-field generated by the random variables (z, l E [j, j + 
m] U [k, k + m] U [n + 1, oc). We observe from Lemma A.4 tha t  K can be chosen 
such tha t  

]Eit~r~l W( Xj,  Xk )e{te ~l (UN-P'N(~) ) I 

= IEit&NI¢(xJ, Xk)eit~'~I(UN--S(n)--AN(~))E[ eit~'Nls(n) I Jj,k,~]] 

< ]tIGNIEI~(Xj, Xk)lN -1, 

and hence 

(4.13) 
N 

Z Ei~aN]~(XJ' X~)ei~°'NI(UN--AN(n)) 
k:3m+j+l 

as N--* oc uniformly over N ~ < Itl d N1/21ogN. 
In a similar way, we have 

(4.14) IEeita~vl(uN--AN(~)) I = O(N-I) ,  

(4.15) ~ j+3.~ E Eit&Nlhj&(XJ' Xk)eitO~l(gN--AN(~)) 
k:j-[-1 

and 

: O ( t ~ I ~ N - 3 / ~ ) ,  

= o(ltb~N-~/~) 
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(4.16) 
3 m  

E Eit&Nl(3m - j 4- 1)g(Xj)e it~;~(UN-AN(n)) 
j = l  

= O(ItlN-~/2), 

as N ---+ oo uniformly over N e <_ Itl < N1/21og N. From (4.13), (4.15) and (4.16), 
we get 

(4.17) I £ i t 6 " N 1 A N ( n ) e U ~ - ~ ' ( U ~ - - A  ~ (~ )  ) I : O(ItlnN- 3/2), 

as N ~ oc uniformly over N ~ _< Itl ~ N~/21ogN. Now it follows from (4.12)~ 
(4.14) and (4.17) tha t  

ICN(t)l = O( N-1 -}-Itln2V -a/~ + [tFnxl-ap/2), 

and from the definition of n, we have 

(4.1s) IN ICN(t)/tldt = o(N-s/2), 
<_ Ft[ <_N 1/2 log N 

as N ---~ cx~. [] 

5. Proof of Theorem 3.1 

First we shall state a key result due to Heinrich ((1984), p. 14). We refer the 
reader to his paper for a sketch of the proof. 

LEMMA 5.2. Let Y1,Y2,. . .  be a sequence of re-dependent random variables 
with EYj = 0 and E[Yjl k+3 < oc whenever j = 1 ,2 , . . . ,  for some k >_ O. Then 
there exists positive constants B1 and B2, depending only on k and m, such that 

- 1  for all ]tl _< Bx%~, we have 

* D ~ k - - l f l . l k - - 3  IFg./B~(t)  - ek,n(t)l _< ~2%,~ t,~l + Itt 3(k+~>) exp(-t2/6), 

where F~,/B ~ and e'k, n denote the Fourier-Stieltjes transform of F&/B~ and ek,n 
respectively. 

PROOF OF THEOREM 3.1. The proof closely parallels tha t  given by Bickel 
and Robinson (1982) for the i.i.d, case. However we need to make the following 
changes in their proof to adapt  it to the m-dependent  case. First  replace their 
equation (2.3) by tha t  of Lemma 5.2. Also we observe from Heinrich (1985) tha t  

and hence 

~:~ ~'~+2"~/B~ 
q 

_< C I I  nM~,+2,~ /B~ '+2 --* 0 
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(k+l) / 
as n --+ oo since ak,~ -~ O. Thus we conclude that sup~ ek, n <x)l < C and it 

follows from (3.1) t ha t  

IQ~(Y) - P k , ~  ~ ( y ; x ,  ek,~)t  < C 2 ( l y  - xl ~+1 . ~k+l~ , - -  ~ / ~ , f t  )~ 

where C2 is some positive constant  independent  of x, y and n. [] 

PROOF OF COROLLARY 3.1. Since l i m B ~ / n  > 0, it follows from the defini- 
t ion of crk,~ tha t  0 < lim crk,~x/n < oc. Now the proof  proceeds as in Theorem 3.1 
with crk,~ replaced by n -1/2. [] 

Appendix 

LEMMA A.1. Suppose that (2.2), (2.3) are satisfied and r is a fixed nonneg- 
ative integer. Then 

Ec it&NIS(~ : e -ti/2 ( 1 - / ~ 3 ] ~  1/2t3) _]_ o[(it12 + itls)e_t~/4N_l/i], 

as N --~ oc uniformly over 1 < a < b < N and Itl < N e, where 

~a = o j a E  
m 

g3(X1) --[- 3 E[g2(Xl)g(Xj+l)  Jr g(Xl)g2(Xj--1)] 
j= l  

rn+l j+m } 
~-6 E E g(Xl)g(Xj)g(Xk) " 

j=2 k=j+l 

q(~) We observe tha t  the PROOF. Let  Ua, b~-(~) denote  the s tandard  deviat ion of ~ ,b"  
^ (~),- 1 ~(~) th i rd  cumulant  of i~a,b) ~ , b  is asymptot ical ly  ~3N -1/2 with error O ( N  -a/2) 

uniformly over 1 _< a < b _< N.  Hence it follows from Heinrich ((1982), p. 513) 
tha t  

Fie ~"kua,b] °a,b 1 -- x ~/2ta + o[(Itl 2 + ItI5)e-t2/4N-1/2], 

as N --~ oc uniformly over 1 < a < b _< N and ]t I _< N ~+~, where 6 is a small 
positive constant .  We remark  tha t  Heinrich s ta ted his result only for the case of a 
sum of 1-dependent random variables. However the extension to m-dependence  is 

straightforward.  Since 1 - (~a,b/aN) = O ( N  -1) uniformly over 1 _< a < b _< N,  
we have 

, = FJe k N a,bJk a,b) °a,b 

= e-t~/2 ( 1 - - i @ - N  1/2t3 ) + o[(Itl 2 + I t l S ) e - ~ / 4 N - 1 / 2 ] ,  

a s N ~ o c u n i f o r m l y o v e r  l _ < a < b _ < N a n d l t l _ < N  C. [] 
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LEMMA A.2. 
b - a > 3m. Then 

Let 5 /3  < p _< 2, p -1  q_ q-1  = 1 and 1 <_ a < b <_ N with 

E i t S N I ~ ( x ~ ,  Xb){exp[i tSN 1 (s(o) (1) , a,b -- S~,b)] - I} 
a--m (b+m)AN 

= - i t 3 c r 2 3 N - 5 / 2 E  E E O' ( X a ' X D ) g ( X j ) g ( X k )  
j=(a--m)V1 k=b-m 

÷ O([t laN -7/2 + It12+3/qN-2-3/(2q)), 

as N ~ oo uniformly in a, b and t. 

PROOF. We observe that 

I a~m (b+m)AN 

LJ=(a-m)Vl k=b-m 

For 1 < e < N,  we define 

(A.1) 

(c-+-m)AN 

R~ = i t6NX(X - 6m -- 1) ~ g(X j ) .  
j=(c--ra)V1 

T h e n  

( A . 2 )  Eit&Nl¢(x~,Xb){exp[it&Nl(S~O,~ (1) - S~ ,b ) ]  - 1 }  

= E i t ( @ l ¢ ( X a ,  Xb)[(e R~ -- 1 -- Ra)(e  Rb -- 1 -- Re) 

+ R ~ ( e  Rb - 1 - Rb)  + R b ( e  R° -- 1 -- R ~ )  + R~t~b].  

T h e  last equa l i ty  uses the  obse rva t ion  t h a t  

E @ ( X a , X b )  = ~J[@(Xa,Xb) I J~a] = ~J[¢(Xa,  Xb)  i J~b] : O. 

Next  we observe  t h a t  

(A.3) Eit6"Nl¢(  Xa,  Xb )RaRD 
= --it3~rN3(N -- 6m -- 1)2E 

a+rn (b+m)AN 

× Z ~ g(X~)g(X~)¢(Xa,Xb) 
j:(a--m)V1 k:b--m 

a--rn (b+m)AN 
=-i~3~; ~N-5/2E ~ Z g(xj)9(x~)~(xa,x~) 

j=(a--m)V1 k=b--m 

-c- O([t13]V-7/2), 
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as N --+ oe uniformly in a, b and t. Furthermore it follows from (4.2) tha t  

(i.4) E I t G N I ~ ( X a ,  X b ) [ ( e  l~a - -  ] - -  ~ a ) ( e  i~b - -  1 - Rb)  

+ R a ( e  Rb --  1 - -  Rb)  + R b ( e  R~ - -  1 - - ~ ) ] 1  

< 6Elt&Nl~(Xa, Xb)R~R~/ql + 2EIt&NI~(X~, Xb)RbRaJq I 
<< 61tl&~l[El¢(X~, Xb)IP]I/P[(EIRaIq)I/q(EIRbl3) 1/q 

+ ( E I R b I N ) I / q ( E I R ~ [ S )  1/q] 

= O(Itl2+a/qN-2-a/(2q)), 

as N ~ oc uniformly in a, b and t. Lemma A.2 now follows from (A.2), (A.3) and 
(A.4) .  [] 

LEMMA A.3. Let r be a fixedpositive integer, 5/3 < p < 2 and i < a < b < N 
with b - a > 3m. Then 

and 

- s  ~) _ : O ( i t l S N _ 5 / i l t N _ ~ / 2 1 ~ _ ~ )  Ei~Nl~(Xa, Xb) H [eit&N1 (Sil,: 1) U) 
/=1 

~F 

E it& N11~ ( Xa, Xb ) H [e iroN1 (S~(',~n-S(~z,)b) - 1]e it~'Tv~ s(~,~ 
/ = 1  

= O(]t]3N-5/21tN-1/2]~-l) ,  

PROOF. Let Ra and /~b be defined as in (A.1). We observe tha t  

( a . 5 )  I I [ e i ~ l ( < ' , : ' ) - < ' ;  ) - 1] 
/ = 1  

= EitG;.l~)(Xa, X b ) [ ( ¢  R~ - -  1 - -  / ~ a ) ( ¢  Rb - -  1 - -  f~b)  

+ Ra(e R~ - 1 - Rb) 

r 1] + !~b(e Ra 1 -- l~a) + !~alr~b] H[eit&Nl(S:t, ;1)-S(I)) 
- -  a , b  _ _  • 

l = 2  

t~?l~(x~, <_ 9E XD)R~Rb H[eitO;l(s(J,:n-S(a[ )b) - 1] 
I=2 

The last inequality uses (4.2). By HSlder's inequality, the r.h.s, of (A.5) is less 
than  or equal to 

(A.6) 91tl&N 1 {E ~/,(V ~(,~]-['r~UeF~(s(Jb~)-s(~')0 ~ " ~ ' " ° J l i  L . . . .  1] p} l /p  

x { E  R~RbI I " [P t~X(s2 , ;~ ) -< ' , b -1]  q}l /q  

as N ~ ec uniformly in a, b and t. 
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where p-1  + q-1 = 1, IT  denotes the product  over all even integers l, 2 < l < r 
and [ I "  denotes the product  over all odd integers l, 3 < l _< r. By  virtue of 
m-dependence,  the r.h.s, of (A.6) is bounded by 

(A.7) 9ltl&~l [ElO( Xa, Xb )IP]I/P( EIF~ad~blq) 1/q 
r 

~ - .  i t & - l , S ( Z - 1 )  S(Z), 
× l l [ U l e  ~ '  o,~ - o ,~ ,_ ,? ] , /~  

l=2  

_< 9 l t l a~  1 [Ul>(X~, Xb)IP]I/P(EIRaRb [q)l/q 
7" 

× H[EIt&NI(S(I; 1)- q(I)~1311/3 
~ a , b ]  I ] " 

/=2  

Since  [ /~ l toNl (S( /b l )  -- ~,b,~(Z)~la]l/a = O(]tlN-1/u), as N -+ oc uniformly over 1 _< 
a < b _< N,  2 < l < r and t, it follows from (A.7) that  

1] Eita~*~(x~,x~) ri[¢~,,;, ,(<,,: ~,-s(,, ) 
/=1  

This proves the first s ta tement  of Lemma A.3. The proof of the second s ta tement  
is similar and is omitted.  [] 

LEMMA A.4. Let 1 << a < b <_ N.  Then with the notation of Proposition 4.2, 
there exists a constant K such that 

for sufficiently large N uniformly over 1 < a < b <_ N and N ~ <_ Itt <_ N 1/2 log N.  

PROOF. We observe that  

(A.S) 

= E [ r e  i tG~(~-~'~-l)~j=~ g(Xs)H*dF(~z(~÷I)) I A~,b,,~ 
l 

where F(~t(~+l))  denotes the distr ibution function of the random variable ~z(,~+l) 
and 1-[~ denotes the product  over all positive odd integers 1 satisfying l(rn + 1) 
[a - rn, a + 2rn] O [b - rn, b + 2rn] U [n + 1 - rn, oc). Thus the absolute value of the 
r.h.s, of (A.8) is bounded  by 

(A.9) E [Ill* fe~ta~l(N-s'~-l)~',(~[l)+l)-~9(XJ)dF(~(m+l))IA~,b,n 

9(X~) dF(~z(,~+l) 

~ " ~ r n + l  

= {E]E[e i te~ (N-6~-1) ~--~J=~ g(xj) I ~1, • • -, ~ ,  ~,~+2, • • -, ~2,~+111} k°, 
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where ko equals the number of terms in the product H~. The second (last) equality 
uses the independence (stationarity) of the ~j's respectively. Now we consider two 
cases. 

Case 1. 
N, n satisfies 

Suppose that N 1/2 < Itl < N 1/2 log N. Then for sufficiently large 

Since 

f t - -  2 m  I 1 
log(1 - 7), '  

n-2m J 
k0 > L2(,  + l )  - a, 

and it follows from (4.10) and (A.9) that 

IE[e it~'}~s(n) I Aa,b,~]l < ( 1 -  @Kn-2m)/[2(m+l)]J-3 

whenever (N - 6 m -  1)5~ 11tl > 1/(2G9)-Thus we conclude that 

IE[  I _< N -x, 

for sufficiendy large N uniformly over 1 < a < b < N and N 1/2 <_ I~l > N 1/2 log N. 
Case 2. Suppose that N ~ < Itl < N 1/2. Then for sufficiently large N, n = 

K t - 2 N l o g N .  We observe fl'om (4.11) and (A.9) that 

I~[eit°-JvlS(n) I Aa,b,n] I ~__ e-P'k°ta(N--6rn--1)2~r~v ~, 

whenever ( N -  6 m -  1)8~1/t1 _< 3/(2ae). Now it can be easily seen that K can be 
chosen so that  

IE[e ~te;/s(n) I A~,b,,~]l < 1/N, 

for sufficiently large N uniformly over 1 < a < b < N and N ~ < It} < N 1/2. 5 
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