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A b s t r a c t .  The  es t imat ing  equat ions derived from minimising a L2 dis tance 
between the empir ical  d i s t r ibu t ion  function and the pa ramet r i c  d i s t r ibu t ion  
represent ing a mixture  of k normal  d is t r ibut ions  wi th  possibly  different means 
a n d / o r  different dispers ion pa ramete r s  are given explicitly. The  equat ions are 
of the  M es t imator  form in which the ~ function is smooth,  bounded  and 
has bounded  par t i a l  derivatives.  As a consequence it is shown tha t  there  is a 
solut ion of the  equat ions which is robust .  In par t i cu la r  there  exists a weakly 
continuous, Fr6chet differentiable root  and hence there  is a consistent  root  of 
the  equations which is a sympto t i ca l ly  normal.  These es t imat ing  equat ions offer 
a robust  a l ternat ive  to the  max imum likelihood equations,  which are known to 
yield nonrobus t  es t imators .  

Key words and phrases: Influence function, weak continuity,  mixtures  of nor- 
inals, F%chet  differentiabili ty,  consistency, a sympto t i c  normali ty,  selection 
functional,  min imum dis tance es t imator .  

1. Introduction 

T h e r e  is a s u b s t a n t i a l  l i t e r a t u r e  c o n c e r n i n g  t h e  e s t i m a t i o n  of  p a r a m e t e r s  in a 

m i x t u r e  of  n o r m a l  d i s t r i b u t i o n s  

(1.1) 

k 

j = l  

Here  

i • (x)  = ¢ ( y ) a y ,  
O O  

1 
¢(Y) = ~ e x p ( - y 2 / 2 ) ,  

k 
~ j = l e j  = 1, a n d  0 E O is t h e  v e c t o r  of  t h e  3 k -  1 p a r a m e t e r s  e l , . . . , e k - 1 ,  

>1, • • - ~ #k ,  Crl, • • •, crk w h i c h  a re  to  be  e s t i m a t e d  on  t h e  bas i s  of  t h e  s a m p l e  X1, X2,  
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. . . ,  X~. We assume that mixing proportions are positive and component distri- 
butions are distinct. Comprehensive accounts of mixtures can be found in Everitt 
and Hand (1981), and Titterington et al. (1985) whilst McLachlan and Basford 
(1988) pay particular attention to the fitting of finite mixture distributions. 

Our concern is with the robust estimation of 0 using a combination of the 
methods of Clarke (1983, 1989) and Heathcote and Silvapulle (1981). In particular 
0 will be estimated by minimising 

C (1.2) & ( 0 )  = { F ~ ( x )  - F ( ~ ;  O)}~d~, 
o o  

where F~(x) is the empirical distribution function of the sample. It will be shown 
that this yields a bounded influence function estimator that is weakly continuous 
and Fr~chet differentiable. Consequently there is a robust estimator minimising 
(1.2), obtained by solving (2.7) below, that is consistent and asymptotically nor- 
mally distributed. 

Quadratic distances of the form (1.2) seem to have been first used generally for 
parametric estimation by Kniisel (1969) and in the case of mixture distributions 
by Choi and Bulgren (1968). A succinct discussion is given in Section 4.5 of 
Titterington et al. (1985). It is easily checked that maximising the likelihood in 
(1.1) leads to estimating equations that contain unbounded terms as well as being 
analytically complicated whereas minimum distance estimation has advantages in 
both respects. 

2. The estimating equations 

Minimising Jn(O) of (1.2) leads to 

// (2.1) (o /oo)&(o)  = - 2 ( F ~ ( ~ )  - F ( x ;  0 ) ) { ( 0 / 0 0 ) F ( ~ ;  O)}d~ = o, 
o o  

which, on integrating by parts, is 

/if (2.2) n -1 { (O/08)F(y;  O)}dy - {(O/O0)F(y;  O)}dydF(x;  O) = O. 
1 = 1  o o  o c  c ~  

It is convenient to first consider the k - 1 derivatives with respect to the mixing 
proportions 

(a/a~{)E(x; e) = ¢{(~ - ,{)/~{} - ¢{(~ - ,k)/~k}, i = I,..., k - i. 

Let 

f Aik (x, 8) = (O/Oei)F(y; O)dy, 
o o  

which is 

- -k¢{(~ - ;;k)/~k} + (~k -- ~O¢{(x -- ~0/~}. 
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The identities 

(2.3) 

(2.4) 

f? ¢{(x - #d/-d*{(~ - ~;)/.;}dx 
O0 

O'j 

yield the following result concerning derivatives with respect to q,..., %-i: 

LEMMA 2.1. 

C s ( 0 ; j , i , k )  = ~/l¢{(x-..)/.5}Ai~(x,O)dx 
O O  

Thus for instance (2.2) will involve terms 

EofAi~(x, 0)1 = ~ ~j [B(0; j, i, ~) - B(0; k, i, k)l + B(0; k, i, k )  
j = l  

Terms involving partial derivatives with respect to #i use (2.4) to give 

(2.5) 

k-1 

j = l  

= e iCi , k (O)  say. 
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Similarly it follows from (2.3) that  terms involving partial  derivatives with respect 
to ~i lead to 

(2.6) Eo [/X_oo(O/&7~)F(y;O)dy] 

k--1 

j=l 

= eiD<k(8) say. 

Combining these calculations gives the est imating equations 

IZ  

i=1 

details of which are as follows: 

THEOREM 2.1. Let I b ( x ; 8 ) =  (¢ 1 (x ;8 ) , . . .  , !b3k-l (x;8)) '  be given by 

k - 1  

1hi(x; 0) : Aik(x,8) - B(O;k,i,k) - ~ - ' e j {B(&j , i , k )  - B(e;k,i,l~)}; 
j = l  

i =  1 , . . . , k - I ,  

i '=2<... ,3k-1; i = i ' - 2 k + l .  

Then the estimator of 0 obtained by minimising J~(8) of (1.2) satisfies (2.7). 

3. Boundedness of the influence function 

As in the development of Hampel  et al. (1986) let T(F~) be the functional 
est imating the parameter  T(Fe) = 8. Dependence on the parameter  8 will be 
indicated by writing F = Fe. Then in a s tandard  notat ion the influence function 
is 

IF(x,  Fe) = lifo [T{(1 - e)Fo + e6,} - T(Fo)]/q 

which (see p. 230 of Hampel  et al.) in our case can be wri t ten as 

(3.1) IF(x,  ,we) = - M ( 8 ) - l ~ b ( x ;  8), 

where M(8)  = ue{(a/as) (x; 8)}. Clearly the function ~(x;  8) of Theorem 2.1 is 
bounded in the observation space variable for any 8 that  is the parameter  vector 
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of a non-degenerate mixture distribution. Consequently the influence function of 
(3.1) is bounded, provided the matr ix  M(O) is nonsingular. 

LEMMA 3.1. Assume that there does not exist a nonzero vector b' = (bl, . . . , 

b3k-1) such that 

3 k - 1  

(3.2) b'(O/OO)F(~; 8) : ~ b~(O/OO~)r(~; 8) = 0 .for every ~ • (-oo, o0). 
/ = 1  

Then for 0 E 0 the matrix  M(O) is nonsingular when ~ is given by Theorem 2.1. 

PROOF. From the construction of ~(x;  0) see tha t  

2 ~(0) = ~ . . . ~ d e t [ M ( 0 ) ]  

where det denotes determinant.  The matr ix  on the left has elements 

F ;~,~(o) : { (o /oo , )F(v;  o ) } { ( o / o o ~ ) F ( v ;  o)}~F(v;  8). 
O<9 

Given an arbi t rary nonzero vector b there is an x for which 

Ib'(0/00)F(x;  0)l = ~(x; 8) > 0, 

by condition (3.2). The function ~(x;8) is continuous and there exists a 5 > 0 
such tha t  r/(y; 8) _> rl(X; 8)/2 for y C [x - & x + 5]. Then sett ing 5(8) = (Al,,~(0)) 
it follows tha t  

F b'a(O) b = ] b ' (0 /00)F(y;  0) 12dF(y; 0) 
oo 

>_ (rl(X ,O) /2 )2{F(x  + (5;8) - F ( x  - 5;0)} > O. 

This implies the matr ix  A(0) is positive definite, and consequently M(O) is non- 
singular. 

Condit ion (3.2) requires in particular tha t  no two component  distributions 
• { ( x -  #i)/cri} be the same. It is perhaps stronger than  but  linked to identifiabil- 
ity. Discussion of identifiability for finite mixtures can be found in Section 1.5 of 
McLachlan and Basford (1988) and Section 3.1 of Ti t ter ington et al, (1985). On 
a related issue Aitkin and Rubin (1985) invoke an ordering el >_ e2 >_ . . .  _> ek as 
a way of identifying the k components to avoid a lack of identifiability caused by 
permutat ions of the components.  
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4. Weak continuity and Fr6chet differentiability 

There may be more than one solution of equations (2.7). A more precise 
definition of the functional T is then achieved by invoking a selection functional 
po(G,T) defined on g x (~. To do this, for any distribution function G E g, let 
S(¢,  G) be the set of solutions of 

F (4.1) ~(x, ~-)dG(x) = O. 
o o  

The functional T, which depends on both F/and P0, is defined via 

inf Z0(G, ) =¢0(a, TE ,p0, G]) 

If S(~), G) is empty then T[~, n0, G] = +oc. The selection functional discussed in 
Clarke (1991) may be the loss function from which equations (2.7) are derived or 
some auxiliary criteria. The L2-distance estimator is achieved by choosing 

F n 0 ( G ,  7 )  = - 
o o  

and ~ given by Theorem 2.1. This choice of selection functional is not easily 
computed, even in the case of po(F~, T) = J~(0). But it is not necessary to choose 
P0 such that 9(x,  T) = (O/O~-)po(G, ~-) as above. For example, one of the multiple 
roots (if this should be the case) of moment equations of the form (2.7) is selected 
on the basis of alternative sample based criteria. This is done by several authors 
listed on p. 76 of Titterington et al. (1985). Criteria for selection functionals 
include relative closeness of fitted higher moments to the sample versions, )~2 
goodness of fit statistics, and the likelihood. 

Moreover local asymptotic theory for the root of (2.7) can be established 
using the auxiliary selection functional p(G, T) = lit -- 0/I where I1" II is the usual 
Euclidean norm. Using ¢ defined by Theorem 2.1 it is shown that TIC, p, F~ 1 is 
an estimator satisfying Hampel's (1971) definition of robustness. It is enough to 
show T[~, p, "1 is continuous at Fo with respect to the Prokhorov metric, given by 
dv(F , G) = inf{6 : F(A) <_ G(A 5) + 6 for all events A}, where A ~ is the set of all 
points whose distance from A is less than 5. 

THEOREM 4.1. Let ~(x;0)  be given by Theorem 2.1 and assume M(O) is 
nonsingular for a given 0 E @. Given ~ > 0 there exists a 6 > 0 such that 
dp(Fe, G) < 6 implies T[~,p, G] exists and is such that IIT[~,p,O l - 01] < ~. 
Further for this 6 > 0 there is a ~* > 0 such that if U~,(O) C (9 is the ball of 
radius ~* about 0, then S(~, G) ~ U~. (0) = T[W/, p, O]. For any null sequence of 
positive numbers {6k} let Gk be an arbitrary sequence for which dp(FO, Ck) ~ Ek. 
Then 

lim T[O , p, Gk] = T[~, p, Fo] = O. 

Theorem 4.1 follows from Theorem 3.2 of Clarke (1983). We need to show Con- 
ditions A(1-4) of that paper are satisfied for the particular choice of ~. Condition 
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A1 requires Eo [~(X; 0)] = 0. This is seen by taking expectations of equations (2.1), 
and interchanging integration and expectation. Condition A2 is satisfied since it 
is easily checked that both 0(x, ~-) and (O/Or)~b(x, T) are uniformly bounded func- 
tions on some compact set D contained in the interior of O and containing O in 
its interior. Aa requires M(O) to be nonsingular. Remark 6.2 of Clarke (1983) 
guarantees Condition A4 holds with respect to the Prokhorov metric. 

Theorem 4.1 gives weak continuity and consequently robustness of the func- 
tional TI1b , p, .]. In addition it specifies uniqueness of a solution of equations (4.1) 
in a region U~. (0) for small enough Prokhorov neighb0urhoods of Fo. An imme- 
diate corollary implies existence of a unique consistent root of the equations (2.7) 
since Varadarajan (1958) proves that F~ converges weakly to Fo almost surely, 
whereupon a result of Prokhorov (1956) gives that dp(F,~, Fo) ~ 0 almost surely. 

COROLLARY 4.1. Let X ~ , . . . , X ~  be independent identically distributed ac- 
cording to the distribution Fo given by (1.1). Then there exists a ~* > 0 such that 
T[g;, p, F~] exists and is unique in U~. (0). Moreover 

lIT[V, p, G ]  - 011 -~ 0 almost s~rely. 

Kiefer (1978) proved a similar local convergence result for a solution of the 
likelihood equations though such a solution does not enjoy properties of robustness. 

Theorem 1 of Hampel (1971) says that the weak continuity of the functional 
T[o,p,.]  at a distribution Fo together with the continuity of each T~ (consid- 
ered as a function of the sample) implies the robustness of {T~} at Fo. Since 
T~ = T[O, p, F~ 1 satisfies (2.7) it follows that it is a continuous function of the 
observations whenever 

(4.2) 

is nonsingular. This follows even if F~ is generated from a G in a small Prokhorov 
neighbourhood of Fo (Prokhorov (1956)) since dp(F~, G) --+ 0 almost surely. By 
the triangle inequality this implies that for all sufficiently large n, dp(F,~, Fo) is 
small and then the weak continuity of T[%b, p, .] and Lemma 3.1 of Clarke (1983) 
imply that the matrix (4.2) is nonsingular. Note that in addition to the continuity 
of T with respect to the Prokhorov distance we have the differentiability of T with 
respect to the Kolmogorov distance. 

THEOREM 4.2. Let 0 be given by Theorem 2.1 and assume M(8) is non- 
singular at 8 E (9. Then T[~b, p, .] is Frdehet differentiable at Fe with respect to 
the Kolmogorov distance metric on ~. That is 

liT[o] - T[Fe] - T'F(O - Fo)ll = o(d~(Fe, C)) 

as dk(Fe, G) = s u p _ ~ < x < ~  IV0(x) ¢ ( x ) l - +  0. The derivative is given by 

~-~ ( c  - F)  = - ~ ( e )  -~ v(x;  e)d(C - _%)(x). 
( ) O  
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Since Conditions A of Clarke (1983) are met with respect to the Kolmogorov 
metric and ~(x;0) is a function of total bounded variation in the observation 
space variable (it is a linear combination of exponential densities and normal dis- 
tributions) this result follows from Theorem 5.1 of that  paper. Note that  the 
influence function (3.1) is obtained by evaluating the F%chet derivative T' Fo at 
the difference 5x - Fe. From Section 2.5 of Huber (1981) and noting that 
o(dk(Fn, Fe)) = op(1) as a consequence of the Dvoretzky-Kiefer-Wolfowitz in- 
equality (Theorem 2.1.3A of Serfling (1980)), the following corollary to Theorem 
4.2 results. 

COROLLARY 4.2. Assume the conditions of Corollary 4.1. Then ~/~(T[%p, 
F~] - O )  converges in distribution to a multivariate normal random variable with 
mean zero and variance covariance matrix ~2(T, Fo) where 

F 0-2(T, fO)  = .~//(0) - 1  @(x; O)~(x; O)'dFo(x){AJ(O)-l} t. 
O4) 

Here integration is carried out componentwise. 

5. Simulation results 

We report a small scale simulation that illustrates the performance of the L2 

estimator of the mixing parameter e. The case considered was (i.i) with k = 2 and 

all five parameters to be estimated. One hundred samples each of size n -- 200 were 

generated from seven parent distributions whose parameters are listed in Table i. 

These are the same parameter configurations as those used by Clarke (1989) when e 

was the only parameter to be estimated. Table I gives the mean squared errors over 

the i00 samples for the L2 estimate e* and for the maximum likelihood estimate en. 

In both cases, (2.7) with the appropriate choice of ~b was solved iteratively using 
a routine written by Powell and described in Rabinowitz (1970). Non convergent 
attempts at solution were discarded and it is believed that  this has not favoured 
either of the two procedures. There were more non convergent cases when using 
maximum likelihood, even if the initial values were the true parameter values. 
This indicates the relative stability of the L2 estimator. The parameter sets were 
chosen as in Clarke (1989) and the first six were characterised by having mixture 
densities whose components are close together in the sense that  the difference in 
means #1 - #2 is small or moderate relative to the standard deviations. For such 
parameter configurations Table 1 illustrates the generally superior performance of 
the L2 estimator of e, dominating maximum likelihood in five of the sets and being 
comparable in the others. With wider separation maximum likelihood is expected 
to dominate and this is supported, though marginally-, by parameter set (7). 

The relatively good performance of the L2 estimator was maintained when 
estimating the other components of the parameter vector. Briefly, the average over 
the seven parameter sets of the relative mean squared error of the L2 estimator to 
the maximum likelihood estimator was found to be: 0.60 for #1, 0.50 for #2, 0.86 
for al and 1.31 for or2. 
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Table 1. Mean squared errors of e* and in from 100 samples each of n = 200 from (1.1) with 
= 2 and seven parameter sets as listed. 

Parameter set 

(1) (2) (3) (4) (5) (6) (7) 

e 0.75 0.50 0.75 0.50 0.50 0.50 0.50 

~1 -1.00 -1.00 -1.00 1.00 0.00 -1.50 -5.00 

#2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0-1 1.00 1.00 2.00 1.00 1.00 1.00 1.00 

0-2 1.00 2.00 1.00 1.00 2.00 1.00 2.00 

Mean squared errors 

* 0.0147 0.0266 0.0261 0.0189 0.0581 0.0220 0.0012 C n 

in 0.0278 0.0325 0.0518 0.0639 0.0441 0.0504 0,0011 

Table 2. Mean squared errors of E~ and in from 100 samples each of n = 200 from mis-specified 
(1.1) with a mixture of k = 2 ~(5) distributions in place of the mixture of normals. Parameter 
sets are as in Table 1. 

Parameter set 

(1) (2) (3) (4) (5) (6) (7) 

Mean squared errors 

e* 0.0113 0.0259 0.0179 0.0356 0.0379 0.0289 0.0005 

is 0.0423 0.0495 0.0396 0.1544 0.0497 0.0927 0.0013 

O n e  a d v a n t a g e  of  us ing  e~ i n s t e a d  of  t h e  m a x i m u m  l i ke l i hood  e s t i m a t o r  is 

t h e  a b s e n c e  of  s i ngu la r i t i e s ,  a n d  a t t e n d a n t  n u m e r i c a l  p r o b l e m s ,  as m a y  o c c u r  

in t h e  l i ke l i hood  su r face  ( T i t t e r i n g t o n  et al. (1985)) .  R o b u s t n e s s  c o n s i d e r a t i o n s  

a re  a lso  re levan t .  S u p p o s e  for e x a m p l e  t h a t  d a t a  o r i g i n a t e d  f rom a m i x t u r e  of  

d i s t r i b u t i o n s  r a t h e r  t h a n  t h e  p u r p o r t e d  m i x t u r e  of  n o r m a l s .  T a b l e  2 gives  t h e  

m e a n  s q u a r e d  e r ro r s  of % a n d  g~ for a m i x t u r e  of  k = 2 ~ d i s t r i b u t i o n s  w i t h  5 

degrees  of  f r e e d o m  a n d  m e a n s  a n d  v a r i a n c e s  in t h e  seven cases  as  for T a b l e  1. 

C l e a r l y  t h e  L2 e s t i m a t o r  ou t  p e r f o r m s  t h e  m a x i m u m  l i ke l i hood  e s t i m a t o r  in th i s  

case.  

6. Conclusion 

I t  is o b s e r v e d  in C l a r k e  a n d  H e a t h c o t e  (1978) t h a t  m a n y  m i n i m u m  d i s t a n c e  
e s t i m a t o r s  can  be  e m p l o y e d  in e s t i m a t i n g  p a r a m e t e r s  in m i x t u r e s  of  n o r m a l  dis-  
t r i b u t i o n s .  T h e  p a r t i c u l a r  L2 d i s t a n c e ,  J~ (0 ) ,  y ie lds  M - e s t i m a t i n g  e q u a t i o n s  

w i t h  b o u n d e d  ~ func t i ons  for t h e  m o d e l  (1.1).  T h e s e  e s t i m a t o r s  have  r e a s o n a b l y  
h igh  r e l a t i v e  eff ic iency w h e n  e s t i m a t i n g  p a r a m e t e r s  f rom r e l a t e d  d i s t r i b u t i o n s  as 

is n o t e d  in H e a t h c o t e  a n d  S i lvapu l l e  (1981) a n d  C l a r k e  (1989).  T h e r e  is also 
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the advantage over characteristic function methods, as proposed by Bryant and 
Paulson (1983), in not requiring knowledge of parameters 0 to choose optimal 
weighting functions. This would be cumbersome when attempting to estimate all 
components of 0 simultaneously. The estimator proposed in this paper has obvious 
advantages over the moment generating function estimator of Quandt and Ramsey 
(1978), as discussed in Clarke (1989). 

A quantity that is easily calculated is the CramSr-Von Mises distance 

J: (6 .1 )  po(F~, 7)  = { E ~ ( z )  - F~(x)}2dF~(x) 
OO 

: n-l~l [FT(X(i)) - { ( i -  ~)/7~}]2-~- (12n2) -1, 

where X(i) is the i-th order statistic. Woodward et al. (1984) minimised this dis- 
tance to estimate the parameters of a mixture of two normal distributions and 
showed through simulations that the estimator performed well when component 
populations deviated from normality. This distance is well known for its role as a 
goodness of fit statistic, as in D'Agostino and Stephens (1986). For these reasons 
we advocate the combination of the ~b-function of Theorem 2.1 and the selection 
statistic of (6.1) in determining parameters. Theorem 4.1 and Corollary 4.1 in- 
dicate existence of a robust unique consistent root of equations (2.7) in a local 
neighbourhood of 0. Numerical nonlinear equation solving routines can be em- 
ployed starting from suitable initial estimates from within that neighbourhood. 
If multiple roots are determined from several searches then the root which min- 
imises (6.1) is selected as the estimator. This avoids the problem of calculating 
the distance J~(O) which may also be sensitive to outlying observations. 
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