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A b s t r a c t .  We all know that we can use the likelihood ratio statistic to test 
hypotheses and construct confidence intervals in full parametric models. Re- 
cently, Owen (1988, Biometrika, 75,237 249; 1990, Ann. Statist., 18, 90-120) 
has introduced the empirical likelihood method in nonparametric models. In 
this paper, we combine these two likelihoods together and use the likelihood 
ratio to construct confidence intervals in a semiparametric problem, in which 
one model is parametric, and the other is nonparametric. A version of Wilks's 
theorem is developed. 
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I. Introduction 

A prob lem arising in m a n y  different contexts  is the compar i son  of two t rea t -  
ments  or of one t r e a t m e n t  wi th  a control  s i tuat ion in which no t r e a t m e n t  is applied. 
If  the observat ions consist of the number  of successes in a sequence of trials for 
each t r ea tmen t ,  for example  the  number  of cures of a cer tain disease, the  p rob lem 
becomes tha t  of tes t ing the  equal i ty of two binomial  probabil i t ies .  In some cases, 
however, we don ' t  know or pe rhaps  only par t ia l ly  know the under lying distr ibu- 
tion, but  we still want  to compare  the two t rea tments .  

Consider  N = n + m independent  measuremen t s  in two samples.  The  first 
sample  consists of n measuremen t s  x l ,  x2, . . . ,  Xn recorded under  one set of condi- 

tions, and the second sample  consists of m measu remen t s  yl ,  y2,.  • . ,  y,~ recorded 
under  a different set of conditions. For instance,  the x ' s  might  be blood pressure 
increases for n subjects  who received drug A, while the  y 's  are increases for m 
different subjects  who received drug B. The  p rob lem is to compare  the  two popu-  
lat ion means,  i.e. tes t  #A = #B,  or give a confidence interval  for the  difference of 
the two means  A = PA -- #B. Suppose t ha t  based on our experience,  we are quite 
sure of y ' s  d is t r ibut ional  form up to one pa ramete r ,  say Go(y) (maybe  the  drug  B 
has been used a long t ime),  bu t  for new drug A, it is ha rd  to say x ' s  d is t r ibut ional  
form, so we have no knowledge abou t  x ' s  d is t r ibut ion F ( x ) .  How can we test  
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Ho : # A  = # B ,  or give a confidence interval for A = # A  -- # B ?  In other words, we 
need to test the equality of population means based on one parametric  model and 
one nonparametr ic  model. 

We all know tha t  we can use the likelihood ratio statistic to test  hypotheses and 
construct confidence intervals in full parametric models. Recently, Owen (1988, 
1990) has introduced the empirical likelihood method in nonparametr ic  models. In 
this paper, we will combine these two likelihoods together and develop a likelihood 
ratio test  and confidence intervals for this semiparametric two sample problem. In 
Section 2 we briefly describe the empirical likelihood developed by Owen (1988, 
1990). In Section 3, we give our main results. Section 4 gives some proofs. Section 
5 presents some limited simulation results. 

2. Empirical likelihood 

The empirical likelihood method for constructing confidence regions was in- 
t roduced by Owen (1988, 1990). It is a nonparametr ic  method of inference. It 
has sampling properties similar to the bootstrap,  but  where the boots t rap uses re- 
sampling, it amounts  to computing the profile likelihood of a general multinomial 
distribution which has its atoms at da ta  points. Properties of empirical likelihood 
are described by Owen (1990) and others. 

Consider a random sample Xl ,X2, . . .  ,x~ of size n drawn from an unknown 
r-variate distribution F0 having mean #0 and nonsingular covariance matr ix  E0. 

J (j = 1, r), so tha t  xi = (x~, xr~ ~- Let Denote the j - t h  component as x i 
• .., ..., ~ 2  • 

L be the empirical likelihood function for the mean. For a specific vector # = 
( # 1 , . . . , / ) , ,  L(p) is defined to be the maximum value of 1-IP~ over all vectors 
P = (P l , - . .  ,P~) tha t  satisfy the constraints 

L (2.1) E p  i = l ,  x ip i  = #,  Pi >- O, i = l , . . . , n .  

i=1 i=1 

An explicit expression for L ( # )  can be derived by a Lagrange multiplier argument.  
The maximum o f  I-[in=l Pi subject to (2.1) is a t tained when 

(2.2) P i  z pi(~t) = 7%--1{1 -~- ~'r ( X  i - -  I£)} - 1  

where t = t(#) is an r-dimensional column vector given by 

n 

( 2 . 3 )  Z { 1  + - - = 0 .  

i=1 

n Since l-Ii=~ Pi at tains its largest value over all vectors p = ( P l , . . .  ,Pn) satisfying 
n z Tt - 1  }-~-i=1Pi 1 when pi = (i = 1 , . . . ,  n), it follows tha t  the empirical likelihood 

function L(#) is maximized at /2 = 2 = n -1 }-~i=1 xi and L(/2) = n -~.  The 
empirical likelihood ratio at the point # is 

Tt  

_ i - [ {  1 + _ (2.4) L(/2) i=1 
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and minus twice the logari thm of this ratio is 

(2.5) = 2 log{1 + < ( x i  - 

i=1  

Under appropriate regularity conditions, Owen (1988, 1990) has proved tha t  a 
version of Wilks's theorem holds, i.e. under H0 : # = #0, W(#0) ~ X~. 

There is an obvious extension of this to construct confidence interval for the dif- 
ference A of two sample means. Let Xl, x2 , . .  •, x~ be independently and identically 
distr ibuted random variables with distribution function F(x) and Yl,Y2,..-,Y,~ 
be independently and identically distr ibuted random variables with distr ibution 
function G(y), where both F(x) and G(y) are unknown. We define E L ( A )  as the 

m 
maximum value of Iq[~l Pi 1-Ij=l qj subject to constraints 

7 t  m 

Pi >_0, qj >_0, E Pi= I' E qJ = 1 
i=1  j = l  

p i x i  - -  q j y j  = A .  

i=1  j = l  

and 

The empirical likelihood ratio statistic for A is 

(2.6) zw(A) = -2log {ZL( X)/m2xZL(A) } 

Easily we can show tha t  under H0 : A = Ao, the true difference, EW( A0 )  --4 X~i)- 
We do not give the details here. 

3. Semi-empirical likelihood and main results 

It is well known tha t  likelihood based confidence intervals and tests perform 
well in parametric  models. Owen's empirical likelihood ratio confidence inter- 
val can be used in nonparametr ic  models. In this section, we consider a semi- 
empirical likelihood based confidence intervals for the difference of two means. 
Let x l , x 2 , . . . ,  x~; Yl ,Y2, . . . ,  Y,~ be independent and suppose the x~ are identi- 
cally distr ibuted as unknown F(x) with mean #1 = f xdF(x) and the yj are 
identically distr ibuted as G0(y) with mean #2 = f ydGo(y) = #(0), where G0(y) 
is of known form depending on parameter  0. We assume tha t  Go(y) has density 
function go(Y). The problem is to test H0 : #1 = #2 = #(0), or give a confidence 
interval for Ao = #1 -- #(0). The semi-empirical likelihood function is 

n m 

H dr(x ) H go(y ). 
i-----1 j = l  
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m 
It has maximum value n - ~  E j = I  gO(YJ), where 0 is the MLE based on the second 
sample. Let 

m 

f~(F, O) ~- Ei%l dE(xi)  1-[ j=l  go(Yj) 

~-'~ [Ij<196(vj) 

Cr,n= { f xaF- ~(O) l F << F,~,mr, O) >_,'}, 

n(A)=sup{R(F,O) l f xdF-,~(O)= L r  << r,~}, 
F,O 

where F << Fn denotes that F is absolutely continuous w.r.t F~, i.e. the support 
of F is contained in the support of empirical distribution F~. Then A E C~,,~ if 
and only if 7~(A) > r. We want to show that - 2  log ~(A0)  ~ X~I). Without loss 
of generality, we assume that A0 = 0, and 

T4(O) : sup E(npi) E go(Yj) 9~(Yj) 
p,i,,O i=1 /=1  j = l  

- 1  

We first maximize the joint likelihood with restriction ,1 = ,2 ,  i.e. 

I n m 
(3.1) max Z logpi + Eloggo(Y j )  

pl,...,pn,O i=1 j = l  

Let 

H=~-~logpi-F~logge(Yj)-H~/(1-~pi)--nA(l~(O)-~pixi), 
i=1 j=] 

then 

OH -1 1 
Opi -- Pi - "7 - n l x {  = O,=~ Pi -- 7 + n l x i  

OH 
o: : 

i i 

or  

Also, 

P i  ~-- 
1 1 

,~ i + A(x{ - .(o)) 

OH00 -- ~ Ologgo(yj)00 + nA#'(O) = O, 

J 
i.e. 

(3.2) ~ ( e )  = - 

~_~.j Ologge(yj)  012(0) 
00 00 

,~.,(e) .,(0) 
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m 7% 
where, 12 = ( l /n )}-~ j=l  loggo(yj). By the side condition E i : l P i ( X i -  #(0)) = O, 
we have, 

(3.3) 1 ~ xi - #(0) 
i:1 1 + l~---p(0)) = 0. 

We will prove that  there exists a root 0 of this equation such that  the root lies 
within an Op(n -1/2) neighborhood of the true value 00 when n is large enough. 

In the following, we will make assumptions on the distr ibution Ge(y) which 
coincide with the conditions of normali ty of the MLE in full parametr ic  models, 
given in Lehmann (1983). 

ASSUMPTIONS. (i) The parameter  space f~ is an open interval. 
(ii) The distr ibutions Go(y) of yj have common support ,  so that  the set A = 

{y : go(y) > 0} is independent  of 0. 
(iii) For every y E A, the density go (Y) is differentiable three times with respect  

to 0. 
(iv) The integral f 9o (y)dy can be twice differentiated under the integral sign. 
(v) The Fisher information I(O) = E[Ologgo/O0] 2 satisfies 0 < I(O) < oo. 

(vi) I(oa/oO3)loggo(y)l < M(y),  for all y E A, 00 - c < 0 < 0o + c, with 
E0o [ M ( y ) I  < o o  

THEOREM 3.1. If  F(x) is a nondegenerate distribution function with 
f ]x[SdF < oo, >(0) is continuously differentiable at 00 with #'(0o) # O, 9o satisfies 
the above assumptions (i) through (vi), and ?%/m ---* 7 > 0 as n, m ---* oo, then the 
log semi-empirical likelihood ratio statistic under the null hypothesis Ao = 0, 

log~(O) : ~ log~p{(~)+ ~ log[a(yj)/a(y~)] 
i=1 j = l  

satisfies - 2  log 7~(0) --+ ~1)  and lim7%--.oo P ( A o  E Or,n) = P(X~I) ~ - 2  log r). 

4. Proofs 

First  we give a lemma. 

LEMMA 4.1. Under the conditions of Theorem 3.1, there exists a root 0 of 
(3.3), such that 0 - 0o = 0p(7%-1/2). 

PROOF. Let 

x i  - ~(0) 
h(O) = ! Z 1 + ATK(£ 7,(o)) 

n i 

(x~ - .(0)) 2 

V(o)7~ :;(o)) 
?% i 

1 + 
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First  we prove that  h(O) = 0 has a root in an Op(?), - q )  neighborhood of 0o, where 
1/3 < q < 1/2. In fact, note tha t  

ol2(0) o12(0o) o212(0o) 
oo - O ~  + (o - Oo) 0o------- 5 -  + ~(0  - °°)2 °312(°*)o03 

where 0* lies between 0o and 0. Since 012(0o)/00 = Op(n-1/2), we have A(0) = 
Op(n -q) when 0 E (0o - n -q, Oo + n-q). By the assumption Elz l  3 < ~ ,  we have  
maxl<i<n [xi[ < n 1/3 for all but  finitely many n, which implies A(0)(xi - #(0)) = 
Op(1) in the interval (Oo-n -q, Oo+n-q). Note that  h(O) is almost surely continuous 
in this interval for n large enough, and consider the signs of nqh(Oo + n -q) and 
nqh(Oo - n -q) for large n. 

h(Oo + n -q) = 2 - #(0o + n -q) 

(x~ - ~(Oo + n -q) )  2 
1 Z 1 + A(Oo + n - q ~ - -  ~ o  2k n-q))" - •(0o + n-q) n 

Note also that 

#(Oo + n-q)  = #(Oo) + ~'(Oo)~ -q + o(~-q) ,  

"~(00 ~- ?)'--q) ~- -- 0/2(0000 -~ n-q)  / ]~t(00 -- n-q)  

ro  /0o/ 1/ 
L ~ + oo2 - + ° ~ ( n - q )  ~ ' ( 0 o + s - q )  

= O p ( n - - 1 / 2 )  _L [[2/#t(Oo)]Ti--q -~- Op(n  q), 

(xi -- p(O0 + n-q) )  2 = S 2 0 p ( 1 ) ,  where 
in Z .  1 + A(00-~ ~ - - -  P ~ o - +  n-q)) + 

_1 ~-~(zi - #(0o)) 2 : S 2, /2 : E ( 
n / 

0212(0°)) 
002 > O, 

so that 

nqh(O0 + n-q)  = nqOp(n -1/2) - #'(00) - I2S2 / j (O0)  + 0~(1) 
= - (# '2(00)  + I2S2)(#'(00)) -1 + Op(1). 

Similarly 
nqh(Oo - n -q) = (#'2(0o) -~-/2S2)(#/(0o)) - I  ~- op(1), 

i.e. nqh(Oo + n -q) and nqh(Oo - n -q) have opposite sign for large n. By  the 
intermediate value theorem, there exists a root 0 in (0o - n-q, Oo + n-q). Similar 
to the above argument,  we have 

0 = h(O) = O p ( n  - 1 / 2 )  -- (#'2(00) @/2~Q2)(#'(00))-1(0 -- 00) -}- Op(O -- 00) , 

i.e. 0 - Oo = O p ( n - 1 / 2 )  . [] 



SEMI-EMPIRICAL LIKELIHOOD CONFIDENCE INTERVALS 123 

77~ 
PROOF OF THEOREM 3.1. Note tha t /2 (0)  = ( i / n )  }-~-j=l loggo(Yj). Using a 

Taylor expansion, we have 

/2(0) -- /2(0) -- 012(0)-'~ \_(0-- O) Jr- 2--1(0- -  0)- 202/2(0)~ -~-Op(n--1), 

#(0) -- . ( 0 )  = [.t' (O)(O -- O) -~- 0 p ( ~ - - 1 / 2 ) .  

From (3.2) 

(4.1) o12(~) (~ _ 0) + op(~- l ) .  
A(g)(~(~) - , ( 0 ) )  - oo 

Expanding 012(0)/00 at 0 = 0, and noting 012(0)/00 = 0, we have 

i . e .  ol~(g) of 2(0) °2z2(0)(4 0 ) + o p ( ~ - l / ~ ) ,  
0 0  - O0 + O0 ~ - 

(4.2) g - ~ - - -  

(4.3) 

O0 

o212(0) 
[o~12(0)] 

-'~-OP(n--1/2)=--A(O)#'(O) L 002 J 
020 

. (4)  - . (0)  = / ( o ) ( o  - O) + o.(,~ -~/2) 
--1 

k j + op(n-1/2). 

-1 
+ op(n 1/2), 

From (3.3) we have 

1 ~ - , (0 )  
o =  - E 1 -  

n i 

= 1 E[ 1 __ A(O)(X i __ ,(~))](Z i __ .(4)) ~- Op(n--I/2), 

i 

i.e. 

(4.4) ~ -  . ( 0 ) =  a(0) 1 Z ( x ~ -  . (0 ) )  2 + op(~-1/2).  
i 

From (4.3), (4.4) we have 

1 #t2 
- . (0 )  = A(0) y~'(xi  - . (4 ) )  2 (4) 

i 
002 

o212(0) 
-~- Op(n-1/2), or 
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(4.5) :,(o) = (~ -,(0)) I¼ Z(x~ - .(0)) 2 "'2(°) 02z2(0) 
002 

- 1  

-}- Op(n--1/2). 

So the empirical  log likelihood ratio statist ic is 

T~ m 

logT~(0) = ~ l o g n p i  + ~-~log[go(yj)/gg(yj) ] 
i=1 j= l  

= - E log[1 - A(0)(#(0) - xi)] + n[12(O) - 12(0)]. 
i 

Since log(1 ÷ x) = x - (1/2)x 2 ÷ o(x2), 

- ~ log[1- A(O)(/~(O)- x~)] 
i 

= - n A ( 0 ) ( : ~ -  # ( 0 ) ) +  ~ A2(0) E ( x i -  #(0))2 + %(1).  
/ 

Expanding  12(0) at 0 and not ing (4.1) and (4.2), we have 

~[l~(~) - l~(0)] = - ~  (~ - ~) + ~ (0  - ~)~ o o ~  + ° ~ ( ~ - ~ )  

= - ~ ( 0 ) ( ~ ( ~ )  - ~(0))  - ~ 2 ( 0 )  
Tt~/2 (0) 0212(0) 

\ 002 

- -  + o p ( 1 ) .  

Hence by (4.3)-(4.5) 

]og7~(o) = - ~ a ( 0 ) ( ~ - u ( 0 ) )  

= - ~ ( ~  - ~(O)) 2 ~ ( x ~  - ~(0))  2 - ~ ' 2 ( 0 ) /  ~O ~ 

- 1  

+ o ; ( 1 ) .  

Under  Ho : #1 = #2 = #(0o), 

,/Z(:~ - ~(0)) = , /~(~  - ~(Oo)) + ~ ( ~ ( O o )  - ~(~)) + x ( o ,  ~ + . ~ )  

where, ~1 z = var(x),  and o-22 = #,2 (00)[- 1/E(0212 (00)/002)], hence 

- 2  log 7~(0)---+ X~I)" r- 
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COROLLARY 4.1. Under the conditions of Theorem 3.1, let 

002 
?% i j 

and let 7 be any real constant. Then -21og7£(~ - #(0) ÷ T~n -1/2) --+ T 2 in 
probability, and 

- 2  log 7~(/zx - p(00) + 7-0?% - 1 / 2 )  ~ ) ~ 1 ) ( T 2 )  • 

PROOF. By a minor modification of Theorem 3.1, we note that  

- -  2 l o g ~ - ~ ( X  --  ~t(0)  -~- TO-n - 1 / 2 )  

= n { X  --  ~( ( ) )  - -  IX --  /~(0)  @ TO-~%--1/2]}2(Y - 2  ~- o p ( 1 )  

= 7 -2 + Op(1) and 

- 21og~(#1 - #(00) + T0-n  - 1 / 2 )  

= n{ :~  - -  ~t(0)  - -  [~1 - -  ~t(00)  -I- T 0 - n - - 1 / 2 ] } 2 0  - - 2  ~- Op(1 ) ,  

~v/~{ :~ - -  /1,1 - -  (~t(0)  --  ~ ( 0 0 )  ) - -  T0-n  - 1 / 2 }  ~ N(--T0-, 0 2 ) ,  

~2 ~ 0"2 in prob. [] 

5. Simulation results 

In this section, we give some limited simulation results. We compared three 
methods of obtaining confidence intervals for the difference of two sample means. 
The first one is based on the empirical likelihood ratio statistic (ELR) in (2.6) 
without a distribution form assumption on F(x) and G(y). The second one is 
based on the semi-empirical likelihood ratio statistic (SLR) with parametric as- 
sumption only on G(y). The third method is based on the parametric likelihood 
ratio statistic (PLR) with parametric assumption on both F(x) and G(y). We 
generated data by using the S language. From each sample, 90% and 95% em- 
pirical, semi-empirical and parametric likelihood ratio confidence intervals were 
computed. In Tables 1 and 2, we reported the estimated true coverage, mean 
length and mean value of midpoint of those three likelihood confidence intervals. 
Each value in those tables was the average of 1000 simulations. We considered the 
parametric models with distribution F(x) from uX~l) and G(y) from log N(#, 1) 

and F(x) from exp(01) and G(y) from exp(02) in Tables 1 and 2 respectively. From 
those tables we can see that the performance of the semi-empirical likelihood ra- 
tio statistic lies between empirical and parametric likelihood ratio statistics. All 
empirical coverage levels are close to the nominal levels when the sample size is 
moderately large. 



126 J ING QIN 

Table 1. x ~,, p X ~ I )  , g ---- 1; y ~ l o g N ( # ,  1), # = 0, A0 = -0 .64872.  

90% CI 95% CI 

Cov. Av. length  Av.midpt .  Coy. Av. length  Av.midpt .  

n = m = 1 0  

n - - - - m = 2 0  

n = m = 4 0  

ELR 80.0 2.30610 -0 .72633  87.2 2.76668 -0 .75193  

SLR 86.9 2.41986 -0 .84189 92.6 2.94609 -0 .89449  

P L R  88.8 2.83978 -0 .64783 94.7 3.62803 -0 .56925 

ELR 82.7 1.77102 -0 .69261 89.1 2.14627 -0 .71981 

SLR 88.3 1.66106 -0 .70071 93.7 2.01150 -0 .71345  

P L R  89.9 1.79548 -0 .64089  94.7 2.21963 -0 .61735  

ELR 87.1 1.31856 -0 .70201 92.3 1.60124 -0 .72544  

SLR 89.6 1.15677 -0 .66525 94.0 1.39479 -0 .66685 

P L R  90.1 1.19361 -0 .64866  94.6 1.44971 -0 .64127  

Table 2. x ~ exp(01), 01 = 1; y ~ exp(02), 02 ---- 2, A 0 = 0.5. 

9 0 % C I  9 5 % C I  

Coy. Av. length  Av.midpt .  Cov. Av. length  Av.midpt .  

n = m = 1 0  

n = m = 2 0  

n = m = 4 0  

ELR 83.5 1.06239 0.52632 89.0 1.26948 0.54319 

SLR 84.4 1.12938 0.49744 90.0 1.37321 0.49589 

P L R  89.9 1.34585 0.59699 95.0 1.69466 0.64915 

ELR 86.8 0.79741 0.53490 92,5 0.95957 0.54985 

SLR 87.5 0.81504 0.52805 93.1 0.98549 0.53892 

P L R  90.7 0.88261 0.55829 95.7 1.08180 0.58457 

ELR 87.7 0.57942 0.52450 92.8 0.69752 0.53450 

SLR 87.7 0.58419 0.52303 92.9 0.70385 0.53228 

P L R  88.4 0.60522 0.53149 94.0 0.73150 0.54466 

Acknowledgements 

T h e  a u t h o r  w i s h e s  t o  t h a n k  P r o f e s s o r s  J .  F .  L a w l e s s ,  A .  B .  O w e n  a n d  t h e  

r e f e r e e  for  m a n y  u s e f u l  s u g g e s t i o n s .  

REFERENCES 

Lehmann,  E. L. (1983). Theory of Point Estimation, New York, Wiley. 
Owen, A. B. (1988). Empir ical  likelihood rat io confidence intervals for a single functional ,  

Biometrika, 75, 237-249. 
Owen, A. B. (1990). Empir ical  likelihood confidence regions, Ann. Statist., 18, 90 120. 


