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Abstract. The problems of estimating ratio of scale parameters of two distri-
butions with unknown location parameters are treated from a decision-theoretic
point of view. The paper provides the procedures improving on the usual ra-
tio estimator under strictly convex loss functions and the general distributions
having monotone likelihood ratio properties. In particular, double shrinkage
improved estimators which utilize both of estimators of two location parame-
ters are presented. Under order restrictions on the scale parameters, various
improvements for estimation of the ratio and the scale parameters are also con-
sidered. These results are applied to normal, lognormal, exponential and pareto
distributions. Finally, a multivariate extension is given for ratio of covariance
matrices.
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1. Introduction

Let Sy, Sp, X and Y be independent random variables where Sy /0%, Sy/02
have chi-square distributions anl, anz, respectively, with mq, mo degrees of free-
dom and X, Y have multivariate normal distributions N, (p1,0%1,), Ny (po,021,),
respectively with unknown mean vectors p1, ps. Such a model appears in lin-
ear regression models. Suppose that we want to estimate the ratio of variances
p = 02/0? by estimator § = §(X,Y,S1,Ss) relative to the quadratic loss func-
tion L(8,p) = (6/p — 1). Every estimator will be evaluated by the risk function
R(w,8) = E,[(6/p — 1)?] for unknown parameters w.

Among estimators ¢S>/S1, the best constant cg is given by cg = (m1—4)/(mo+
2), that is, the estimator 6y = ¢9S2/S1, is the best of the class. Tt is of interest to
obtain estimators improving on ég by using the information contained in X and Y.
The statistic X or ¥ may be specially useful when p or g is not small. Applying
the methods of Stein (1964) and Brown (1968) in estimation of a variance, Gelfand
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and Dey (1988) proposed various improved shrinkage estimators. Of these, Stein
type truncated estimators are given by

m;+p—4 S }
1.1 8 = 80, ,
(11) : max{o T
) mi—4 S+ Y2
1.2 6o = o) .
(1.2) ) nmn{o,mﬁq+2 .

For the estimation of the variance, see also Brewster and Zidek (1974), Nagata.
(1989), Maatta and Casella (1990) and Goutis and Casella (1991). Since é; and
b5 are based on one of || X||? and ||Y||?, it is of great interest to find an improved
estimator employing both of || X||? and ||Y||? and we shall call such a procedure
a double shrinkage improved estimator, which, however, has not been obtained
yet so far as I know. The difficulty may be due to the fact that the directions of
shrinkage of estimators ¢; and 02 are opposite.

The main purpose of this paper is to present double shrinkage improved es-
timators. For this, definite integral argument given by Kubokawa (1994) and
Takeuchi (1991) is heavily exploited throughout the paper. The innovative idea
of this method is to express the risk difference by a definite integral. Kubokawa
(1994) has used the method to construct classes of improved estimators, includ-
ing Brewster-Zidek type smooth and Stein type truncated procedures, for a nor-
mal mean vector and a scale parameter. Also the method has been utilized by
Kubokawa et al. (1993a) and Kubokawa and Saleh (1993) for the problems of
estimating variance components in mixed linear models and of estimating noncen-
trality parameters of noncentral chi-square and F distributions.

In Section 2, we provide two kinds of domination results. It is first shown that
8o is improved on by &5 = ¢(|| X [?/51)S2/81 if

(a) ¢{w1) is nonincreasing and limy,, oo ¢(w1) = co,

(b) ¢(w1) < ¢o(w:) where

M1 _|_p — 4 fowl .I'p/271/(1 + x)(m1+p>/2_1d$
mg + 2 fowl 2P/2=1 /(1 4 z)(ma+p)/2-2(y

(1.3) Polwr) =

It is seen that the conditions (a) and (b) are satisfied by ¢o(w:) and ¢z(w:) =
max{mj — 4, (m1 +p —4)/(1 +w1)}/(ma + 2), which yield the smooth estimator
64, and the Stein type truncated rule 6;. For our main subject, we next consider
the estimator 644 = {A(||X|2/S1) + ¥(||[Y||?/S2)}S2/51, and demonstrate that
84 is further dominated by 6 4 if

(a) (z2) is nondecreasing and lim,, o ¥(22) = 0,

(b) ¥(z2) > o(z2) where

My — 4 fozz wq/Qfl/(l + x)(m2+q)/2+1dx
ma +q+2 [ 2a/2-1 /(1 4 z)(mata)/2+2dy N

(1.4) Yo(z2) = co,

(c) d(wi) 2 co.
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It is seen that these conditions (a), (b) are satisfied by 1o(2z2) and ¥r(z2) =
min{0, (my — 4)(1 + z2)/(m2 4+ g+ 2) — co}. In particular, é; can be improved on
by

- B _ my—4 Sy+||Y|?
(1.5) b3 = 5¢T=145T = 61 + min {0’ me+q—+2 S oy

The second term in the r.h.s. of (1.5) may be interpreted as an adjustment factor
for over-shrinkage of §;. Also 3 is rewritten as

(1.6) b3 =081 + 65— &g

— 4
= (52+max{0, mitp 52 —(50},

mo+2 S+ || X|?

and the second term in the r.h.s. of (1.6) may be viewed as adjustment for over-
shrinkage of d2. Finally, a symmetry consideration shows that &g is dominated by
01 and 9, both of which are further dominated by és. In this way, we can get a
double shrinkage improved estimator.

In Section 2, the above results are generalized to the cases of the strictly convex
loss functions and the distributions with monotone likelihood ratio properties,
including normal, lognormal, exponential and pareto distributions. In Sections 3

and 4, it is a priori supposed that there exist order restrictions between % and

02. Then various types of improved estimators of the ratio p and the variances

02, o2 are provided. As a multivariate extension, the problem of estimating the
ratio of covariance matrices of two multivariate normal distributions are discussed

in Section 5.
2. Point estimation of ratio of scale parameters

Let S, Sz, 171 and T3 be independent random variables where for i = 1,2,
v; = S;/o; and u; = T;/o; have densities

(2.1) ‘ il >0 and  hi(us; A fju, > k(0]

for unknown real parameter \;, real function k;(\;), k;(0) = 0, and the indicator
function ;. Then we want to estimate the ratio of the scale parameters p = o3 /0y
by an estimator 6 = §(S1, S2, 71, T>) relative to the loss function L(6§/p) where L(t)
is a strictly convex function with L(1) = 0, that is, the derivative L’(t) is strictly
increasing for ¢t > 0. To establish domination results in this paper, we assume the
existence of the following expectations:

E 1L’ <C%> @] E[L’ <c@> v2h1(dv1)],
L U1 U1 U1
r 2 2
Bl C’U_z U_2h2(d02) , ElL” ng _'U_g 7
V1 (%1 (5 1

<

E|L" (c?—) v2h1(dv1)} and E{L” <c
L 1

sls
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for nonnegative constants ¢, d and h;(u;) = h;(u;;0).
A usual estimator of p is of the form ¢S2/S; and the best constant cg is given
by a solution of the equation

(2.2) / / L <c0—2—) —le(vl)gg(w)dvldvz =0,
0o Jo v/ n1

for v; = S;/o;. The uniqueness of ¢g follows from the strict convexity of L. For
improving on the estimator 8y = ¢pS2/S1, consider a class of estimators

S
¢(W1):g—2 if Wy > 0,
(2.3) 0y = S, 1
Cco— otherwise
S1

for Wi = T171/51 and positive and absolutely continuous function ¢(-). Assume
that

(A.1) Hy(z;\)/Hi(z) is nondecreasing in = > 0,
where Hy(z; A1) = [i h1(u; M) jusk, 00y du and Hi(z) = [ hi(u)du. Note that
(A.1) is guaranteed if

(A.1") hy(z; A1)/hy(z) is nondecreasing in z > max(0, k1(A1)).
Based on the following lemma, we can get the theorem.

LEMMA 2.1.  For positive functions g(z) and h(x), assume that h(z)/g(z) is
increasing. If K(z) is a function such that K(z) < 0 for x < zg and K(z) > 0

’07 x > xo, lhe’l’b
0)

where the equality holds if and only if h(:c) /g(x) is a constant almost everywhere.

THEOREM 2.1. Assume (A.1) and the following conditions:
(a) @(wy) is nonincreasing and limy,, oo d(w1) = co,

(o) Jo oo L'((wr)va/v1)(ve/v1)g1(v1)g2(v2) Hy(wivr)dviduy < 0.
Then by dominates dg.

PROOF. By the definite integral argument given by Kubokawa (1994) and
Takeuchi (1991), the risk difference is written as

(2.4) R(w,do) —_R(w,6¢)
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w
/ / / / Ll( w) )t21”2¢'(w1)f[w1>max<o,k1<xl>t/m1

- g1(v1)g2(v2)ha (Tvu )\1> dtdvydvadun

_ /OO/OO/OO - &' (wy) L <¢(w1)v—j> Vo dloy 2> ky (M)

91 (51 92(U2)h1(U1$ /\1)d$d’U1d1}2d’w1

/ ¢'(wr / L <¢(w1)z—j> v2g2(v2)dvs

—91 (Ul)Hl (w1v1 Al)dvldwl

Here the fourth and the fifth equalities of (2.4) can be shown by making the trans-
formations wy = (t/v1)u; and = = wy /¢, respectively. From the strict convexity of
L, it can be seen that fooo L' (¢(w1)va /v1 )vaga(va )dvs is nonincreasing in v;. Hence
from the assumptions (A.1) and (a), using Lemma 2.1 gives

(2.5) R(w, 80) — R(w,64)
Hl(w1U17 / / ’ < ’U2>
> L
= Hl(w1U1 w1 ¢( wy
1
- vag2(v2)dva e (v1)Hy(wiv1)dvydwy,

where v = v} (wy) is a point such that [° L'(¢(w1)ve/v} )vaga(vs)dvs = 0. From
the condition (b), the r.h.s. of (2.5) is nonnegative, which proves Theorem 2.1. O

Define ¢g(w;) and ¢1(wq), respectively, by unique solutions of the equations
v
(2.6) / / <¢0 wy) i) igl(ul)g2(vz)ﬂl(wlul)duldvz =0,
(2.7) / / <¢1(w1 > v291(v1)g2(ve) b1 (wiv1)dvydvy = 0,

and let ¢p(w1) = max{co, ¢1(w1)}. Tt is easily checked that ¢o(wy) satisfies the
conditions (a), (b) if the following assumption holds:

(A.2) Hi(c1z)/Hy(cox) is nondecreasing in z for 0 < ¢; < ¢o.
To guarantee that ¢r(w;) satisfies (b), we need to assume that

(A.2") hi(c1z)/ha(cox) is nondecreasing in z for 0 < ¢; < co,
which implies (A.2) and that zhi(z)/H;(z) is decreasing. Using this fact and
Lemma 2.1, we observe that

yl2) &2 vihy(wivr)
(28) 0 —/ / (¢1 w1y —1> ~-91(1)1)92(1)2)m—1*)—

- Hy(wyvq)dvidug

> d(wl)/ / L <¢1 (w1 1)2) 22 g1 (01)g2(v2) Hy (w11 )dvr dog
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for some positive function d(wi ). The inequality (2.8) shows that ¢1(w1) < ¢o(w1)

or ¢ (wy) < ¢o(wi), so that (b) holds for ¢r(w1). For verifying (a), suppose that
¢1(x) < ¢1(y) for z < y. Then,

(29) 0= / / r (gbl(x ) vag1(v1)g2(v2)hy (2o )dvidug

< £ (616) 2 ) van (00)2002) E (o
/ / ( > hi(yv1)

<e(z,y) / / L <¢1 ) v2g1(v1)g2 (v2)h (yv1)dviduy

for some positive function e(z,y), which yields a contradiction. Hence ¢;(w;)
is nonincreasing, so that, together with ¢r(wy) < ¢o(w1), we see that ¢r(wr)
satisfies (a). In this way, we get two types of improved estimators 64, and 64,

COROLLARY 2.1. Under (A.1) and (A.2), the estimator 64, dominates d.
COROLLARY 2.2. Under (A.1) and (A.2'), the estimator b4, dominates &g.

Now we consider to improve on é4 by using the statistic T3, which is the main
purpose of this paper. The estimator we look into is

{d(W1) + 1(Z2)}Sa/S1 f Wy >0, Z2 >0

(2.10) 5. = ) o(W)Sa/5 if Wy >0, Z, <0
' P v(Z2)8S2/ 51 if Wy <0, Zo >0
c0S2/51 otherwise,

for Zy = T5/S, and positive and absolutely continuous functions ), v. Suppose
that

(A.3) Hy(z; A2)/Ho(z) is nondecreasing in = > 0,
where Ho(x; A\2), Ha(x) and ho(u) are defined similarly to the case of hi(z; A1)
(A.3) holds if

(A.3") ho(x; Xo)/ha(x) is nondecreasing in © > max(0, k2(A2)).

THEOREM 2.2. Assume (A.3) and the following conditions:

(a) ¥(z2) is nondecreasing and lim,, o ¥(22) = 0,

b) [o° S5 L' ([co + ¢(22)va/v1) (va/v1)g1(v1) g2 (v2) Ha(22v2)dvrdvz > 0,

(c) ¢lw1) = co,

(d) v(z2) satisfies the above conditions (a) and (b) for v(z2) = ¥(22) + co.
Then 64 .~ dominates dg.

Proor. TFirst we notice that for ug = Ty /09,
R(wa 6(25) - R(w7 6¢,¢,'Y)

“e[{e (o)) (e () +o ()5 enes
o ({e(f) -2 (o (5) ) soncal

EA1+A2.
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By the same arguments as in the proof of Theorem 2.1,

oty avm [T ([ (2) o ()] ) ]
* / U U2 va \ Uz Us
=F {/1 L ({Cﬁ (E) + Y <tg>} v—1> ;)—1‘1/1 <t5> dtl[w1>0722>0]}
>F Uloo L dco +9 <t2—z>} Z—j) wa (t-> dtI[w1>O,Z2>O}} ,

where the inequality in (2.11) follows from the fact that ¢’ > 0, ¢ > ¢ and L'(1)
is increasing. Making the transformations zo = (t/v2)us and x = 23/t gives

(2.12) Al_/ / / / L’(coﬂz) 22)]U2> vs 22 "(22)g1(v1)g2(v2)

hz( vz,)@) 22> max(0,ks (Ao )t/ v2)} dEAV1 dV2d 20 B[ Iy, 5.7

/ ¢z2)// L'<c0+wz2)]2i>“2

(’Ul)gz(vg HQ(ZQ'UQ,)\Q)dUldUQdZQE[ [u1>0}]

Similar to (2.5), it can be verified that the r.h.s. of the equality in (2.12) is non-
negative from the assumption (A.3) and the condition (b). Similarly, it can be
shown that Ay > 0 under the condition (d), and Theorem 2.2 is proved. O

Let t(22) and 91 (22) be unique solutions of the equations

(2.13) /OOO/OOO L/ ([CO —+ 1/10(22)]2—?) ?91(Ul)gQ(UQ)HQ(ZQ'UQ)d'UldUQ = 0,

1

oo poo 2
(2.14) /O /0 L/ ([Co -+ 1/11(22)]%) %j—gl (Ul)QQ(UQ)hQ(ZQUQ)dUldUQ = 0,

and let ¥ (2z3) = min{0,%1(22)}. Also let yo(22) and yr(22) be defined by vy =
co + o and v = co + Y. Then it is easily checked that 1o(z2) satisfies (a), (b)
of Theorem 2.2 if the following assumption holds:

(A.4) Hs(c1z)/Ha(cox) is nondecreasing in x for 0 < ¢; < co.
Also the same arguments as in (2.8) and (2.9) can be used to check 91 (z2) satisfies
(a), (b) under the assumption:

(A.4") ho(eyz)/ha(caz) is nondecreasing in @ for 0 < ¢; < ¢s.

COROLLARY 2.3. Under (A.3) and (A.4), the estimator 84 4, dominates
8 if p(w1) > co.

COROLLARY 2.4. Under (A.3) and (A.4), the estimator bg yr v dominates
by if p(wr) = co.
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When the statistics 77 and T3 are used in reverse order, quite similar results
hold. That is, the estimator

S
o2a) g 22> 0,
(2.15) 6;:: s 1
00—2 otherwise
St

is considered for dominating &g, and for the further improvement, the estimator

{d(Z2) + w(W1)}S2/S1 if Wi >0, Zy >0

(2.16) s = ] v(W1)Sy/5 if Wy >0, Zy <0
. oy ¢(Z2)8S2/51 if Wy <0, Zy >0
coS2/S1 otherwise

is taken. Then we can get the following theorems.

THEOREM 2.3. Assume (A.3) and the following conditions:
(a) B(z2) s nondecreasz’ng and lim,, .o ¢(z2) = co,
fO f() L/ 22 1}2/’01)(’02/1}1)91(Ul)gg(vg)Hz(szg)dvld’Ug > 0.
Then 6* dominates b&g.

THEOREM 2.4. Assume (A.1) and the following conditions:
(a) ¥(wy) is nonincreasing and limy,, oo ¢(wy) =0,
() 57 fs7 L' ([eo + w(wr)]va/v1) (v2/v1) g1 (v1) g2 (v2) Hy (wiv1)dvrdug < 0,
(¢) @(z2) < co,
(d) y(w1) satisfies the above conditions (a) and (b) for v(w1) = ¥(w1) + co.
Then &3, , ., dominates 6.

We conclude this section with the following two examples.

Ezample 2.1. (Normal distribution) Let X, Y, S; and S be independent
random variables such that X ~ Np(u1,0%0,), Y ~ Ny(us,021,), Si/o% ~ Xm1
and Sy/03 ~ xZ, . When we want to estimate p = o3 /01 under the loss (6/p—1)2,
the best of estimators ¢S5 /51 is given by 8y = ¢pS2/S1 with co = (mq—4)/(ma+2).
The improvements on 8y were studied by Gelfand and Dey (1988). Since the
assumptions (A.1)—(A.4’) are satisfied, Theorems 2.1 and 2.2 can be applied. The
functions ¢g(w1) and ¥g(z2) defined in Theorems 2.1 and 2.2, respectively, are
expressed as

i+ p— 4 2 2P/ (1 )
me + 2 fowl xP/Q*]-/(l+m)(m1+P)/2—2dx’
m—4 [ 21271 /(1 4+ ) (meta)/ 214y omy 4
mg +q+2 [0 2e/271 /(1 4+ z)(met0)/2H2dz my +2

¢0(w1) =

Yo(22) =
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Also ¢r(wy) and ¥r(z2) are given by

mi—4 mi+p—4 1
me+2 mo+2 14w )’

or(wr) = max{

. m1—4 m1~4
wT(zz)—mln{O, m2+q—|—2(1+z2) m2—|—2}'

Hence for instance, 8§y is dominated by

—4
(2.17) 81 = 64y = max{éo, mtp 5 } ,

ma+2 Sp+ || X]?
which is further improved by

. N . mq — 4 52+|!YH2
(2.18) 03 = Opp,pp = 01 + min {0, matai? S — b
= 61 + b3 — b0,
where
: my—4 Sy +||Y]?
2.1 6o = o, .
( 9) 2 m1n{0,m2+q+2 S

On the other hand, applying Theorems 2.3 and 2.4 gives that 6 is dominated by
b9, being improved on by d3. Hence 63 is better than both of §; and 63. Since
b3 = 61 + (52 — 50) =69 + (51 — (50) with 63 — 6y < 0 and 6y — 8y > 0, the terms
(62 — bo) and (67 — 6p) may be interpreted as adjustment factors for over-shrinkage
of 61 and ds, respectively. It should be noted that similar results can be provided
for a lognormal distribution.

Example 2.2. (Exponential distribution) Let (Xi,...,X,,) and (Y3,...,
Y,,) be two independent random samples from exponential distributions with
density functions o7 ' exp{—(z—p1)/01 }Hjz>,,) and o5 " exp{—(y—p2)/o2} jy> )
respectively, for unknown parameters 1, p2, 07 and oa. Arnold (1970), Brewster
(1974), Nagata (1991) and Kubokawa (1994) have dealt with estimation of the
scale parameter. It is here supposed that we want to estimate the ratio of the
scale parameters p = o3/0; under the loss (6/p — 1)2. This problem was stud-
ied by Madi and Tsui (1990) from a decision-theoretic point of view. For or-
der statistics X(;)’s, put 51 = Z;;Z(X(j) — X(qy) and T1 = n1X(q), and let Sy,
T be defined similarly. Then for ¢ = 1,2, S; and T; are independent and S,
T; — nip; have Gamma(n; — 1, 0;)—, Gamma(l, o;)—distributions, respectively.
In this case, \j = nipi/04, ki(Ai) = i, gi(vi) = [T(n; — 1)}_111;”_2 exp(—v;) fjy, 0]
and hi(ug Ai) = exp{—(u; — A¢) Hu,>»,)- Since H(z) = 1 — exp(—2) and h;(z) =
exp(—z), the assumptions (A.1)-(A.4') can be easily checked, so that Theorems
2.1 and 2.2 are applied in order to improve on & = {(n1 — 3)/n2}S2/S1. The
functions ¢o(wy) and ¥o(z2) are written as

ny—31— (1 + w1)7n1+2

ny 11— (14 wp)—m+s’
ng—3 1— (142" ny—3
o(za) = L ( 2) _m-3

ng 1—(1+29) 21 Ny

$o(wr) =
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Also ¢r(wy) and 9 (22) are given by

n1—3 n1—2 1
ng  ng l4+w

br(s) = mx {

. n—3 ny—3
@Z)T(zz):mm{(), n:+1(1+22)— 1712 }

Hence 6 is, for example, dominated by

n1—2 SQ .
6. ==
max{ 0, - Sl+T1}’ if 17 >0,

o, otherwise,

(2.20) 81 = b4y =

which is further improved on by

(2.21) b3 = (5¢T,¢T = 61 + 63 — bo,
where
. ny—35 + 1 .
(2.22) §, = { min {60, Bl S } , if Ty >0,
bo, otherwise.

On the other hand, applying Theorems 2.3 and 2.4 gives that 3 is better than 5.
It should be noted that similar results hold for a pareto distribution.

3. Estimation of ratio of ordered scale parameters

In the variance components models and other statistical models with applica-
tions, we sometimes recognize the existence of order restrictions between unknown
parameters. In this section, it is a priori supposed that there exists an order re-
striction of either of o3 < o9 or o1 > o9 between the scales o1 and 05, and in each
case, we want to find superior estimators of the ratio of the scales p = 03 /07.

31 Thecaseof p>1
We first treat the case of p > 1. For improving on &y = ¢pS2/51, consider the
estimator

S5\ S
(3.1) b= <S—i> S—j

THEOREM 3.1. For w = So/Sy, assume the following conditions:
(a) o¢(w) is nonincreasing and limy,_, ¢{w) = ¢y,

(b) [y’ L' (p(w)z) [y~ vazgr(vi)ga(viz)dvidz < 0.
Then 64 given by (3.1) dominates do.

Let ¢o{w) be a solution of the equation

(3.2) /0 " L do(w)z) H(z)dz = 0,
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where H(z) = fooc zv191(v1)ga(viz)dur. Since © < w, we observe that 0 <
L'(¢o(w)w) [" H(z)dx, which means that

(3.3) L (¢o(w)w) > 0.
Differentiating (3.2) with respect to w yields
L (én(u)uw) H(w) = h(w) [ L' (bofu)e)aH (@)de =0,

so that from (3.3), ¢o(w) is decreasing. Also lim,, o ¢o(w) = co. Hence ¢o(w)

satisfies (a) and (b) of Theorem 3.1 and we get the improved estimator §4,. On the

other hand, from (3.3), ¢o(w) > 1/w. Putting ¢r(w) = max(cy, 1/w), we can see

that (a), (b) hold for ¢ (w), getting another improved estimator 64, = max{dp, 1}.
For further improvement, the estimator we treat is of the form

So 15 Sy .
(3.4) S = {¢<s—>+¢<s—>}s— >0,

#9 otherwise.

THEOREM 3.2. Assume (A.3) and the following conditions:
(a) ¥(z2) is nondecreasing and lim,, o ¥(22) =0,
b) fo Jo- L ([co +p(z2)]va/v1)(va/v1)g1 (vi)ga(v2) Ha(2202)dvrdve > 0,
(c) ¢(w) = co.
Then 64 given by (3.4) dominates 64 given by (3.1).

Let vp(22) and 11 (22) be solutions of the equations (2.13) and (2.14) and let
Yr(2zg) = min{0, 11 (22)}. Then 1g(22) and 7 (22) satisfy (a), (b) of Theorem 3.2
under (A.4"). It does not seem easy to derive a superior rule to 84, by use of the
statistic T7.

PrOOF OF THEOREM 3.1. The risk difference is written as

R(w,80) — R(w,84) = E {L <COZ—j) iy <¢ (%p> Z—iﬂ
“s [ a{e (e () 5 2]
() (2]

After noting that ¢’ < 0 and p > 1, making the transformations gives
R(w’ 60) - R(wv 6¢)

=t U‘X’ o <¢’ (v—zt> 9“2') % oy <U—2pt> dt}
1 U1 (%3 % U1
oS [e%e} [o'e) 9
:/O /O /1 L ((ﬁ(w)%) l;_2,0<z>’(wp)£71(v1)92 (%M) %dtdvldw

= /000 ¢’ (wp) /OOO/Ow L' (¢(w)z)zv1 g1 (v1) g2 (v12)dadv dw,
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which is nonnegative from (a) and (b), establishing Theorem 3.1. O

Proor oF THEOREM 3.2. Observe that

R(w,0¢) — R(w, b¢,)

A
o (o) oo (20]2) 2 (2o
o[ o (2] 2 (2 ]

which is nonnegative from the proof of Theorem 2.2. O

=

3.2 Thecase of p<1
Next we state the case of p < 1.

THEOREM 3.3. Assume that
(a) ¢(w) is nomncreasmg and ¢(0) = cg,

f L/ £L'¢ fO 561)191(U1)gg(1)1.’)3)d1}1d33 > 0.
Then 6(15 given by (3.1) dominates &.

Let ¢o(w) be a solution of the equation

/woo L'(z¢(w)) /Ooo v1g1 (01)g2(vr2)dvrdz = 0

and put ¢r(w) = min(cp,1/w). From similar discussions stated below Theoren
3.1, it can be verified that ¢o(w) and ¢r(w) satisfy (a) and (b) of Theorem 3.3.
For the further improvement, we consider the estimator

S T\ | S .
(3.5) g = {qﬁ <:9_1) T (S_1>] 5 fh>0

0g otherwise.

THEOREM 3.4. Assume (A.1) and the following conditions:
(a) Y(wq) is nonincreasing and lim,,, o Y(wy) =0,
) Joo S L [eo + w(wi)va/v1)(va/v1) Hi(w101)g1 (v1)g2(ve)dvrdug <0,
(c) d(w) < co.
Then 64, given by (3.5) dominates by given by (3.1).

Let (w1 ) and 71 (wq) be solutions of the equations
vy \ Uy
/ / L < co + o (wy)] 2) —Hi (wiv1)g1(v1)g2(ve)dviduy = 0,
/ / L ([co - zbl(wl)]v—l) voh (wiv1) g1 (v1)g2(ve)dviduy = 0,
o Jo
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and put ¥ (wq) = max(0, %1 (w1) — ¢p). From the arguments below Theorem 2.1,
it is seen that vo(wq) and ¥r(wy) satisfy (a) and (b) of Theorem 3.4.

ProoF oF THEOREM 3.3. Similar to the proof of Theorem 3.1, the risk
difference is written as

R(w, 60) — R(w, 64)

e[ Gre(v))

e[ [ (30(02)) A o2)
o[ (303 02

- " o (o) / /w L (26 (w))w0r 1 (1) g2 (01 2)dclvy du,

which is nonnegative, proving the theorem. O

Proor oF THEOREM 3.4. Observe that

22 s (2)]2) st
e () o ()] ) 2 ()
e (e ()] 2) 2 () ]

which is nonnegative from the proof of Theorem 2.1. O

R(w, 5¢) R(w 64,

4. Estimation of ordered scale parameters

Besides the estimation of the ratio, we here deal with the problem of estimating
the ordered scale parameters with utilizing the discussions of the previous sections.
It will be clarified that two problems of estimation of o7 and o2 have different
structures in domination under the order restriction oy < 9.

4.1  Estimation of o1 under o1 < o9
In estimation of o1, the best of estimators ¢Sy is given by &7 = ¢9S1, where
co is a solution of the equation

(4.1) /000 L' (covy)v1g1(v1)dvr = 0.
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Taking the order restriction o1 < o9 into account, we find improved procedures
among the estimators

(4.2) §s =0 <§—j> Si.

THEOREM 4.1.  Assume that

(a) ¢(w) is nondecreasing and lim,, .o ¢(w) = co,

(b) J3° L' (¢(w)vr)vigr(v1)Ga(viw)dvr > 0 where Gy(z) = Iy 92(y)dy.
Then b4 given by (4.2) dominates 6.

Let ¢o(w) and ¢1(w) be solutions of the equations

(43) /OOO L/(cbo(w)vl)vlgl (Ul)G2(vlw)dU1 = 0,

(1.4) AMUWﬂMMW@MM@Wme=Q

and put ¢r(w) = min(co, ¢1(w)). To guarantee (a), (b) of Theorem 4.1, we need
to assume that

(A.5) ga(c1)/g2(caz) is increasing in x for 0 < ¢; < ¢,
which implies that zgs(z)/G2(z) is decreasing. From Lemma 2.1, notice that

(4.5) /OOO L' (p(w)v1)v2 g1 (v1) g2 (v1w)duy

< %} /000 L' (¢(w)v1)v1g1 (v1) G (viw)duy

for v¥ = 1/¢(w). Diflerentiating (4.3) with respect to w yields
¢6(w)/ L"(¢o(w)v1)vig1 (v1)Ga(viw)dvy
0

+AMUWMMMW%WMQWWMm=&

so that from (4.5), ¢o(w) is nondecreasing. Since limy oo ¢po(w) = co, do(w)
satisfies (a) and (b) under the assumption (A.5). From (4.5) and the monotonicity
of L/ (-), we get that ¢g(w) < ¢1(w) or ¢o(w) < ¢r(w), so that limy, e ¢r(w) = co
and ¢r(w) satisfies (b). Also the monotonicity of ¢1(w) can be shown under (A.5)
by the same arguments stated below the proof of Theorem 2.1. Hence two kinds
of improved estimators 04, and 64, are obtained.

For further improvements, we consider the estimator

So So Ty T .
22 (22 2L 22) g T
Sl¢<sl)¢<51,sl7sl> 1 1>0, 5 >0

Sy Ty i
-, == {71 >0 15<0
71<Sla51) iy 42 =

(4~6) 5¢ﬂ/>mﬁz = ( >
S16 (Sz)fm (é @> it Ty <0, Ty >0

S17 S,

i T <0, Ty <0.
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For Wy = Tg/sl, let
o 2
H(vy;wi, wo; A, Ag) = / u H i (Wit i) uz k; (1) fwi) A,
0 i=1

H(vi;wy,ws) = H(vy;wr, we;0,0) and A(vy; wr, we) = vihi(wivr)ha(wevr). Then
we can show the following lemma whose proof is omitted.

LEMMA 4.1. If the assumptions (A.1") and (A.3') hold, then
H{vi;wr, was A, A2)/H (v1swr, wa)

is increasing in vi. If (A.2") and (A.4") hold, vih(vi;wy,ws)/H (v1;w1,ws) is
decreasing in v1 and

H(vi;ciwy, cowa)/H(vi;wi,we)  and  h(vi; crws, cows)/h(vi; wi, we)

are increasing in vy for 0 < c¢p,co < 1.

THEOREM 4.2. Assume (A.1"), (A.3') and the following conditions:
(a) (w wl,wg) is nondecreasing in w1, wy and limy_, o P(w, twy, twy) = 1,

(b) f5° L' (v1g(w)v(w, w1, w2))vig (v1)ga(wor) H (v; wy, we)dvy > 0,

(¢) vi(w,w;) is nondecreasing in w; and lim, o vi(w,w;) =1 fori=1,2,
(d

(

) fo L' (v10(w)y: (w, w;))v? g1 (v1) g2 (wv1 ) H; (wivy )dvy > 0 fori = 1,2,
e) o(w)v(w,wr,wy) and ¢p(w)y;(w,w;) are nondecreasing in w fori=1,2.
Then 8.4 ,~, given by (4.6) dominates 64 given by (4.2).

Note that the conditions (c¢) and (d) are quite similar to (a) and (b). Let
wo(w, wy,ws) and ¥ (w, w1, ws) be solutions of the equations

/ L (v1¢90)vig1 (v1)ge(wovr) H (vi; w, we)dvr = 0,
0

/ L (vi 1 )vs g1 (v1) g2 (wvr ) h(ve; wr, we)dvg = 0.
0

Based on Lemma 4.1, it can be verified that min(1,¢g) and min(1, ¢;) satisty (a),
(b) of Theorem 4.2 under (A.2'), (A.4").

PROOF OF THEOREM 4.1. The risk difference is expressed as

[ o)
[ (s2)e
[ oo (12)

—p/ &' ( pw)/ d(w)vq) vlgl(vl)/o g2(v1z)dzdvy dw,
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which is nonnegative, proving Theorem 4.1. [J

PrROOF OF THEOREM 4.2. The risk difference is written by

R(w, 6p) — R(w, 0,071 72)

= * d V2 U1 Uug
= E |:/]: dt (Ul¢ ( ) 77/) <pa7t;)-£7pt'q;;>> dt[[U1>O,UQ>O]:|
+ ZE |:/1 (Ul¢ ( > (pv_lplt’l)_1>> dt[[ui>0}]

= A1+ Z Ag; (say),

where p; = 1 and pa = p. Denote ¢ (z1, 2o, 23) = (8/8z; )% (1, 2, 23). Noting
that ¥ >0, ¥ >0 and p > 1, from (a) and (e), we observe that

A =FE / Lo {02 ) o (p202 0t 22 ) ) 16 ( p2
1 U1 U1 vy U1 v

u U
: {—lw@ + p—2w<3>} dtl[u1>0,u2>0]]
U1 V1

>E U r <m¢> <3}3> (0 (Uﬁtﬁt@» V19 (pg?—>
1 U1 vy U1 U1 U1
U1 U9
: {—w@) + p;;w”} dt[[u1>0,u2>0]}
/ / / / L' (v16(w)b(w, wi, wa) ) {wi9p® + pwayp™}
o(pw)vigr (v1)ga(wvr ) H (vr; wy, wa; A1, A2)dvr dwdwy dws,
which can be shown to be nonnegative by the same arguments as in the proof of
Theorem 2.1 based on Lemmas 2.1 and 4.1. Similarly we can demonstrate that
Ao; > 0 for ¢ = 1,2, and the proof is complete. O
4.2  Estimation of g under o1 < 02
Next we consider to estimate the larger scale parameter oy under o7 < 2.

The estimation of o5 has a different domination structure from the case of ;. The
best multiplier ¢y is given by

o>
/ L' (cova)vaga(va)dus = 0,
0
and the estimator

(4.7) bp = ¢ (“Sl> Sa
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is considered for improving on &y = ¢¢Ss.

THEOREM 4.3. For z = S51/S3, assume that

(a) &(z) is nondecreasing and ¢(0) = co,

(b) fooo L'(¢(2)va)ve UZOZ g1(u)dugs(vg)dve < 0.
Then by given by (4.7) dominates 6.

The proof of Theorem 4.3 is similar to Theorems 3.3 and 4.1 and is omitted.
Let ¢o(z) and ¢1(z) be solutions of the equations

/00 L' (¢o(2)va)v2 /00 g1(u)dugs(va)dvy = 0,
0 v

2z

/oOC L' (¢1(2)v2)v391(v2z) g2 (v2)dva = 0

and put ¢r(z) = max(co, ¢1(2)). By the same manner as stated below Theorem
4.1, it can be checked that ¢o(z) and ¢r(z) satisfy (a), (b) of Theorem 4.3.
Next taking the estimator

51 T .
(4.8) S = Sz{¢<5—2>+¢<5—2)} if 7o >0

® otherwise,

leads to the further domination.

THEOREM 4.4. Assume (A.3) and the following conditions:
(a) ¥(za) is nondecreasing and lim,, o, ¥(z2) = 0,
(b) fo" L'([co + v(22)]v2)v2ga(v2) Ha(z2v2)dva > 0,
()6(2) = o
Then b4,y given by (4.8) dominates 64 given by (4.7).

The theorem can be proved quite similarly to Theorem 2.2. Also a similar
discussion as stated below the proof of Theorem 2.2 gives two types of improved
procedures.

5. A multivariate extension

In the previous sections, the one-dimensional case is treated for estimation of
ratio of scale parameters. As a multivariate extension, we here deal with estimating
ratio of dispersion matrices of two multivariate normal distributions and try to
provide results corresponding to those in Section 2.

Let 51, So, X and Y be independent random variables such that

Sy~ Wp(m,51), Sa~Wy(n,X2), X ~Np(&,%1), Y ~Ny(&,22),

where W,(m,¥;) designates a p-variate Wishart distribution with mean mY;.
Here 3, ¥a, & and & are unknown. Suppose that we want to estimate ratio
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of the dispersion matrices A = Y37 " by estimator A relative to the Stein loss
function

(5.1) LA A) = tr AA™Y —log |AA™Y| — p.

The inadmissibility results of a usual estimator of the covariance matrix with
utilizing a sample mean have been shown by Sinha and Ghosh (1987), Perron
(1990), Kubokawa et al. (1992) and so on. Of these, for estimation of the co-
variance matrix Yo, Kubokawa et al. (1993b) found out the best of estimators
aSy + b(Y'S;'Y)"'YY for constants a and b and presented better estimators.
Thereby we want to begin with obtaining the best constants ¢ and b for estima-
tors A(a,b) = (aSy +b(Y'S;1Y)"'YY')S!. A usual calculation gives the best
constants

pm—p-1)
n—p+1)(n+1)

- m-p-—1
 on+1

ag and by =

so that the best of estimators A(a,b) is

. b i
(52) AO - <(I052 + WYY/> Sl .

Now the estimator we consider for improving on Ay is of the form

$(Y'S;'Y)

5.3 Ay, = (a8
(5.3) ¢ <ao 2+ YISy

YY’) syt

THEOREM 5.1. For zp = Y'S;'Y, assume that
(a) ¢(22) is nondecreasing and lim,, o ¢(22) = by,
(b) #(22) > ¢o(22) where

m—p—1 [t/ (14 ¢) /24t

n+1  [E@1)(141)02de

¢o(22) =

ag.

Then A¢ dominates Ag.
Since ¢o(22) < (m —p—1)(n+1)" 1+ 22) — ag, putting

) m—p—1
qu(Zz) = min {bo, _T;Ipl—(1+22) —-ao}

. P . m—p—1
= min ) )
n—p+1 2 n+1

we see that ¢r(z;) satisfies (a), (b). Also (a), (b) hold for ¢o(22).
Next for improving on Ay, consider the estimator

P(Y'S;'Y)

5.4 Ayy = 0(X'STIX)S
(5.4) o {1/1( 1 )S2 + Y’S{lY

YY’} Sit.
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THEOREM 5.2. Forw; = X'S7'X, assume that
(a) Y(wy) is nonincreasing and lim,,, .o ¥(w1) = ao,
(b) (p— D{(w)} ™" + {&(w1) + bo} " = n(wi) where

w1 4p/2—1 1 (m—1)/2
n(wl):L p—1+ Owlt J(1+1) dt 7
m—p J3 /271 (1 4+ ¢) (m1) /244

0

(c) o(z2) < bo. )
Then Ay given by (5.4) dominates Ay given by (5.3).

From the conditions (a) and (b), ¥(w1) should be contained in the interval
[ag, ¥(n(wy))] where

2 1/2

It can be demonstrated that 1(n(w1)) is a decreasing function of n(w1) or wi
and that limy, . ¥(n(w1)) = ag with limy, e n{w1) = np/(m —p — 1). Hence

Y(n(w)) satisfies (a) and (b). Since n(w1) < n(m—p)~!(p+w1), putting Yr(wy) =
max{ag, ¥(n(m —p)~1(p+w1))}, we can see that (a), (b) hold for 4r(w;).

PrOOF OF THEOREM 5.1. To calculate the risk function of A¢, write X =
AUy, S = AiW=AL, 3 = A1 A where Uy ~ Np(Al_lfl,I) and W* ~ Wp(m, I).
Set W = H W*H] for an orthogonal matrix H; such that H1U; = (||Uy],0,...,
0)'. Note that W and U, are independent. Define u; = ||U||? and vy = w19 =
w1 — W12W2_21W21 where W is partitioned as wi1(1 x 1), Wia(1 x (p — 1)) and
Wgz((p — ].) X (p — 1)) Then

Uy ~ X]%()‘l) and U1~ X?n—p—‘.—la

and we denote their densities hj(u1; A1) and g1(v1) for A\ = 5121_151/2. For Y
and Sy, let ug and vs be defined similarly as

Ug ~ X;z;()\2) and vy ~ X?L—}H—l

with densities ha(ug; A2) and go(v2) for Ay = €455 160 /2.
We observe that

o(Y'S;'Y) _ -
E [tr { <a052 + W;ly—yy’ Sty st

¢(Y'S7'Y)
V'S y

1 (%)
- E 22
m—p_1 [aonp+02¢(vz>}a

1
- —-——lE {tr(aonggl) +

Y’E;lY}
m—p—
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and that
oY’ S_ 1 }

= Ellog |57 %1 ]|aoS225 1 + E {log {1 + ¢ < ) /aOH

)YY’) ST ey

{log (a()Sg +

Hence the risk difference is written by

R(w,Ao) — R(w,Ay)

e () e ()
:/0 ¢’(22)/0 {m—vzzj— 1 a +1¢(z2)}92(”2)

z2
-v2/ ho(vaz; Ao)dzdvadza,
0

which can be shown to be nonnegative by the same arguments as stated in the
previous sections. O

ProoF OF THEOREM 5.2. We first note that

1 1 -1
Eftr W™t w0l =F + tr (sz - ——W21W12> w11.2}
wi1.2 w11
1 Wia W2 W,
=FE [ +tr Way' + WialWo Wor w11‘2]
Wi1.2 wi1.2
1 -1
)
m—p | Wii1.2
Fach term in the risk function of AW is evaluated as follows:
E[p(X'STX)tr(S2S8; ' 2125 )]
B [w ( w ) trw—l}
Wi1.2
- o (3) (P 1),
m—7p U1 U1
¢(Y/52_1Y) 1 a—1 -1 1 Uz
P\ P2 b S S -, *2
E |: Y’Sz_lY trYY' S 813, m_p—1 Vo v/
_ H(Y'S;1Y) _ _
E {log {w(x’sl 'X)% + TSZETYY’ Sty yyt

= Ellog |57 51|52 ]

sl () (o (2) 0 (2))]
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Hence the risk difference is represented by
R(w,Ayg) - Agw

- [1 5{ (T mr)e ()
~(p—1)log ¥ (%) ~ log (w( —1> +¢>< ))}dt}
= /OOO W(wl)/ooo {mn—p <mv~1— : p- 1) - 5(;11) - 1/1(w1§ +bo}

'Ulgl(’Ul)/ hi(viz; Ay )dzdvidw,
0

which can be proved to be nonnegative and the proof is complete. O
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