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A b s t r a c t .  The locally best invariant test for the hypothesis of independence 
in bivariate distributions with exponentially distributed marginals is derived. 
The model consists of a family of bivariate exponential distributions with prob- 
ability density function 

fo(xl,  x2; ~1,/~2) = )~1/~2 exp[--()~lXl 4-/~2x2)lg(,~lXl,/~2X2; O) 

with unknown scale parameter )~j (j = 1, 2) and association parameter 0 which 
includes the independence situation. The locally best invariant (LBI) test is 
derived and the asymptotic null and nonnull distributions are also derived under 
some regularity conditions. The results are applied to the Gumbel (1960, J. 
Amer. Statist. Assoc., 55,698-707), Frank (1979, Aequationes Math., 19, 194- 
226), and Cook and Johnson (1981, J. Roy. Statist. Soc. Set. B, 43, 210 218) 
families. 

Key words and phrases: Bivariate exponential distribution, locally best in- 
variant test, test of independence, parametric families of Gumbel (type I and 
II), Frank, and Cook and Johnson. 

1. Introduction 

The  exponential  distr ibution has had numerous applications in models involv- 
ing t ime intervals between successive events and in life testing. Gumbel  (1960) 
proposed some bivariate generalizations tha t  can be used as parametr ic  models 
for joint lifetimes of two dependent  components .  Recently, Genest  and MacKay  
(1986) and Marshall  and Olkin (1988) described general methods  for the construc- 
t ion of bivariate distr ibutions with given marginals. These methods  can be applied 
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to construct bivariate distributions with an association parameter and marginals 
that  are exponentially distributed. 

A general family of such bivariate exponential distributions with an association 
parameter 0 E O is expressed as the family of pdf's 

(1.1) f o ( x l , x 2 ; A 1 , A 2 )  =/ \1/ \2  e x p [ - ( , \ l X l  -1- ,~2x2)]g(/~1x1,/~2x2;O), 

where x l , x 2  > 0, A1, A2 > 0. Here, (9 is an interval regarded as the association 
parameter space such that the family (1.1) includes, possibly as a limiting case as 
0 ~ 0, the independence situation 

(1.2) 
2 

lim f o (x l , x2 ;  A1, A2) = H A j e x p ( - A j x j ) .  
0;0 

j = l  

In fact, the family (1.1) with (1.2) includes as special cases the bivariate distri- 
butions specified by Gumbel (type I and II) (1960), Frank (1979) and Cook and 
Johnson (1981). 

In this paper we consider the problem of testing the independence of x~ and 

X2 

(1.3) H :  0 = 0  vs K :  0 > 0 

in the general model (1.1) with an iid sample (xlk,x2k) (k = 1 , . . . , n ) ,  where 
0 = 0 may be viewed as (1.2) sometimes. Under some regularity conditions on g, 
a locally best invariant (LBI) test is derived in Section 2 and the null and nonnull 
asymptotic distributions of the LBI test statistic is derived in Section 3. In Section 
4 the results are applied to the bivariate distributions due to Gumbel (1960), 
Frank (1979) and Cook and Johnson (1981) and the LBI tests of independence are 
obtained with the null and nonnull distribution. 

2. LBI test of independence 

The problem stated in Section 1 is clearly invariant under the group G = 
N+ × R+ of scale transformations which acts on (Xlk, x2k) and (0, A1, A2) by 

(2.1) 
( a l ,  a2) o (Xlk , x2k ) : (a lXlk  , a2x2k ) and 

( a l , a 2 )  o (0 ,~1, /~2)  : (0, a l l /~l ,a2-1, ,~2)  

where (al, a2) E G. A maximal invariant under G is clearly 

(2.2) Y = (Y11, • •., Yl~; Y21, . . . ,  Y2n) with yj~ : X jk /S j  

Tt  where sj = ~ k = l  xjk, j = 1, 2, and a maximal invariant parameter is 0. Thus, 
without loss of generality, assume A1 = A2 = 1. Also, the test sought being 
LBI it can be assumed without loss of generality that  O is compact. Assume 
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that  g(x:, x2; O) and Og(x:, x2; 0)/00 are continuous functions of (x:,x2, 0) on 
R+ x R+ x @ with 

(2.3) 9(Xl, x2) = limOg(xl, x2; 0)/90. 
0~0 

Finally, assume that  (2.7) below and 

~°°~O0:XD 0 [fig(blYlk,b2Y2k;O)] n-1 n-1 b 1 b 2 exp( -b :  - b2)dbxdb2, (2.4) 
k=l 

exist and are uniformly convergent on the space of (y, 0). 

THEOREM 2.1. The LBI test of independence for (1.3) is the test which re- 
jects H for large values of 

1 
F, b [g ( bl Yl k , b2y2k ) ] r n ( y )  = 

k = l  

where bj, j = 1, 2, are independent Gamma variables with pdfb~ -1 exp(-bj ) /F(n) .  

PROOF. Since an invariant test is a function of y, let the distribution of y 
under 0 be Py. Clearly, the null distribution PY does not depend on any unknown 
parameter. Then, the density of y with respect to P0 y is given by 

dP~/dPg =_ h(y 10) = H(y  I O)/H(y 10) 

(2.7) H(y  I O) n - - 1  n - - 1  fe(a:xik,aix2k; 1, 1) dalda2 = a 1 a2 
k = l  

---- S l n 8 2  n ~'l~n--l~n--l~2 exp[-  (b: + b2)] 

" {rlg(blYlk'b2y2k;O)} d b l d b 2 k = l  

(see, e.g., Wijsman (1967)). Therefore, the power function of an invariant test O 
is 

(2.8) 7r(¢, 0) = f ¢(y)h(y  I O)dP~. 

Since h(y ] 0) and Oh(y ] 0)/00 are continuous functions of (y, 0) and since the 
space of (y, 0) is compact, 

(2.9) 0~(¢, 0)/00 = f ¢ (y )0h (y  I O)/00dP~. 
J 

(2.6/ 

where 
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Therefore, the test function ¢ (y )  that  maximizes the slope of 7c(¢, 0) at 0 is the 
test which rejects H whenever Oh(y I O)/O0 > k. Note tha t  under H, H ( y  l 0) = 
F2(n)/s~s~. Hence, differentiating H(y  I 0) under the integral sign we obtain via 
(2.4) 

n 

(2.]0) Oh(y l O)/aO = ~ Eb [g(b~ylk, b2y2k)] , 
k = l  

where b = (bl, b2) ~ and bj's are independent  Gamma(n)  variables. The uniqueness 
of the LBI test comes from the necessary condition of the Neyman-Pearson lemma, 
completing the proof. [] 

3. Distribution of the LBI test 

A difficulty in deriving the asymptotic  distribution of T~ is tha t  even though 
the summands  in (2.5) are identically distributed, they  are not independent.  The 
asymptotic  distribution of T~ under 0 is derived under the following assumptions 

jk and proved in the appendix. Let I~, k, denote the indicator function 

lj,k, = f l ,  i f ( j , k ) = ( j ' , k ' ) ;  
~jk [ 0, otherwise. 

ASSUMPTIONS. 
( i))(X~,X2) is twice continuously differentiable with partial  derivatives de- 

noted by ~}j and ~)jk. 
(ii) The expectat ions Eo[9(Zl,Z2)], Eo[xjo(zl, x2)] and Eo[zjgj(zl,  z2)] are 

finite (j = 1, 2). 
(iii) There exists a function 

M N 

a = - a  ~=-b 

where a = 2I{~ + IJ~ + IJl k and b = 21J~ + I~ k + IJ~ such tha t  Igjk(Xl,Z2)l 
Gjk(Xl, z2)and Eo[xjzkGjk(xl,  z2)] < oc, (j, k = 1, 2). 

THEOREM 3.1. Suppose Assumptions (i) (iii) hold. Define 

~j(0) = Eo [x~gj (xl, x2)], 
~(0) = E0 [9(xl, ~)1. 

j = 1, 2, 

Then, vZd[Tn - p(0)] has a N(O, v(O)) limiting distribution where 

v(O) = Varo[t)(Xl, x2) - x1~1(0) - x2~2(0)]. 

Consequently, the asymptot ic  null distribution of v/-n[Tn - #(0)] is N(0,  v(0)). 
The proof of Theorem 3.1 in the appendix consists in writing v~[Tn - #(0)] = 
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x/~T~0 + xfln(Rln + R2~) where T~0 is an average of iid variables with mean 0 and 
variance v(O). Assumptions (i)-(ii) ensure that  x/~T~o ~ N(O, v(O)) in distribu- 
tion and R ~  is Op(n-L/2). As for Assumpt ion (iii), it is a sufficient condition for 
-R2~ to be op(n-1/2). Although s ta ted for fixed 0, Theorem 3.1 remains valid for 
O~ = ~n -1/2 as well. 

COROLLARY 3.1. I f  ~(0) is differentiable at 0 = 0 and v(O) is continuous 
at 0 = O, then the asymptotic nonnull distribution of v~[Tn - p(0)] with respect 
to contiguous alternatives O~ = aJ/v~ , a~ > O, is N (c~.'(O), v(O)) where . ' ( 0 )  = 
o,(o)/oo. 

PROOF. From v/n[Tn - # ( 0 ) ]  = x/~[Tn - # ( 0 n )  1 +v/n[#(0~)  - # ( 0 ) ] ,  the result 
follows from the fact tha t  v ~ [ # ( 0 ~ ) - # ( 0 ) ]  + cJ>'(0) and v(on) ~ v(o) a s  n + oc. 

[] 

4. Examples 

4.1 Gumbel's type I family 
The p.d.f, for the bivariate Gumbel  type  I distr ibution is 

(4.1)  fO(Xl,Z2;AI,,~2) = /~1/~2 exp [ - - ( /~ lX l  -~-/~2x2)] 

• [1 + O(2exp(--/~lXl) -- 1)(2 exp ( - - /~2x2)  -- 1)], 

where 0 C @ = [-1,  1]. It is clear tha t  0 = 0 corresponds to the independence. 
Since ) ( x l ,  x2) = (2 exp(-xm) - 1)(2 e x p ( - x 2 )  - 1), the LBI test rejects H for large 
values of 

Tn = _1 E l 2 (  1 +  ylk)_ n _ 1][2(1 + y2k) -n  - 1]. 
Tt 

k=l  

Assumptions (i)-(iii) are satisfied as ~/, ~/j and t)jk are all bounded  by constants.  
For the asymptot ic  distribution, the calculations of the moments  in #(0) and v(O) 
can be done most  easily using the moments  equali ty for (4.1) with A1 = A2 = 1 
given by 

(4.2) E0[hi(xl)h2(x2)] 
= /~0  [hi (Xl)]]~0 [h2 (x2)] 

-c- 0 ] ~ 0  [hi (Xl)(2 exp(--x 1 ) - -  1)] Eo [h2 (z2)(2 exp( -x2)  - 1)], 

where hd's are arbi t rary  functions such that  Eolhj(xj) I < ~ .  These calculations 
yield #(0) = 0/9 and v(O) = (03 - 8402 + 648)/5832. Therefore the asymptot ic  
null distr ibution of v/-nTn is N(0,  1/9) and the asymptot ic  nonnull distr ibution of 
x/~Tn with respect to 0n = w i v e ,  w > 0, is N(w/9,  1/9). 
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4.2 Gumbel's type II family 
We refer to Gumbel type II as the bivariate distr ibution with p.d.f. 

(4.3) f0(Xl ,  X2;/~1, .~2) = /~1.~2 exp[--( /~lXl -~- /~2X2)] 

• exp(--O~l/~2xlx2)[(1 @ 0 .~ lx l ) (1  -t- 0/~2x2) -- 0], 

where 0 e O = [0, 1]. The independence is achieved at 0 = 0. Here, 9(xl ,x2)  = 
- 1  + xl  + x2 - ZlZ2. Hence H is rejected for large values of the LBI test statistic 

n 

T~ = 1 - n E YlkY2k. 
k=l  

An equivalent test statistic rejects H for small values of 1 - T n  = 212/21x2, 
where 212 = }-~-~=1 x l x 2 /n .  It can be easily checked tha t  Assumptions (i) (iii) 
hold with Gjk(Xl,X2) = 1, j ,  k = 1, 2. Calculations for #(0) and v(O) show tha t  
x/~[T~ - #(0)] --+ N(0, v(O)) in distribution where 

and 

v ( o )  = 1 - J ~ ( O ) ,  

v(O) = 2J~(O) + 3J~(O) + 4120J~(0) + (1 - O)Jx(O) - 1]/02 

f0 ~ exp(-x) J~(O) = (1 + ox) dx. 

Note tha t  as 0 --+ 0, Jl(O) ---+ 1, J[(O) -+ - 1  and J~'(O) --+ 4. Since #(0) = 0 
and v(O) --+ 1 as 0 --+ 0 via de l 'Hospital 's rule, the asymptot ic  null and nonnull 
distribution of v~T~ are N(0, 1) and N(aJ, 1), where 0n = a ~ / ~ .  

4.3 Frank's family 
A family of distributions whose properties in survival models are thoroughly 

described in Genest (1987) is in our context of exponentially distr ibuted marginals 

(4.4) fo(x l ,  x2; Ax, A2) = A1A2 exp[-(AlXl + A2x2)] 
01n(1 + 0)(1 + O) F(Alzl)+F(A2x2) 

[0 + ((1 + 0 )  ~E~(~lxl) - 1)((1 + 0) F()'2x2) - 1)] 2, 

0 E 19 = ( -1 ,  o0), where F(x)  = 1 - e x p ( - x ) .  The lower and upper Fr6chet 
bounds result as 0 --+ oc and 0 --+ - 1  respectively, and as 0 ~ 0, (4.4) reduces to 
the independence situation. A Taylor series of Og(xx, x2; 0)/00 around 0 = 0 gives 

Og(xl, x2; 0) /00 = --~ [1 -- 2F(Xl) - 2F(x2) + 4F(x l )F(x2) ]  + O(0). 

Hence, the LBI test, after evaluation of the expectations with respect to the 
Gamma(n)  variables, is 

1 1 E [ 2 (  1 + ylk)_ n _ 1][2(1 -J-y2k) -n  -- 1]. Tn- 2~ 
k=l  
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Since T* - -2T~ is the LBI statistic for Gumbel type I, it follows that the LBI 
test rejects for small values of 7-* whose null asymptotic distribution is x/nT* 
N(0, 1/9). 

4.4 The family of Cook and Johnson 
As a last example, the family of Cook and Johnson (1981) used in bivariate 

survival analysis by Oakes (1982) has a p.d.f. 

(4.5) fo(xl, x2; al, )~2) 
a l a 2  e x p [ - ( A l X l  + A2x2)](1 + 0) 

[Y(/~lXl)F(/~2x2)]l+°[F(/~lXl) -0 + F(,~2x2) -0  - 112+1/0' 

0 > 0, where F(x) = 1 - exp( -x) .  As 0 -+ oc, the F%chet upper bound is reached 
and as 0 $ 0, the marginals become independent exponential variables. It can be 
shown that 

(4.6) 

and 

where 

~)(Xl, X2) = [1 -~- in F (Xl )  ] [1 -~- 113 F (x2 )  ] 

Eb [in F(blylk)] = - w~  (Ylk) 

1 1 

j=l  j (1 + j y ) n '  
0 < y < l .  



134 MARTIN BILODEAU AND TAKEAKI KARIYA 

Hence, the LBI test rejects for large values of 

(4.7) T~ = 1 E [  1 _ w~(ylk)l[1 _ w~(y2k)]. 
n 

k=l  

Assumptions (i)-(ii) are satisfied but there does not seem to be functions Gjk(xl, 
x2) such that Igjk(x ,x )l <_ and Eo[xjxkajk(x ,  )] < oo  as in As- 
sumption (iii). If it could be shown, otherwise than by verifying Assumption (iii), 
that  Re~ in (A.4) is %(n -1/2) then it would follow from moment  calculations that ,  
under H, x/~T~ -~ N(0, 1) in distribution as #(0) = 0 and v(0) = 1. A simulation 
when n = 50 of 500 values of z ~ v~T~ resulted in the normal probability plot 
below which supports the N(0, 1) asymptotic null distribution. 

Appendix 

PROOF OF T H E O R E M  3.1. Define 

n 

( A . 1 )  = 

k=l  

Since T~0 is an average of iid variables with mean 0, it follows that  nl/2T~o 
N(O, v(O)) in distribution. Thus, it sumces to show that  nl/2[Tn - p(0) - Tn0] is 
%(1). Let Lj = nyjk/xjk = n/sj (j = 1, 2). Since Lj --+ 1 a.s. and bj/n ~ 1 a.s. 
as bj ~ Gamma(n),  expand [~(blYlk, b2y2k) in a neighborhood of bjLj/n = 1 as 

=9(Xlk,X2k) + ( ~ L l  --1) xlk91(Xlk,x2k) 

+ (b~2nL2--1) x2k92(xlk,x2k) 4- Enk 

with 

(A.3) Enk = ~ L1 - 1 X2kgll (?~lkXlk, ~]2kX2k) 

• ( ~  - 1) ( ~  - ~) ~ g ~ / ~ l ~ X l ~ ,  ~ /  

~ ( ~  ) ~  4- ~ L2 - 1 2kg22(~lkXlk,~2kx2k), 

where rljk = 7k(bj/n)Lj + (1 - ~/k) = 1 + 7k((bj/n)Lj - 1), 0 < Yk ~ 1. Then, 
using Lj ~'-~=1 xjk/n -- 1, j = 1, 2, T~ can be expressed as 

(A.4) Tn - #(0) = T,~0 + Rln + R2~, 
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where T~0 is given by (A.1), 

Rln  = - Eb L1 - 1 Xlk)l(X~k,X2k) + L2 - 1 X2k)2(Xlk,X2k) 
n k=l  

- (L1 - l ) x l k ¢ l ( O )  - -  (n2 - 1)x2k¢2(0)] 

and 

R2~ = _I ~ fb [fnk]. 
)% 

k:l 

To show RI~ = Op(n-1/2) ,  note the equivalent expression 

n 

/~ln = (L1 - 1) 1 E[Xlkgl(Xlk,X2k)- Xlk¢l(O)] 
k=l  

+ - I) 1 - 

?% 
k=l 

Hence, s ince  ~I/2(Lj- 1) is  Op(1), j = 1,2, and ( l / n )~= l [x jk{? j (X lk ,X2k) -  
xjkCj(O)] is Op(1) as it is an average of iid variables with mean 0, it follows that 
Rln  = op(n-1 /2) .  Next, to show R2~ = o ; ( n - 1 / 2 ) ,  note 

(1 + b iL l~n) ,  a = 1, 
711% ~ (1 n I - n / ( b l L 1 ) ) ,  OL = --1, 

and Eb(7]~k) <_ (1 + 2L2) 3 (/3 = 0 , 1 , . . . , 2 N )  for n large enough. Hence, by 
Assumption (iii), the first term in R2n is bounded above as 

(A.5) 1 k=<F-~b [(~L1 - 1) 2X2kg11(7]lkXlk,712kX2k) 1 

1 ~  M X 
__~-- Xl2k E E A l l  a ~ -/-l-o~/~XlkX2k n 

k=l  c~ -2 /3=0 

r~1/2 2~ ~ l /2r  2~ 
• ~b L1 - 1 7]lk Jbb [712k J 

where K ( n ,  L1) is an upper bound such that 

(A.6) / ] ~1/2 2 a  
~'~b L 1 -- 1 711 k 
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--~ ma2x2{E~/2 [ ( ~ L 1 -  1)4 (t-~- b@LI/4] , 

I(_~ )4 l} -1/2 L1 1 ( 1 + b i L l / n )  2M 

=_ K(n,  L1), (c~ = - 2 , - 1 , 0 , . . . ,  M).  

The factor K(n,  L1) is op(n -1/2) as can be seen from 

Eb [ (b@L1-X)4( l~ -b lL1 / f t )2M]  -~- ~i=0 (2Mi )L~Eb l ft~ Ib! ( ~ L 1 - 1 ) 4 ]  , 

where Eb(b~/n i) --+ 1, i > O, and (L1 - 1) 4 is Op(yt--1). The other term in the 
max{ } expression in (A.6) can be dealt with in the same way. Hence, K(n,  L1) 
is Op(n-1/2). 

Since the other two factors (l/n)}-~.2=~ X2hG11(Xlk,X2k)and (l ~-2L2) N in 
(A.5) are Op(1), it follows that the first term in R2~ is Op(n-1/2). Similarly, the 
other two terms in R ~  can be shown to be Op(n-1/2). Therefore, from (A.4) 
n 1/2 [T~ - #(0)] = nX/2T~o + %(1) which completes the proof. [] 
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