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A b s t r a c t .  The problems of estimating ratio of scale parameters of two distri- 
butions with unknown location parameters are treated from a decision-theoretic 
point of view. The paper provides the procedures improving on the usual ra- 
tio estimator under strictly convex loss functions and the general distributions 
having monotone likelihood ratio properties. In particular, double shrinkage 
improved estimators which utilize both of estimators of two location parame- 
ters are presented. Under order restrictions on the scale parameters, various 
improvements for estimation of the ratio and the scale parameters are also con- 
sidered. These results are applied to normal, lognormal, exponential and pareto 
distributions. Finally, a multivariate extension is given for ratio of covariance 
matrices. 
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1. Introduction 

Let $1, $2, X and Y be independent  r a n d o m  variables where $1/o-~, $2/o~ 
have chi-square dis t r ibut ions 2 2 Xml, ~-~2, respectively, with m l ,  m2 degrees of free- 
dora and X ,  Y have mul t ivar ia te  normal  dis t r ibut ions Np(# l ,  cr~Ip), Nq(#2, a2iq) ,  
respect ively wi th  unknown mean  vectors  #1, #2. Such a model  appea r s  in lin- 
ear regression models.  Suppose t ha t  we want  to es t imate  the ra t io  of variances 

2 2 p = ~r2/cr I by es t imator  6 = 6(X,Y ,  S1,S2) relative to the  quadra t ic  loss func- 
t ion L(6, p) = ( 6 / p -  1) 2. Every  es t imator  will be evaluated by the  risk funct ion 
R(w, 6) = E~o[(6/p - 1) 2] for unknown p a r a m e t e r s  w. 

Among  es t imators  CS2/~1, the  best  constant  Co is given by co = (Trt l -4) /(m2+ 
2), tha t  is, the es t imator  60 = COS2/$1, is the best  of the  class. I t  is of interest  to 
ob ta in  es t imators  improving on 60 by using the informat ion  contained in X and Y. 
The  s ta t is t ic  X or Y m a y  be specially useful when p or q is not small. Apply ing  
the me thods  of Stein (1964) and Brown (1968) in es t imat ion  of a variance,  Gelfand 
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and Dey (1988) proposed various improved shrinkage estimators. Of these, Stein 
type truncated estimators are given by 

rnl + p  - 4 $2 } 
(1.1) 61 = max 60, m2 + 2 $1 + IlXll 2 ' 

{ ~ - 4  s:+llYll ~} 
(1.2) 62=rain 50, m 2 + q + 2  $1 " 

For the estimation of the variance, see also Brewster and Zidek (1974), Nagata 
(1989), Maat ta  and Casella (1990) and Goutis and Casella (1991). Since 61 and 
62 are based on one of 112112 and  !lYII 2, it is of great interest to find an improved 
estimator employing both of Ilxll 2 and IIYII 2 and we shall call such a procedure 
a do~ble shrinkage improved estimator, which, however, has not been obtained 
yet so far as I know. The difficulty may be due to the fact that the directions of 
shrinkage of estimators 61 and 62 are opposite. 

The main purpose of this paper is to present double shrinkage improved es- 
timators. For this, definite integral argument given by Kubokawa (1994) and 
Takeuchi (1991) is heavily exploited throughout the paper. The innovative idea 
of this method is to express the risk difference by a definite integral. Kubokawa 
(1994) has used the method to construct classes of improved estimators, includ- 
ing Brewster-Zidek type smooth and Stein type truncated procedures, for a nor- 
mal mean vector and a scale parameter. Also the method has been utilized by 
Kubokawa et al. (1993a) and Kubokawa and Saleh (1993) for the problems of 
estimating variance components in mixed linear models and of estimating noncen- 
trality parameters of noncentral chi-square and F distributions. 

In Section 2, we provide two kinds of domination results. It is first shown that 
60 is improved on by 64) = ~(llxllN/sl)sN/Sl if 

(a) qb(wl) is nonincreasing and l i m ~ o c  6(Wl) = Co, 
(b) ¢(~1)  ___ ¢ o ( ~ )  where 

(1.3) 
@0(qJ)l) = 77~1 @ P  -- 4 f O  1 X p/2 1/ (1  -~- 2£) (ml@p)/2-1dx 

f/{2 ~- 2 f ~ l x P / 2 - - 1 / ( 1  -~ X)(fr~l--p)/2--2dx " 

It is seen that the conditions (a) and (b) are satisfied by 6o(Wl) and 6T(Wl) = 
max{m1 -- 4, (ml + p -- 4)/(1 + wl)}/(m2 + 2), which yield the smooth estimator 
640 and the Stein type truncated rule 61. For our main subject, we next consider 
the estimator 6~,e = {,(llxllN/sl) + ~(llYII2/s2)}s2/sl, and demonstrate that 
64 is further dominated by 64, ~ if 

(a) ~(z2) is nondeereasing and l i m z 2 ~  fJ(z2) = 0, 
(b) ~(z2) _> ~0(z2) where 

(1.4) 
~ - 4 £~ ~/~ 1/(1 ÷ ~ ) ( ~ + ~ ) / ~ ÷ l a ~  

. eo(~)  = ~ + q + s f o  ~ ~ / 2 - 1 / ( 1  + ~ ) ( ~ e ~ ) / ~ ÷ 2 d ~  - ~o, 

(c) ~(Wl) >_ co. 
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It is seen that  these conditions (a), (b) are satisfied by 90(z2) and ,~T(Z2) = 
min{0, (ml -- 4)(1 + z2)/(m2 + q + 2) -- Co}. In particular, 61 can be improved on 
by 

f ;% 1 - -  4 s2 + IIYll 2 _ 6 o } .  
(1.5) 63 = 6¢T,tb T = 6 1  -~- min 0, m2 + q + 2 $1 

The second term in the r.h.s, of (1.5) may be interpreted as an adjus tment  factor 
for over-shrinkage of 61. Also 63 is rewrit ten as 

(1.6) 6a = 61 + 62 - 60 

= 6 2 + m a x {  O, ml + p - 4 S2 } 
?Tb 2 -~- 2 S 1 -~- I l x l l  2 - 60 , 

and the second term in the r.h.s, of (1.6) may be viewed as adjus tment  for over- 
shrinkage of 62. Finally, a symmet ry  consideration shows that  60 is dominated by 
61 and 62, bo th  of which are further dominated by 63. In this way, we can get a 
double shrinkage improved estimator.  

In Section 2, the above results are generalized to the cases of the strictly convex 
loss functions and the distr ibutions with monotone likelihood ratio properties,  
including normal, lognormal, exponential  and pareto distributions. In Sections 3 
and 4, it is a priori supposed that  there exist order restrictions between crf and 
~ .  Then various types of improved est imators of the ratio p and the variances 
~12, cr~ are provided. As a multivariate extension, the problem of est imating the 
ratio of covariance matrices of two multivariate normal distr ibutions are discussed 
in Section 5. 

2. Point estimation of ratio of scale parameters 

Let $1, 5:2, T1 and T2 be independent  random variables where for i = 1, 2, 
vi = Si/cri and ui = Ti/cri have densities 

(2.1) gi(vi)I[,,>o] and hi(ui; "~i)Ib,>k,(xd] 

for unknown real parameter  A~, real function ki(A~), k~(0) = 0, and the indicator 
function/[.].  Then we want to est imate the ratio of the scale parameters  p = cr2/cr 1 
by an est imator  6 = 6(S1, $2, T1, T2) relative to the loss function L(5/p)  where £( t )  
is a strictly convex function with L(1) = 0, tha t  is, the derivative L'( t)  is strictly 
increasing for t > 0. To establish dominat ion results in this paper,  we assume the 
existence of the following expectations: 

\ v l /  \ v l / V l  2 j '  
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for nonnegative constants e, d and hi(ui) = hi(ui; 0). 
A usual estimator of p is of the form cS2/S 1 and the best constant Co is given 

by a solution of the equation 

/o7 \ ~ 1 / U g l ( ~ ) g 2 ( ~ 2 ) d ~ d ~ :  = 0, 

for vi = Si/cri. The uniqueness of Co follows from the strict convexity of L. For 
improving on the estimator 60 = coS2/$1, consider a class of estimators 

(2.3) 6+ = $2 
co ~-~[ 

ifW~ > 0, 

otherwise 

for WL = T1/S1 and positive and absolutely continuous function ¢(-). Assume 
that 

(A.1) Hi(x; Aa)/HI(x) is nondecreasing in x > 0, 
where H l ( x ; t l )  = f o  hl(U;A1)I[u>_h(),~)]du and HI(X) = fo  hm(u)du. Note that 
(A.1) is guaranteed if 

(A.10 hi(x; l l ) / h l ( x )  is nondecreasing in x > max(0, kl(Ai)). 
Based on the following lemma, we can get the theorem. 

LEMMA 2.1. For positive.functions 9(x) and h(x), assume that h(x)/g(x)  is 
increasing. I f  K(x)  is a function such that K(x)  < 0 for x < xo and K(x)  > 0 
for x > Xo, then 

h h(~o) f ~  
Jo g<x) - g ( x o )  Jo 

where the equality holds if and only if h(x)/g(x) is a constant almost everywhere. 

THEOREM 2.1. Assume (A.1) and the following conditions: 
(a) ¢(wl) is nonincreasing and lim~l__+~ ¢(wl) = Co, 
(b) do Io  L'(¢(wl)v2/vl)(v2/Vl)gl(Vl)g2(v2)Hl(WlVl)d~ldv2 < O. 

Then 6¢ dominates 60. 

PROOF. By the definite integral argument given by Kubokawa (1994) and 
Takeuehi (1991), the risk difference is written as 

(2.4) R(~, 60) - R(~, 6,) 

k v l /  
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= ~o°°~o°°~o~/~CL/ (¢(Wl)~11) wl ! ~-v2¢ (wl)I[w~>max(O,h(xl)t/vl)] 

Zl) 1 • gl(vl)g2(v2)hl (--vl; "~1) dtdvldv2dWl \ t  
= ~O0~O0~CX~Wl ~t(Wl)L' (@(Wl)~l) V2][VlX>kl(A1)] 

• gl(Vl)g2(V2)hl(VlX;/~l)dxdvldv2dWl 

: .~!(Wl) L ! Wl v2g2(v2)dv2 

1 
• --ga(Vl)Hl( lVl;al)d ld l. 

Vl 

Here the fourth and the fifth equalities of (2.4) can be shown by making the trans- 
formations wl = (t/vl)ul and x = Wl/t, respectively• From the strict convexity of 
L, it can be seen that f ~  L'(¢(Wl)V2/vl)v292 @2)dr2 is nonincreasing in v l. Hence 
from the assumptions (A.1) and (a), using Lemma 2.1 gives 

(2.5) - 

>_ fo ~ Hl(wlv{;11) ~ ~ ! Hl(WlV'~) ¢ ' (wl ) fo  f0 L ( ¢ ( W i ) ~ )  
1 

• v~g~ (v2)dv~--gl(vl)H1 (WlVl)dVldWl, 
Vl 

where v{ = v{(wl) is a point such that f 2  L'(¢(wl)v2/v{)v292(v2)dv2 : 0. From 
the condition (b), the r.h.s, of (2.5) is nonnegative, which proves Theorem 2.1. [] 

Define ¢0 (wl) and ¢1 (wl), respectively, by unique solutions of the equations 

(2.6) L' 00(Wl) gl(vl)g2(v2)Hl(WlVl)dvldv2 = O, 

/07o  (2.'/) L t ¢1(Wl v2gl(Vl)g2(v2)hl(~DlVi)dvidv2 ~- O, 

and let ¢T(Wi) = max{c0, ¢i(wl)}.  It is easily checked that ¢0(wl) satisfies the 
conditions (a), (b) if the following assumption holds: 

(A.2) Hi(clx)/Hl(c2x) is nondecreasing in x for 0 < cl < c2. 
To guarantee that 6T(wl) satisfies (b), we need to assume that 

(A.2 !) hi(clx)/hl(c2x) is nondecreasing in x for 0 < c I < e2, 
which implies (1•2) and that Xhl(x)/Hl(x) is decreasing• Using this fact and 
Lemma 2.1, we observe that 

oc oc t V2 
(2.8) 0 : ~ f0 S ((~1(Wl)~)-~lgl(Vl)g2(V2) ylhl(wl~U1) 

Hi (WlVl) 
• H1 (WlVl)dvldv2 

fo~ fo ~ ( v2) ~m(vl)g2V2 > d(wl) L' ¢1(wl)~[ (v2)Hi(WlVl)dvldv2 
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for some positive function d(wl). The inequality (2.8) shows that  0i (Wl) ~ ¢0 (Wl) 
or CT(Wl) < ¢0(wl), so that  (b) holds for ¢T(Wl). For verifying (a), suppose that  
(~l(X) < @1 (Y) for x < y. Then, 

(2.9) 0 =  L' ¢1(x) vs VSgl(Vl)gs(vs)hl(xvi)dvldV2 

< L' el(Y) VSgl (V l )gs (V2) , , h l ( yv l )dV ldV2  
ni [yvi) 

/oT _< ~(~,~) L' ¢ ~ ( y  ~2g~(~)g2(~S)hl(y~l)d~d~2 

z0~ 

for some positive function e(x,y), which yields a contradiction. Hence ¢~(w~) 
is nonincreasing~ so that,  together with C r ( ~ )  _< ¢0(Wl), we see that  CT(W~) 
satisfies (a). In this way, we get two types of improved estimators 5¢0 and 5¢T. 

COROLLARY 2.1. Under (A.1) and (A.2), the estimator 5¢o dominates 5o. 

COROLLARY 2.2. Under (A.1) and (A.2~), the estimator 5¢r dominates 5o. 

Now we consider to improve on 5¢ by using the statistic T2, which is the main 
purpose of this paper. The estimator we look into is 

{ {~(Wi) + ~(Z2)}S2/$1 if W1 > 0, Z2 > 0 
¢(W1)$2/S1 if Wi > 0, Z2 <_ 0 

(2.10) 5¢&,.y = 7(Z2)S2/S1 if Wi _< 0, Z2 > 0 
co $2 / S1 otherwise, 

for Z2 = Ts/S2 and positive and absolutely continuous functions ~, 7. Suppose 
that  

(A.3) Hs(x; As)/Hs(x) is nondecreasing in x > 0, 
where Hs(x; As), H2(x) and hs(u) are defined similarly to the case of hi(x; A1). 
(A.3) holds if 

(A.3') hs(x; A2)/hs(x) is nondecreasing in x > max(0, ks(As)). 

THEOREM 2.2. Assume (A.3) and the following conditions: 
(a) ~(zs) is nondeereasing and limz2--,~ ~(zs) = 0, 
(b) f o  f o  L'([c0 + V(zs)]vs/vl)(v2/vl)gl(vl)gs(v2)Hs(zsvs)dvidv2 > O, 
(c) ¢(~1) _> co, 
(d) ~,(~s) satis~es the above conditions (a) and (b) for ~/(z2) = ¢(zs) + Co. 

Then 5¢,~,~ dominates 5¢. 

PROOF. First we notice that  for us = Ts/cr2, 

R(~, 5¢) - R(~, 5¢,¢,~) 

@ E [{L (c°~,21) - Z (~ (~)  ~1) } I[wi~-O'z2>O]] 
-- Ai + A2. 
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By the same arguments  as in the proof of Theorem 2.1, 

(2.11) ~1: ]~ [j~l °° dLd~ ( [@ (~-i) -~- ~/)~/'1 ~x(t 7J~2 ~ lv2//J ~1) v2 dtig[Wl~'°'z2--:>°] 1 

where the inequality in (2.11) follows from the fact tha t  ~ '  _> 0, ¢ > co and L'(t) 
is increasing. Making the t ransformations z2 = (t/v2)u2 and x = z2/t gives 

(2.12) /////oU ( ~)2 Z2 t 

• h~ ( ~  ~; ~) ±I~>m~x(0,~(~.~)l~d~d~EIIIo~ >011 

// /0Y (, :1) = ~'(z2) L' Co+¢(z2)] v2 v2 
Vl 

• gl(vl)g2(v2)H2(z2v2; A2)dvldv2dz2E[I[~>o]]. 

Similar to (2.5), it can be verified that  the r.h.s, of the equali ty in (2.12) is non- 
negative from the assumption (A.3) and the condition (b). Similarly, it can be 
shown that  1 2  _> 0 under the condition (d), and Theorem 2.2 is proved. [] 

Let ~0(z2) and ~1 @2) be unique solutions of the equations 

/oT ( (2.13) L' [Co 

/ / / / (  (2.14) t '  [co 

+ ~o(Z2)] ~lgl(Vl)g2(v2)H2(z2v2)dvldv2 = O, 

V2 
-'[- ff)a(Z2)] -~lgl(Vl)g2(v2)h2(z2v2)dvldv2 = O, 

and let 9r(Z2) = min{0, 91(z2)}. Also let 70(z2) and 7T(Z2) be defined by ~/0 = 
co + ~0 and 7T = co + 9T. Then it is easily checked that  90(z2) satisfies (a), (b) 
of Theorem 2.2 if the following assumption holds: 

(A.4) H2(ClX)/H2(c2x) is nondecreasing in z for 0 < cl < c2. 
Also the same arguments  as in (2.8) and (2.9) can be used to check ~T(Z2) satisfies 
(a), (b) under the assumption: 

(1.4 ' )  h2(clx)/h2(c2x) is nondecreasing in z for 0 < c~ < c2. 

COROLLARY 2.3. Under (A.3) and (A.4), the estimator ~4,~o,~o dominates 
54 if O(wz) >_ Co. 

COROLLARY 2.4. Under (A.3) and (A.4'), the estimator 50,VT,V T dominates 
~ if 0(wl) > ~o. 
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When the statistics T1 and T2 are used in reverse order, quite similar results 
hold. That is, the estimator 

(2.15) 
c0~ 

if Z2 > 0, 

otherwise 

is considered for dominating 60, and for the further improvement, the estimator 

(2.16) 
{0(Z2) + ~(W1)}S2/Sl  

. "~ (Wl) $2/$1 
6¢,¢,. 7 : ~)(Z2) $2 /S  1 

eo S2 / S1 

i f W l >  0, Z2 > 0 
ifW~ > 0, Z2 _< 0 
ifW~ _< 0, Z2 > 0 
otherwise 

is taken. Then we can get the following theorems. 

THEOREM 2.3. Assume (A.3) and the following conditions: 
(a) ¢(z2) is nondecreasin9 and limz~_~ ¢(z2) = co, 
(b) ~ f 2  L'(~)(z2)v2/vl)(V2/Vl)gl(vl)g2(v2)H2(z2v2)dv;dv2 >_ O. 

Then 6"~ dominates 60. 

THEOREM 2.4. Assume (A.1) and the following conditions: 
(a) g)(Wl) is nonincreasing and limwl--+oo ¢(Wl) = 0, 

(b) f o  f o  L'([c0 + ¢(wl)]~2/~l)(~/Vl)gl(Vdg~(v~)Hl(wm)d~ld~ <_ O, 
(c) ¢(~2) _< ~0, 
(d) "~(wl) satisfies the above conditions (a) and (b) for 7(w~) = ¢(wl) + Co. 

Then 6~,~,~ dominates 6¢. 

We conclude this section with the following two examples. 

Example 2.1. (Normal distribution) Let X, Y, $1 and $2 be independent 
random variables such that X ~ Np(pl, o-~Ip), Y ~ Nq(#2, o-2Iq), S1/cr21 ~ •Tt% 12 
and S ~ / ~  2 ~ 2 X,~2. When we want to estimate p = a2 / a  I under the loss ( d / p -  1) 2, 
the best of estimators cS2/$1 is given by 60 = eoS2/S1 with Co = ( m l - 4 ) / ( m 2  +2). 
The improvements on 60 were studied by Gelfand and Dey (1988). Since the 
assumptions (A.1) (A.4') are satisfied, Theorems 2.1 and 2.2 can be applied. The 
functions ¢0(Wl) and ¢0(z2) defined in Theorems 2.1 and 2.2, respectively, are 
expressed as 

, 0 ( W l )  - m~ + p - 4 f o  1 x p / 2 - 1 / ( 1  + x ) ( " i ÷ P ) / 2 - 1 d x  

m 2 + 2  

rnl - 4 

f o  ~ xp/2 1/(1 + x)('~l+p)/2-2dx ' 

/:2 xq/2--1/( 1 + x)(m2+q)/2--ldx ml 4 
~ o ( ~ 2 )  - rn2 + q + 2 .[o ~ xq/2-1/(1 + x)('~2+q)/2+2dx m2 + 2" 
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Also ~T(Wl) and ~bT(Z2) are given by 

{m-~2-4 m ~ + p - 4  1 } 
#)r(Wl)=max 7 2 '  m 2 + 2  1 + w l  ' 

%bT(Z2) = min {0 m l - - 4  m l - - 4 }  
' ~ 2  + ~ ;  2 (1 + ~ ) -  ~ + 2  

Hence for instance, 6o is dominated by 

{ m 1 + p - 4  S2 } 
(2.17) 6 1 = 6 ¢ r  = m a x  60, m 2 + 2  SI+[IXI[ 2 ' 

which is further improved by 

r e x - 4  & + l l Y l l  2 6 o t  
(2.18) 63 = 6¢r,¢T = 61 + rain 0, m2 + q + 2 S 1  

) 

= 61 + 62 - 60, 

where 

7/), 1 - -  4 $2 + IIYII 2 } 
(2.19) 6 2 = m i n  60, r n 2 + q + 2  $1 ; "  

On the other hand, applying Theorems 2.3 and 2.4 gives that 60 is dominated by 
62, being improved on by 63. Hence 68 is better than both of 61 and 62. Since 
63 = 61 q- (62 -- 60) = 62 q- (61 -- 60) with 62 - 60 < 0 and 61 - 60 > O, the terms 

(62 -60)  and (61 -60)  may be interpreted as adjustment factors for over-shrinkage 
of 61 and 62, respectively. It should be noted that similar results can be provided 
for a lognormal distribution. 

Example 2.2. (Exponential distribution) Let (X1 , . . . ,N~I )  and (Y1,.. . ,  
Yn~) be two independent random samples from exponential distributions with 
density functions or{ -1 exp{-(x-#l)/Crl}I[x>_~l] and (7~ 1 exp{-(y-p2)/o-2}Ib>_,2] , 
respectively, for unknown parameters #1, #2, ch and or2. Arnold (1970), Brewster 
(1974), Nagata (1991) and Kubokawa (1994) have dealt with estimation of the 
scale parameter. It is here supposed that we want to estimate the ratio of the 
scale parameters p = cr2/~l under the loss (6/p- 1) 2. This problem was stud- 
ied by Madi and Tsui (1990) from a decision-theoretic point of view. For or- 
der statistics X(j)'s, put $1 nl = Y~j=2(X(j) - X(1)) and Ti = niX(1) and let $2, 
T2 be defined similarly. Then for i = I, 2, Si and Ti are independent and Si, 
Ti - ni#i have Gamma(hi - 1, cri)-- , Gamma(l, ~ri) distributions, respectively. 
In this case, Ai = ni#i/ch, ki(Ai) = Ai, gi(vi) = [F(ni _ 1,n-1)j vim-2 exp(_vi)iM>o] 
and hi(ui; Ai) = exp{-(u i  - Ai)}I[~>~d. Since Hi(x) = 1 - exp( -x)  and hi(x) = 
exp(-x) ,  the assumptions (A.1) (1.4') can be easily checked, so that Theorems 
2.1 and 2.2 are applied in order to improve on 60 = {(nl - 3)/n2}$2/S1. The 
functions ¢o(Wl) and tb0(z2) are written as 

¢0(Wl) = n l - - 3 1 - -  ( 1 + W l )  hi+2 

n2 1 -- (1 + wl) -~I+3'  

~ 0 ( ~ )  = ~ l  - a 1 - (1 + ~2) - ~  _ ~1 - a 
n2 1 - (1 ÷ z2) -n2-1 n2 
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Also CT(wl) and ~T(z2) are given by 

{n1-n23 nl--2 1 } Cr(wl)  = max , 
n2 1 + wl 

I n l - 3 ( l + z 2 )  n,_-3}n2 ~T(Z2) = min 0 , ~  . 

Hence 5o is, for example, dominated by 

(2.20) 51=5¢T = max 5o, n2 S 1 + ~  ' 

50, 

which is further improved on by 

(2.21) 

where 

53 = 5¢T,¢ T = 51 + 52 - 50, 

{ { n l - 3 S 2 + T 2 } ,  i fT2>O,  
(2.22) 52 = min 50, n2 T 1 $1 

50, otherwise. 

if T1 > 0 ,  

otherwise, 

3. Estimation of ratio of ordered scale parameters 

In the variance components models and other statistical models with applica- 
tions, we sometimes recognize the existence of order restrictions between unknown 
parameters. In this section, it is a priori supposed that there exists an order re- 
striction of either of ch < g2 or ~1 > or2 between the scales or1 and ~2, and in each 
case, we want to find superior estimators of the ratio of the scales p = g2/crl. 

3.1 The case of p > 1 
We first treat the case of p > 1. For improving on 5o = COS2/$1, consider the 

estimator 

(3.1) = ¢ sL- 

THEOREM 3.1. For w = $2/$1, assume the following conditions: 
(a) ¢(w) is nonincreasing and lim~__,~ ¢(w) -- Co, 
(b) f f  L'(¢(w)x) Yo VlXgl(vl)g (vlx)d ldX _< 0. 

Then 5¢ given by (3.1) dominates 50. 

Let ¢0(w) be a solution of the equation 

(3.2) L'(¢o(w)x)H(x)dx = O, 

On the other hand, applying Theorems 2.3 and 2.4 gives that 63 is better than 62. 
It should be noted that similar results hold for a pareto distribution. 



ESTIMATION OF RATIO OF SCALE PARAMETERS 105 

where H(x) = f?xvlgl(vl)g2(vlx)dvl. Since x < w, we observe that  0 < 

L'(¢o(W)W) Jo H(x)dx, which means that  

(3.3) L'(¢o(W)W) > O. 

Differentiating (3.2) with respect to w yields 

// L'(¢o(W)w)H(w) + ¢~(w) L"(~)o(w)x)xH(x)dx = O, 

so that  from (3.3), ¢0(w) is decreasing. Also lim~-~oo ¢0(w) = co. Hence Co(W) 
satisfies (a) and (b) of Theorem 3.1 and we get the improved estimator 64~ o. On the 
other hand, from (3.3), Co(w) > 1/w. Put t ing CT(W) = max(c0, 1/w), we can see 
that  (a), (b) hold for CT(w), getting another improved estimator 6,T = max{60, 1}. 

For further improvement, the estimator we treat is of the form 

(3.4) 6¢ ,~= ¢ $7 +~b $7 $7 if T 2 > 0 ,  
6¢, otherwise. 

THEOREM 3.2. Assume (A.3) and the following conditions: 
(a) W/(z2) is nondecreasing and limz2--~.o ~b(z2) = 0, 
(b) /0 °c/0  cc L'([c 0 -~- ~(z2)lv2/vl)(V2/vl)gl(vl)g2(v2)H2(z2v2)dvldv2 ~ O, 
(c) ¢(,,) > co. 

Then 6,,¢ given by (3.4) dominates 6, given by (3.1). 

Let ¢0(z2) and ~1(z2)be solutions of the equations (2.13)and (2.14)and let 
CT(Z2) = rain{0, ~1(z2)}. Then ~o(Z2) and ~T(z2) satisfy (a), (b) of Theorem 3.2 
under (A.4r). It does not seem easy to derive a superior rule to 6,, w by use of the 
statistic T1. 

PROOF OF THEOREM 3.1. The risk difference is written as 

:E'[ / l°CLl(¢(v2pt~ll)  v2 \Vl /] ~ vx p ¢'(v2pt~dt] / 

After noting that ¢' _< 0 and p > 1, making the transformations gives 

60) - 6 , )  

\ v l  / \ V l  / 

// /oT = p¢'(wp) L'(¢(w)x)xv~gl(vl)g2(vxx)dxdvxdw, 
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which is nonnegative from (a) and (b), establishing Theorem 3.1. [] 

PROOF OF THEOREM 3.2. Observe that 

( [ )  ] 
- \ v 2  / ]  ~1 vl \v2 / 

which is nonnegative from the proof of Theorem 2,2. [] 

3.2 The case of p < 1 
Next we state the case of p < 1. 

THEOREM 3.3. Assume that 
(a) ¢ ( ~ )  is noninc~easing a~d ¢(o) = co, 
(b) f ~  L'(x¢(w)) f o  XVlgl(vl)g2(vlx)dvldx > O. 

Then 6¢ given by (3.1) dominates 60. 

Let ¢0(w) be a solution of the equation 

/0 L'(x¢(w)) xVlg l (v l )g2(v lx )dv ldX = 0 

and put CT(W) = rain(c0, 1/w). From similar discussions stated below- Theoren 
3.1, it can be verified that ¢0(w) and CT(W) satisfy (a) and (b) of Theorem 3.3. 

For the further improvement, we consider the estimator 

(3.5) 6¢., = ¢ ~ + 9 Sll Sll if T1 >0 ,  
6¢ otherwise. 

THEOREM 3.4. Assume (A.1) and the following conditions: 
(a) ~(wl) is nonincreasing and limw~--~ ~(Wz) = 0, 
(b) fo c~ f0 °° L'([co q- ~(Wl)]V2/Vl)(V2/Vl)Hl(WlVl)gl(vi)g2(Iy2)dvldV2 ~ O, 
(o) ¢(w) < co. 

Then 6¢,V~ given by (3.5) dominates 6, given by (3.1). 

Let ~0(w~) and @I(Wl) be solutions of the equations 

fo f0 
/0 /0 
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and put l/3T(Wl) = max(0, 1~1(Wl) --CO). From the arguments below Theorem 2.1, 
it is seen that  ~0(wl) and ~T(Wl) satisfy (a) and (b) of Theorem 3.4. 

PROOF OF THEOREM 3.3. Similar to the proof of Theorem 3.1, the risk 
difference is written as 

60)  - 6 + )  

--> -E  [~lL'  Q~l~) (~1)2~) pv22~j (~fl1)2~ 1)1J I) 7 \ 1)1J 

lo )ioV? = -- p~'(pw L'(m~(w))x1)191(1)1)g2(1)1x)dmdvldW, 

which is nonnegative, proving the theorem. [] 

PROOF OF THEOREM 3.4. Observe that 

6 + )  - 

If1 °°at ( f  ( tu l ] ]  IJ2)V2 Ul~t (~1~  dti[ul>o]] ' 
>_E C o + ~ \  v l / I  ~ Vl Vl \ V l /  

which is nonnegative from the proof of Theorem 2.1. [] 

4. Estimation of ordered scale parameters 

Besides the estimation of the ratio, we here deal with the problem of estimating 
the ordered scale parameters with utilizing the discussions of the previous sections. 
It will be clarified that  two problems of estimation of al  and 0-2 have different 
structures in domination under the order restriction 0-1 < 0- 2. 

4.1 Estimation of a~ under ~1 < 0-2 
In estimation of 0-1, the best of estimators cS1 is given by ~1 = coS1, where 

Co is a solution of the equation 

L 
~ 

(4.1) L'(covl)vlgm(vl)dvm = 0 .  
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Taking the order restriction ~rl < o2 into account, we find improved procedures 
among the estimators 

(4.2) ~ = ¢  Sll s~. 

THEOREM 4.1. Assume that 
(a) ¢(w) is nondecreasing and lim~__.~ ¢(w) = Co, 
(b) f o  L'(O(W)Vl)Vlgl(Vl)G2(VlW)dvl > 0 where G2(x) = f :  g2(y)dy. 

Then 6¢ given by (4.2) dominates ~1. 

Let ¢0(w) and ¢1(w) be solutions of the equations 

/0 (4.3) L' (¢o (~)vl)vlgl (~1)a2 ( ~ ) d ~ l  = 0, 

(4.4) L!(¢I (W)Vl)V2ga (Vl)g2(VlW)dv1 = O, 

and put eT(W) = min(c0, ¢1(w)). To guarantee (a), (b) of Theorem 4.1, we need 
to assume that 

(A.5) g2(clx)/g2(c2x) is increasing in x for 0 < cl < cs, 
which implies that xgs(x)/G2 (x) is decreasing. From Lemma 2.1, notice that 

// (4.5) L' ( ¢(w)vl )v~gl (vl )g2(VlW)dvl 

~ ; g 2 ( ~ )  f0 ~ 
~2(~){W) L'(~(W)Vl)Vlgl(Vl)~2('UlW)dVl 

for v~ = 1/¢(w). Differentiating (4.3) with respect to w yields 

~Io(W ) LZZ(~o(W)Va)V2gl(Vl)~2(VlW)dVl 

/o + c ' ( ¢ o ( ~ ) ~ ) ~ g ~ ( ~ ) g 2 ( ~ ) d v ~  = 0, 

so that from (4.5), ¢0(w) is nondecreasing. Since l i m ~ _ ~  ¢0(w) = co, 00(w) 
satisfies (a) and (b) under the assumption (A.5). From (4.5) and the monotonicity 
of L'(.), we get that Oo(W) <_ ¢1(w) or ¢0(w) _< CT(W), so that limw~o~ CT(W) = e0 
and CT(W)satisfies (b). Also the monotonicity of qSl(W)can be shown under (1.5) 
by the same arguments stated below the proof of Theorem 2.1. Hence two kinds 
of improved estimators 5¢o and 50z are obtained. 

For further improvements, we consider the estimator 

~1(~ ("~11) ~) (~11 ' T1~1, ~21) if Zl>0 ,  T2>0  

ifT~ > 0, T2 _< 0 
(4.6) I Sl+ ~ ~1 ~'~11) 

ifT1 < 0, T2 > 0 

ifT~ <_ O, T2 <_ O. 
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For w2 = T2/$1, let 

~o 
V l  2 

]J(Vl;Wl,W2;,~I,,~2) = ~tHhi(wi~t;~i)I[u~_tci()~i)/wi]d%, 
i=1 

H(~;  ~1, ~:)  = H(~;  ~ ,  ~:;  0, 0) and h(v~; ~1, ~2) = vlh~ ( ~ l V l ) h 2 ( ~ l ) .  Then 
we can show the following lemma whose proof is omitted. 

LEMMA 4.1. If  the assumptions (A.I') and (A.3') hold~ then 

H(Vl; Wl, w2;/~1, ,~2)/H(vl; Wl, w2) 

is increasing in Vl. I f  (1.2') and (A.4') hold, vlh(Vl;Wl,W2)/H(Vl;Wl,W2) is 
decreasing in vl and 

H(vl; ClWl, c2w2)/H(Vl ;wl, w2) and h(vl ;C, Wx, c2w2)/h(Vl ;Wl, w2) 

are increasing in vl for 0 < cl, c2 <_ 1. 

THEOaEM 4.2. Assume (A.1'), (A.3') and the following conditions: 
(a) ¢(w, wl, w2) is nondecreasing in ~121, w2 and limt_~o~ ¢(w, twl, tw2) = 1, 
(b) f 3  L'(VlO(W)O(w, wl, w2))V2gl(vl)g2(wvl)H(Vl; wl, w2)dVl >_ O, 
(c) ~/i(w, wi) is nondecreasin 9 in wi and lim~,__.o~ 7i(w, wi) = 1 for i = 1, 2, 
(d) f o  L'(Vl¢(~)Z~(~, ~ ) )~ l~g l (v~)g~(~ l )Hi (~ )dv~  >_ 0 for  i = 1, 2, 
(e) ¢(~)¢(~,  ~ ,  w2) ~nd ¢(~)Z~(~, ~ )  are nondecre~sing in ~ for  i = 1, 2. 

Then ~+,~,~,~ given by (4.6) dominates ~¢ given by (4.2). 

Note that  the conditions (c) and (d) are quite similar to (a) and (b). Let 
~0 (w, wl, w2) and ~1 (w, wl, w2) be solutions of the equations 

fo ~ ~1, ~2)d~l = 0, L1(Vl~o)v2 gl (vl)g2(wvl)H(Vl; 

fo ~ (WVl )h(vl ; wl, w2 )dVl = L ' ( v l ~ l ) V 3  gl (~1)g2 O. 

Based on Lemma 4.1, it can be verified that  min(1, ¢0) and min(1, ¢1) satisfy (a), 
(b) of Theorem 4.2 under (A.2'), (A.4'). 

PROOF OF THEOREM 4.1. The risk difference is expressed as 

= p 2 ~  
\ v l /  \ vx /  

1 = /o = /o 
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which is nonnegative,  proving Theorem 4.1. [] 

PROOF OF THEOREM 4.2. The  risk difference is wri t ten  by 

dt  / '/32 '%tl ' U2 ] ' ~  dt[[ul>°'u2>°]] : E [~1°° !L  (Vl¢ (P~I) @ ~P-~I,g-~I,Pg-~I)) 
2 ~i 

2 

: zx~ + Z ~ {  (say), 
i=1 

where Pl = 1 and P2 = P. D e n o t e  ~(i)(Xl, X2, X3) = (O/OXi)~)(Xl, a72, X3). Noting 
tha t  @2) _> 0, %b (a) _> 0 and p _> 1, from (a) and (e), we observe tha t  

A I = E  

(. Vl Vl 

/o7o77 = L'(v1¢(w)¢(w, wl, w2)){Wl¢ (2) + pw21~ (3) } 

• ¢(~)~lb~(~)g~(~)H(~l; ~, ~; ~i, a~)dv~d~d~d~, 

which can be shown to be nonnegative by the same arguments  as in the proof  of 
Theorem 2.1 based  on Lemmas 2.1 and 4.1. Similarly we can demons t ra te  tha t  
A2i _> 0 for i = 1, 2, and the proof  is complete. [] 

4.2 Est imat ion  of ~r2 under ch < or2 
Next we consider to est imate the larger scale parameter  or2 under  Crl < ~r2. 

The  est imation of ~2 has a different dominat ion s t ruc ture  from the case of oh. The  
best multiplier Co is given by 

fo °CL'(coV2)V292(v2)dv2 = 0 ,  

and the est imator  

(sl) 
(4.7) ~+=¢  ~ s2 
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is considered for improving on ~2 = CoS2. 

THEOREM 4.3. For z = $1/$2, assume that 
(a) ¢(z) is nondec~easing and ¢(0) = Co, 

(b) f o  L'(,(z)v~)~2 f~zg~(u)dug2(v~)d~ < O. 
Then E¢ given by (4.7) dominates Cr2. 

The proof of Theorem 4.3 is similar to Theorems 3.3 and 4.1 and is omitted. 
Let ¢0(z) and 61(z) be solutions of the equations 

fo L'(¢o(z)v2)v2 gl(u)dug2(v2)dv2 = O, 
2 Z  

fo ~ L'(¢l(z)v2)v~gl(v2z)g2(v2)dv2 = 0 

and put eT(Z) = max(c0, ¢1(z)). By the same manner as stated below Theorem 
4.1, it can be checked that ¢0(z) and eT(Z) satisfy (a), (b) of Theorem 4.3. 

Next taking the estimator 

(4.8) 
{ $2 {¢ ($1) (T2)} E~,,= ~ + ¢  ~ i fr~>0 

{~¢ otherwise, 

leads to the further domination. 

THEOREM 4.4. Assume (A.3) and the following conditions: 
(a) ~(z2) is nondecreasing and lim~_~o~ ~(z2) = 0, 
(b) Yo L'([c0 + ¢(z2)Jv2)v2g2(v2)H2(z2v2)dv2 > O, 
(c)¢(~) _> co. 

Then 5¢,¢ given by (4.8) dominates E¢ given by (4.7). 

The theorem can be proved quite similarly to Theorem 2.2. Also a similar 
discussion as stated below the proof of Theorem 2.2 gives two types of improved 
procedures. 

5. A multivariate extension 

In the previous sections, the one-dimensional case is treated for estimation of 
ratio of scale parameters. As a multivariate extension, we here deal with estimating 
ratio of dispersion matrices of two multivariate normal distributions and try to 
provide results corresponding to those in Section 2. 

Let $1, S2, X and Y be independent random variables such that 

Sl ~ Wp(m, ]~l), S2 ~ Wp(n, E2), X ~ Np(~l, ]El), Y ,~ Np(~2, Z2), 

where Wp(m, El) designates a p-variate Wishart distribution with mean mE1. 
Here El, E2, ~1 and ~2 are unknown. Suppose that  we want to estimate ratio 
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of the dispersion matrices A = E2E{ -1 by est imator A relative to the Stein loss 
function 

(5.1) L(/~, A) : t r / ~ A  -1 - log li~x-~l - p 

The inadmissibility results of a usual est imator of the covariance matr ix  with 
utilizing a sample mean have been shown by Sinha and Ghosh (1987), Perron 
(1990), Kubokawa et aI. (1992) and so on. Of these, for est imation of the co- 
variance matr ix E2, Kubokawa et al. (1993b) found out  the best  of est imators 
aS2 + b(Y~S~IY)-IYY ~ for constants a and b and presented bet ter  estimators.  
Thereby we want to begin with obtaining the best  constants  a and b for estima- 
tors /~(a, b) = (aS2 + b(Y 'S~Iy)- IYy ' )S~ ~. A usual calculation gives the best  
constants 

.~ ; 1 p ( . ~ - p - 1 )  
ao - and bo = 

n + l  ( n - p +  1 ) ( n +  1)'  

so that  the best  of est imators z~(a, b) is 

(5.2) 

Now the est imator  we consider for improving on /~0 is of the form 

(5.3) 0(Y'S21Y) y y , )  $11. 
AO = (aoS2 ÷ Y,S21Y 

THEOREM 5.1. For z2 = Y'S~IY, assume that 
(a) ~(z2) is nondecreasing and limz~__,~ ~b(z2) = bo, 
(b) ¢ ( ~ )  _> e0(~2) ~he~e 

Oo(~) - 
. ~ -  p -  1 fo 2 tp/~-V(1 + t)<n÷~>/2~ 

n + 1 fo 2 tp/2-1/(1 + t)(n÷3)/2d~ 
- -  a 0 . 

Then A¢ dominates Ao. 

Since ~bo(Z2) _< (m - p - 1)(rt + 1)-1(1 + z2) - ao, put t ing 

m - p -  } 
~T(z2) = m i n  bo, ~ z ~ l  1 ( l + z 2 ) _ a o  

= min P z2 
n - p + l '  n+l 

we see that  OT(Z2) satisfies (a), (b). Also (a), (b) hold for ~bo(z2). 
Next for improving on z~O, consider the est imator 

(5.4) f O<Y'si ~Y ) y z ,  ], 
ko,w = ~ ( x ' s f ~ x ) s ~  + Sl*. y , S ~ I y  J k 
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THEOREM 5.2. For W 1 -~ X t s f l x ,  assume that 
(a) ¢ ( w l )  is nonincreasing and l im~l__~ ¢ ( w l )  = a0, 
(b)  (p -- 1){~/)(Wl)} - 1  -]- {~/)(Wl) -F b0} - 1  ~ ?](Wl) whe ' r ' e  

~/(wl) - -  m - ~  p - 1 + 
f°~ tP/2-1/(1 + t)('~-l)/2dt t 
fo  ~ tp/2-1/(1 + ~)(rn--1)/2dt J '  

(c) O( 2) _< bo. 
Then A¢,¢ given by (5.4) dominates given by (5.3). 

From the conditions (a) and (b), ~)(Wl) should be contained in the interval 
[a0, ~(r](wl))] where 

(5.5) ~(7] (Wl)  ) = ~ 7](Wl) 
1 P bo + 4 ( p -  1)bo 1/2 

 (E1) 

It can be demonst ra ted  that  ~(?~(Wl) ) is a decreasing function of T](Wl) or  W 1 
and that  l i m w l ~  O(~(wl))  = ao with l imwl~ ~ ~(Wx) = np/(m - p -  1). Hence 
~(~(wl ) )  satisfies (a) and (b). Since ~(Wl) _< n ( m - p ) - l ( p + w l ) ,  put t ing OT(Wl) = 
max{ao, ~ ( n ( m -  p ) - l ( p  + Wl))}, we can see that  (a), (b) hold for ¢T(Wl). 

PROOF OF THEOREM 5.1. To calculate the risk function of 2x¢, write X = 
AIU1, S1 = A 1 W * A I ,  ~1 = A1AI1 where UI ~ Np(AI-I~I, I)  and W* ~ Wp(m, I). 
Set W = H1W*H~ for an orthogonal matr ix  H 1 such that  H1U1 = (]]Ull ] ,0 , . . . ,  
0)'. Note that  W and U1 are independent.  Define Ul = ]]U1]] 2 and vl = Wll.Z = 
wxl - W12W.~1W21 where W is part i t ioned as Wn(1 x 1), Wlz(1 x (p - 1)) and 
W 2 2 ( ( p -  1) × ( p -  1)). Then 

2 2 
U 1 ~ Xp(/~l) and Vx ~ X.~-p+l, 

and we denote their densities hl(Ul;/~1) and gl(Vl) for /~1 , --1 = ~1E1 [1/2.  For Y 
and $2, let u2 and v2 be defined similarly as 

2 2 
U 2 ~ Xp(A2) and v2 ~ X~-p+x 

with densities h2(u2; A2) and g2(v2) for A2 , --1 =  222  2/2. 
We observe that  

E 
+ y~s~ly  

[ O(Y'S21Y) ] - m-p-ll E tr(aoS2E~ -1) + y~s~ly  Y'E~IY 

m - p - 1  
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and that 

[lo~ (oo~ ~'~'/~1~1~1] + yis~l Y 

:E[log]~ll~l]]ao~2~21t]~-E [log{1-~ (~2)/ao}] . 

Hence the risk difference is written by 

R(~, Ao) - R(~, ±+) 

~{~ 
= ¢' z2 m - p - 1 

• v2 - -  [ ~  h2(v2x; A2)dxdv2dz2, 
Jo 

~ !~+~ ~] -P  1 ¢ ( t u 2 ~ -  log { 1 +  } }  
- \ v2  / a o  \ v2  / 

1 } 92 (v2) 
ao + ¢(z2) 

which can be shown to be nonnegative by the same arguments as stated in the 
previous sections. [] 

PROOF OF THEOREM 5.2. We first note that 

1 (1 ] 
-]- tr W22 W21W12 1/311.2 

~771.2 2/)11 

[ 1 W12W222W21] 
= E - -  + tr W2~ 1 + W11.2 

Wll.2 Wll.2 1{~1 } 
- - + p - 1  . 

m --p W11.2 

Each term in the risk function of/k+,¢ is evaluated as follows: 

=Tt'/~ [7/3 (~11.2) t r W - i  ] 

- -  \ - - + p - 1  , 
~rt--p 
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Hence  t h e  r i sk  d i f fe rence  is r e p r e s e n t e d  b y  

[ffl°~ d { n ( m - I  ) ( ~ 
= E  5 m T p -  p ~ - 1  + p - 1  ¢ t u l  \ v l /  

-(P-l)l°g~)(tUl~\ Vl]  - l ° g ( @ ( t U l ~  Vl]  

> ¢ ' ( w l )  n m -  1 + p - 1  p -  1 1 

-- ~)(Wl) ¢ ( W l )  + bo 

• v , v , ( v , )  
Jo 

} 

w h i c h  can  b e  p r o v e d  to  be  n o n n e g a t i v e  a n d  t h e  p r o o f  is c o m p l e t e .  [] 
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