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Abstract. We all know that we can use the likelihood ratio statistic to test
hypotheses and construct confidence intervals in full parametric models. Re-
cently, Owen (1988, Biometrika, 75, 237-249; 1990, Ann. Statist., 18, 90-120)
has introduced the empirical likelihood method in nonparametric models. In
this paper, we combine these two likelihoods together and use the likelihood
ratio to construct confidence intervals in a semiparametric problem, in which
one model is parametric, and the other is nonparametric. A version of Wilks’s
theorem is developed.
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1. Introduction

A problem arising in many different contexts is the comparison of two treat-
ments or of one treatment with a control situation in which no treatment is applied.
If the observations consist of the number of successes in a sequence of trials for
each treatment, for example the number of cures of a certain disease, the problem
becomes that of testing the equality of two binomial probabilities. In some cases,
however, we don’t know or perhaps only partially know the underlying distribu-
tion, but we still want to compare the two treatments.

Consider N = n + m independent measurements in two samples. The first
sample consists of n measurements x1,z3, ..., %, recorded under one set of condi-
tions, and the second sample consists of m measurements y1, o, .. ., ¥ recorded
under a different set of conditions. For instance, the z’s might be blood pressure
increases for n subjects who received drug A, while the y’s are increases for m
different subjects who received drug B. The problem is to compare the two popu-
lation means, i.e. test ua = pp, or give a confidence interval for the difference of
the two means A = 14 — pp. Suppose that based on our experience, we are quite
sure of y's distributional form up to one parameter, say Gg(y) (maybe the drug B
has been used a long time), but for new drug A, it is hard to say z’s distributional
form, so we have no knowledge about z’s distribution F(z). How can we test
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Hy : pa = ug, or give a confidence interval for A = ps — up? In other words, we
need to test the equality of population means based on one parametric model and
one nonparametric model.

We all know that we can use the likelihood ratio statistic to test hypotheses and
construct confidence intervals in full parametric models. Recently, Owen (1988,
1990) has introduced the empirical likelihood method in nonparametric models. In
this paper, we will combine these two likelihoods together and develop a likelihood
ratio test and confidence intervals for this semiparametric two sample problem. In
Section 2 we briefly describe the empirical likelihood developed by Owen (1988,
1990). In Section 3, we give our main results. Section 4 gives some proofs. Section
5 presents some limited simulation results.

2. Empirical likelihood

The empirical likelihood method for constructing confidence regions was in-
troduced by Owen (1988, 1990). It is a nonparametric method of inference. It
has sampling properties similar to the bootstrap, but where the bootstrap uses re-
sampling, it amounts to computing the profile likelihood of a general multinomial
distribution which has its atoms at data points. Properties of empirical likelihood
are described by Owen (1990) and others.

Consider a random sample z1, 2, ..., 2z, of size n drawn from an unknown
r-variate distribution Fj having mean po and nonsingular covariance matrix .
Denote the j-th component as z] (j = 1,...,7), so that z; = (z},...,z])". Let

L be the empirical likelihood function for the mean. For a specific vector u =
(pt,...,1")7, L(w) is defined to be the maximum value of J]p; over all vectors
p = (p1,...,pn) that satisfy the constraints

n

(2.1) Y opi=1, Yowipi=p, pi=0, i=1...,n
=1

=1

An explicit expression for L(u) can be derived by a Lagrange multiplier argument.
The maximum of [];._, p; subject to (2.1) is attained when

(2.2) pi=pi(p) = n"H{L+t7 (2 — p)}
where t = {(p) is an r-dimensional column vector given by

n

(23) S+ — )} - ) =0
i=1
Since H?:l p; attains its largest value over all vectors p = (p1,...,Pn) satisfying

S pi=1when p; = n~! (i=1,...,n), it follows that the empirical likelihood
function L(p) is maximized at 2 = Z = n~'> 1 @; and L() = n™™. The
empirical likelihood ratio at the point p is

(2.4 - Ta+re-wy
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and minus twice the logarithm of this ratio is

(2.5) W) =2 log{l +¢7(X; — u)}.

i=1

Under appropriate regularity conditions, Owen (1988, 1990) has proved that a
version of Wilks’s theorem holds, i.e. under Hy : p = po, W(po) — X2

There is an obvious extension of this to construct confidence interval for the dif-
ference A of two sample means. Let 1,22, . .., T, be independently and identically
distributed random variables with distribution function F(z) and y1,y2,..-,Ym
be independently and identically distributed random variables with distribution
function G(y), where both F(z) and G(y) are unknown. We define FL(A) as the
maximum value of [T, p; [T]-; ¢; subject to constraints

pi=20, ¢ 20, sz‘zla Z%’Zl and
Zpixi - Zijj =A.
=1 j=1

The empirical likelihood ratio statistic for A is

(2.6) EW(A) = —2log {EL(A) / max EL(A)} :

Easily we can show that under Hy : A = A, the true difference, EW (Ag) — X%l)'
We do not give the details here.

3. Semi-empirical likelihood and main results

It is well known that likelihood based confidence intervals and tests perform
well in parametric models. Owen’s empirical likelihood ratio confidence inter-
val can be used in nonparametric models. In this section, we consider a semi-
empirical likelihood based confidence intervals for the difference of two means.
Let v, x9,...,2n; Y1,%2,--.,Ym be independent and suppose the z; are identi-
cally distributed as unknown F(z) with mean pu; = [zdF(z) and the y; are
identically distributed as Go(y) with mean ps = [ ydGe(y) = p(8), where Go(y)
is of known form depending on parameter . We assume that Gg(y) has density
function ge(y). The problem is to test Hy : uy = po = p(f), or give a confidence
interval for Ag = p1 — p(f). The semi-empirical likelihood function is

[T aF(:) [T g90(ws)-
i=1 j=1
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It has maximum value n™" H;nzl 94(y;), where 6 is the MLE based on the second
sample. Let

[Ti dF (z:) H;ﬂzl 96(Y;)
n=" 15w, 95(y5)

Con={ [ wdF —0) | F < P R(E0) 2 7}

R(F,0) =

?

R(A) =sup {R(F,e) | /ade _p6) = AF < Fn} ,

where F' < F,, denotes that F' is absolutely continuous w.r.t F),, i.e. the support
of F is contained in the support of empirical distribution F,,. Then A € C,,, if
and only if R(A) > r. We want to show that —2log R(Ag) — X?l)' Without loss
of generality, we assume that Ay = 0, and

-1

n m

R(0) = sup [Ltrwi) [T 90(ws) | I 96(v:)

-

We first maximize the joint likelihood with restriction iy = po, i.e.

T m
(31) max glogpﬂr;logge(yj)

P1,.-Pns

pi >0, Zpi = 1721%962' = u(0)
Let

H=> logpi+ Y logge(y;) +7 <1 - Zm) +nA (me) - pr> ,

i=1 j=1
then
0H 1
T A =0, = —————
op; 11 T L
0= pia—HZH—v—nA piz; =y =n—niu(d), or
; Ip; ;
1 1
P T M@ — w(0)
Also,
OH _ < Ologgs(y;) an .
0 Z 20 +n ' (0) =0, e
) 91og go(y;) 1
(3.2) Moy ==L 00 _ 00

/() (o)
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where, Iy = (1/n) E;nzl log go(y;). By the side condition Y\ | pi(@; — u(6)) =0,
we have,

1o x; — u(8) B
(3.3) n 2 TN = @) ="

i=1

We will prove that there exists a root 0 of this equation such that the root lies
within an O,(n~!/2) neighborhood of the true value y when 7 is large enough.

In the following, we will make assumptions on the distribution Gg(y) which

coincide with the conditions of normality of the MLE in full parametric models,
given in Lehmann (1983).

AssuMPTIONS. (i) The parameter space ) is an open interval.

(i) The distributions Gg(y) of y; have common support, so that the set A =
{y : go(y) > 0} is independent of 6.

(iii) For every y € A, the density gp(y) is differentiable three times with respect
to 6.

(iv) The integral [ gg(y)dy can be twice differentiated under the integral sign.

(v) The Fisher information I(8) = E[0log gs/06]? satisfies 0 < I(#) < oo.

(vi) [(83/06%)1logge(y)| < M(y), for all y € A, Oy —c < 6 < 6y + ¢, with
Fay M(y)) < co.

THEOREM 3.1. If F(z) is a nondegenerate distribution function with
[1zPdF < oo, u(8) is continuously differentiable at 0y with u'(0g) # 0, go satisfies

the above assumptions (i) through (vi), and n/m — v > 0 as n,m — oo, then the
log semi-empirical likelihood ratio statistic under the null hypothesis Ag = 0,

log R(0) = lognpi(0) + Y _ loglgg(y;)/95(y;)]
=1

j=1
satisfies —2log R(0) — X%l) and limp, oo P(Ag € Crp) = P(X%l) < —2logr).
4. Proofs
First we give a lemma.

LEMMA 4.1.  Under the conditions of Theorem 3.1, there exists a root 0 of
(3.3), such that § — 6y = O,(n~1/?).

Proor. Let

1 z; — p(8)
h(0) = n Z L+ A0)(z; — pu(0))

i

- 1 (s — p(6))*
=2 —0) = XO0 D T30 — )

3
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First we prove that h(6) = 0 has a root in an O,(n~7) neighborhood of 6y, where
1/3 < g < 1/2. In fact, note that

0?15(6p)
062

331a(6*)
063

9l5(6) _ 9lx(6o)

0 = o9 T \0—0)

1 2
+5(0 = 6o)

where 6* lies between 6 and 0. Since 9l2(6y)/80 = O,(n"*/2), we have A(9) =
O, (n~%) when 6 € (6y — n~%, 60 +n~9). By the assumption E|z|> < oo, we have
maxi <j<n |z;| < n/3 for all but finitely many n, which implies A(8)(z; — p(6)) =
0,(1) in the interval (6g—n~9,6p+n"?). Note that h(f) is almost surely continuous
in this interval for n large enough, and consider the signs of n?h(6y +n~?) and
nh(fp — n~?) for large n.

h(Bo +n~%) = Z — u(6o +n~9)
—gy L (i — p(fo + n"9))?
~Alo+n77 2 1+ (0o +n=9)(zi — p(fo +n=9))

i

Note also that
(0o +7n79) = pu(bo) + ' (Bo)n™7 + o(n™9),

Ol (0 4
Mo +n77) = — Q—(%Z;n—)/,u/(@o +n~9)

2
- [8125(900) L0 gg(fwﬂ +Op(n_q)} / W (8o +n7%)

= Op (%) + [T/ 1/ (80)In % + 0p(n~7),

1 (z; — (B + n~9))2 ,
- _ )
n Z 1+ A0 +n=9)(z; — u(bo +n9)) §%+o0p(1),  where

i

]_ 2 9 _ 82l2(90)
LYo =5t h= () >
so that

WTh(Bo + n=%) = 90 (n=Y2) = (60) — 1S /4 (60) + 0p(1)
= —(1(00) + 125) (' (60)) ™" + 0p(1).
Similarly
nh(fo —n~7) = (1*(6o) + L2S?) (W' (60)) ™" + 0p(1),

i.e. n?h(fy + n~7) and nih(fy — n~7) have opposite sign for large n. By the
intermediate value theorem, there exists a root # in (6 — n~%,6p +n~?). Similar
to the above argument, we have

0 = h(f) = Op(n~12) — (W2(B0) + 1:5) (' (60)) (8 — b0) + 0p(0 — o),

Le. 0 —60,=0,(n"Y?). 0O
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Proor OF THEOREM 3.1. Note that I5(0) = (1/n) Z?”;l log gg(y;). Using a
Taylor expansion, we have

~ Bly(0) 9*13(6)

ZQ(é) _12(9) = o0 (é_é) +2_1(é_é)2 962 +Op(n_1)7
u(0) () = W B0 - 6) + op(n™7).

From (3.2)

(4.) NG u(®) ~ ) = T2 60+ 0pn 7).

Expanding 912(6)/86 at 6 = 4, and noting dly(6)/86 = 0, we have

02(9) _ 0(0) | 8°120) 5 gy, oisny i

06 00 062
dl2(9) L
j_ g _ 00 o (n=Y2) = _ (@) (@ 9%15(0) o (n—1/2
(42) == 00 s oyn ) A(ﬁ)ﬂ(ﬁ)[ L0 o),
~ ,\829 ~ ~
(43) (0) = u(d) = 1 O)F - 6) + 0pln V)
— ABW 0 [—8 2Oy opn),

From (3.3) we have

_ ! zi — p(0)
0= e 2T — =)

%

= = ST A@) s — p @] — 0) + 0pln7), e

(4.4) T - p(f) = \0)~ Z(ﬂc — u(@)* + op(n1/2).

From (4.3), (4.4) we have

2 - u(0) = X(9) {}1 (e — u@))? - ;l(("e))} +o,n ), or

062
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%\_/

H212(9)
06?

(45) MO = (@ - p(0) F > (@i = p())? - —“2—@} +op(n7112).

So the empirical log likelihood ratio statistic is

log R(0) = Zlog np; + Z log 99(% /go(yy)]
7j=1

——Zlogl— w(@) — z)] + n[l2(8) — 12(d))].

Since log(1 + z) = = — (1/2)x2 + o(x?),

= 3" loglt = A@)((d) — 1)
= —n\B)(@ — () + 50 Y — p(0))? + 0y(1).

Expanding l5(6) at 6 and noting (4.1) and (4.2), we have

nlla(@) ~ 10)) = —n | P20 5 gy 4 g 5Tl op<n—1>]

= —nAB)((h) — w(0) — 32°(0) <8zl2(<é)>>2 @) o,
062
Hence by (4.3)~(4.5)
log R(0) = — nA(B)(Z — u(6))
1) [Zm — () = ny(6) / Pa(0) | 1 0,1

~ -~ ~ 2 ) _1
R Ty £ S CAN ) SRRy R
2 n < o6
Under Hy : py = pa = p1(fo),
V(@ = p(6)) = V(& — (o)) + V(o) — p(8)) — N(0,07 +~03)
where, 02 = var(z), and 03 = 1'?(6)[—1/E(6%13(6p)/06%)], hence

—2log R(0) — X%l)'
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COROLLARY 4.1. Under the conditions of Theorem 3.1, let

o 1 , N
=0t tn0d  62= 3w u®))? w0 | T2

n 4 00
and let T be any real constant. Then —2logR(z — u(f) + 76n~Y2) = 72 in
probability, and

~2log R(p1 — p(0o) + ron=/%) — X%1)(7'2)‘

ProOOF. By a minor modification of Theorem 3.1, we note that

—2log R(p1 — w(fy) + ron=1/?)
= n{Z — u(0) — [ — u(Bo) + Ton ™ 2]}6 72 + 0, (1),

V{Z — i = ((6) = p(6o)) — ron~?} — N(=70,0%),

52— ¢?  in prob. O

5. Simulation results

In this section, we give some limited simulation results. We compared three
methods of obtaining confidence intervals for the difference of two sample means.
The first one is based on the empirical likelihood ratio statistic (ELR) in (2.6)
without a distribution form assumption on F(z) and G(y). The second one is
based on the semi-empirical likelihood ratio statistic (SLR) with parametric as-
sumption only on G(y). The third method is based on the parametric likelihood
ratio statistic (PLR) with parametric assumption on both F(z) and G(y). We
generated data by using the S language. From each sample, 90% and 95% em-
pirical, semi-empirical and parametric likelihood ratio confidence intervals were
computed. In Tables 1 and 2, we reported the estimated true coverage, mean
length and mean value of midpoint of those three likelihood confidence intervals.
Each value in those tables was the average of 1000 simulations. We considered the
parametric models with distribution F(z) from VX%1) and G(y) from log N(p,1)

and F(z) from exp(6;) and G(y) from exp(6,) in Tables 1 and 2 respectively. From
those tables we can see that the performance of the semi-empirical likelihood ra-
tio statistic lies between empirical and parametric likelihood ratio statistics. All
empirical coverage levels are close to the nominal levels when the sample size is
moderately large.
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Table 1. x ~ 1/)(?1), v=1;y~logN(y,1), p =0, Ag = —0.64872.

90% CI 95% CI
Cov. Avlength Av.midpt. Cov. Avlength Av.midpt.
ELR 80.0 230610 —0.72633 87.2 276668  —0.75193
n=m=10 SLR 869 241986 —0.84189 92.6  2.94609  —0.89449
PLR 888 283978 —0.64783 94.7  3.62803  —0.56925

ELR 827 1.77102 —0.69261 89.1  2.14627 —0.71981
n=m=20 SLR 883 1.66106 —0.70071 93.7  2.01150 —0.71345
PLR 899 1.79548 —0.64089 94.7  2.21963 —0.61735

ELR 87.1 131856  —0.70201 92.3 1.60124  —0.72544
n=m =40 SLR 89.6 115677 —0.66525 94.0  1.39479 —0.66685
PLR 90.1 1.19361 —0.64866 94.6  1.44971 —0.64127

Table 2. x ~ exp(61), 01 = 1; y ~ exp(fa), 62 = 2, Ay = 0.5.

90% CI 95% CI
Cov. Av.length Av.midpt. Cov. Av.length Av.midpt.
ELR 835 1.06239 0.52632 89.0 1.26948 0.54319
n=m=10 SLR 844 1.12938 0.49744 90.0 1.37321 0.49589
PLR 89.9 1.34585 0.59699 95.0  1.69466 0.64915

ELR 86.8 0.79741 0.53490 92,5  0.95957 0.54985
n=m=20 SLR 87.5 0.81504 0.52805 93.1  0.98549 0.53892
PLR 90.7 0.88261 0.55829 95.7  1.08180 0.58457

ELR 87.7 0.57942 0.52450 92.8  0.69752 0.53450
n=m =40 SLR 87.7 0.58419 0.52303 92.9 0.70385 0.53228
PLR 884 0.60522 0.53149 94.0  0.73150 0.54466
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