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A b s t r a c t .  We consider the problem of minimum risk point estimation for the 
parameter 0 = ap + bG of the exponential distribution with unknown location 
parameter p and scale parameter ~ when the loss function is squared error plus 
linear cost. In this paper, we propose a sequential estimator of 0 and show that 
the associated risk is asymptotically one cost less than that given by Ghosh 
and Mukhopadhyay (1989, South African Statist. d., 23, 251-268). 
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1. Introduction 

Let X1, X 2 , . . .  be independent  and identically dis t r ibuted (iid) r andom vari- 
ables with the common probabil i ty  density function (pdf) 

(1.1) 

where # E ( - e c ,  oc) and ~r E (0, oc) are assumed to be unknown parameters ,  and 
[ (A)  denotes the indicator function of A. In this paper  we consider the problem 
of sequential point est imation for the pa ramete r  0 = a#  + b~r with 1 _< a < oc 
and 0 < b < oc being known constants.  As the loss function, we consider the 
squared error plus the linear cost of sampling. Mukhopadhyay  (1987) t r ea ted  the 
case where a = b = 1, tha t  is, the mean  of the distr ibution (1.1). Mukhopadhyay  
and Ekwo (1987) discussed this problem for the scale pa ramete r  or. When  we take 
a = 1 and b = - log(1 - p) for a given p E (0, 1) 0 is the p- th  percenti le of (1.1). 
In the case of this paper,  Ghosh and Mukhopadhyay  (1989) have developed the 
second order expansions for the risk and the regret.  In this paper,  we modify the 
sequential es t imator  of 0 proposed by Ghosh and Mukhopadhyay  (1989) and show 
tha t  the risk associated with this modified es t imator  is one cost less t han  tha t  
given by Ghosh and Mukhopadhyay  (1989) when the cost is sufficiently small. In 
Section 2 the results are presented. Proofs  of the results are given in Section 3. 
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2. The results 

In this section, we propose a modified sequential est imator of 0 = a#  + bcr 
(1 < a < oc, 0 < b < oc) where # and cr are assumed to be unknown and show 
tha t  the risk associated with the modified sequential est imator is asymptotical ly 
one cost less than  tha t  given by Ghosh and Mukhopadhyay (1989). 

Let 0~ = O ~ ( X 1 , . . . , X ~ )  be an estimator of 0 based on a sample X 1 , . . . , X ~  
with the pdf  f~,~(z) of (1.1). We suppose tha t  the loss incurred in est imating 0 by 
0n is given by L~(e) = A ( O ~ -  0) 2 +cn  where A and c are known positive constants 
and c plays the role of cost per unit sampling. We call R~(c) = E{L~(c)}  the risk 
associated with 0~. Let T~ = r a in{X1 , . . . ,  X~} and s~ = ( n -  1) -1 }-~i~ l (Xi - T ~ )  
for n >_ 2. Ghosh and Mukhopadhyay (1989) considered the unbiased est imator 
0~ of 0 defined by 

(2.1) On = a(T~ - n - l s ~ )  + bs~. 

The risk associated with 0~ is 

l~n(c) = Acr2{b2n 1 q_ (a - b)2rt- l(n - 1) -1 } d- cn 

which is minimized by n = no assuming for simplicity tha t  no is an integer. On the 
other hand,/~,~(c) = A~2b2n -1 + c n  is minimized if we take n = n* = (Ab2/c)l/2¢r 
where n* is assumed to be an integer. Then R~(c) is approximately equal t o / ~ ( c )  
for sufficiently large n. By the way cr is unknown, so there does not exist any fixed 
sample procedure which m i n i m i z e s / ~  (c). Thus we consider the following stopping 
rule. Let 

(2.2) N = N~ = inf{n _> m :  n > (Ab2/c)l /2s~} 

where rn (> 2) is the start ing sample size. 
We shall first give the result concerning the bias of the sequential est imator 

ON of 0 where 0~ and N are given in (2.1) and (2.2), respectively. 

PROPOSITION 2.1. ]f rn > 3 then we have 

(2.3) E ( 0 N )  = 0 - ( c /A )  ~/2 + 0 ¢  1/2) as ~ -~  0. 

Now, taking account of Proposition 2.1 we propose the sequential es t imator  0N 
of 0 defined by 0N = ON + (c/A)1/2. From (2.3) 0N is a second order asymptotical ly 
unbiased est imator of 0. Let R*N(C ) = AE{(ON -- 0) 2} + c E ( N )  which is the risk 
associated with 01v. We note tha t  R~o(C ) = min{Rn(c) : n k 2}. The following 
proposition presents the second order expansion of the risk R~v(C ). 

PROPOSITION 2.2. I f  rn > 4 then we have 

(2.4/  ~ ; ~ ( c / =  2 ( A ~ / % ~ / c  1/2 + ~(a 2 + 3b 2 - 2ab / /b  2 + o(~) 
and 

as c ---+ O 
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(2.5) R ; ~ ¢ ) - R ~ 0 ( c ) = 2 c + o ( c )  a~ ~ - ~ 0 .  

Let RN(C) = AE{(ON - 0) 2} + c E ( N )  which is the risk associated with ON 
given by Ghosh and Mukhopadhyay (1989). The following theorem shows tha t  the 
risk R*x(c ) is asymptotical ly one cost less than  Rx ( c ) .  

THEOREM 2.1. Let A = 1. I f  m >_ 4 then we have 

n ~ ( e )  - RTv(~) = c + o(~) a~ c -~ o. 

Remark 2.1. Ghosh and Mukhopadhyay (1989) considered the case A = 1. 

3. Proofs 

In this section, we shall give the proofs of the results in Section 2. Let 
W ~ , W 2 , . . .  be iid random variables with the pdf  f0,~(x) in (1.1). Set S~ = 
}-~-~1 Wi, Q = inf{n _> m - 1 : n(n  + 1)/n* _> S~} and WQ = SQ/Q throughout  
this section. 

LEMMA 3.1. It holds that 

(3.1) 

and 

(3.2) 

E ( ~  - ~ )  = E ( . W Q  - . )  

E{(SN - -  cr)/N} = E{(cr~VQ - cr)/(Q + 1)}. 

PROOF. Let Y~ = ( n -  i +  1 ) (Xn({) -  X~({_~)) for 2 _< i _< n where 
X~(1) < . .-  < X~(n) are the order statistics of X 1 , . . . , X ~ ,  and let Z~ = ~W~ 
for n > 1. Define N* = inf{n _> m(_> 2) : n ( n -  1)/n* > S~ 1}. Since 

n n- -1  Y = {~-~=2 Y~, n > 2} has the same distribution as Z = {~ i=~  Z~, n 2 2} 
due to Lombard and Swanepoel (1978), and s~ = (n - 1) -1 }-~;i~=2 Yi~, N in (2.2) 
has the same distr ibution as N*. Thus by use of these results, the definitions of 
N and N* and the fact tha t  N* = Q + 1 we can show tha t  for each x > 0 and 
each n (_  m) with P { N  = n} > 0 

(3.3) P{s~  < x I N  = n} = P{crWn_l  < x I Q = n -  1}. 

Hence, taking (3.3) and the identi ty of the distributions of N and Q + 1 into 
consideration, we obtain (3.1) and (3.2). Thus the proof of the lemma is complete. 

[] 

PROOF OF PROPOSITION 2.1. It is clear tha t  

(3.4) E ( 0 N  -- 0) = a E ( T ~  - N - b N  - ~)  + b E ( ~ N  - ~) .  

Since Tn and { s 2 , . . . ,  s~} are independent,  E(T~) = p + a / n  for every fixed n _> 2 
and P { N  < oc} = 1 we get tha t  E(TN - p) = ~n~=~ E{(T~ - p ) I ( N  = n)} = 
E ( ~ / N ) ,  which, together with (3.4), implies 

(3.5) E ( 0 N  - 0) = - - a E { ( s N  -- ~ ) / X }  + b E ( s N  - ~) .  
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By the definition of 0 we can show tha t  E ( Q  ) < oc, so it follows from Wald's 
lemma tha t  E(SQ)  = E(Q) ,  which yields 

(3.6) E ( ~ W Q  - ~)  

= ~ z { ( s Q  - 0 ) ( 1 / 0  - l / n * ) }  + ( ~ / ~ * ) z ( s Q  - O)  

= ~ E { ( S Q  - 0 ) ( 1 / 0  - i / n * ) ) .  

Set R~ = (Q + 1)Q/n* - SQ. Then by (3.1) and (3.6) we obtain 

(3.7) E(sN - or) = ~rE{(SQ - O)(O - O 2 / n * ) / Q  2 } 

= ~ E [ ( S Q  - 0 ) { - ( S Q  - O - O / ~ *  + n c ) } / O  ~] 

= ( ~ / ~ * ) z ( z ~ )  

where Y~ = (n*/Q)[{- (SQ - Q)2 + Q(SQ. - Q) /n*  - (So  - Q)R~}/Q]. From 
Theorems 2.1 and 2.2 of Woodroofe (1977) we get Ro ~ H as c ~ 0 where "-~" 

d d 
stands for convergence in distribution, the distribution of H is given in Theorem 
2.1 of Woodroofe (1977) and E ( H )  = 1 - D if we take D = ~ - - 1  n - I E ( S ~  - 

2n) +. Since Q ~ oc as c ~ 0 we have by the strong law of large numbers tha t  
a.8. 

(SQ - Q ) / Q  ~ 0 as c ~ 0 where " ~" denotes almost sure convergence. On 
a.8. a.8. 

the other hand, it can be shown tha t  Q/n* ..... > 1 as c --~ 0 and we apply Corollary 
a.8. 

1.4 of Woodroofe (1982) to have (Sc2 - 0 ) / Q  1/2 ~ X(0, 1) a s  C ~ 0. Thus from 
d 

these results we obtain 

(3.8) Y~ ~ -X~ as c --, 0 

where X~ denotes the chi-square distribution with one degree of freedom. Let 
Q,  = ( Q _  n , ) / (n , )~ /2  and Z~ = ( n * ) - V 2 ( S Q -  Q)(n*/Q)Q*.  We shall here show 
the uniform integrability of {Zo, c _< co} for some co > 0. Let 5 > 1 be a constant.  
By HClder's inequality, we have 

(3 .9)  E[Zcl  5 ~ { E ] 0 2 * ) - x / 2 ( ~ Q  - O ) ] 1 1 5 } l / l l { E ] ( n * / O ) O * I I 1 5 / l ° }  10/11 

{ ~ [ ( ~ , ) - 1 / 2 ( ~ Q  _ 0 ) [115}1 /11  

. {E(n, /Q)3a~/20}20/33{EiQ,  ]33~/10}10/33. 

It follows from Lemma 2.1 of Ghosh and Mukhopadhyay (1989) tha t  for any fixed 
> 0 { (n* /Q)  n, c <_ co} is uniformly integrable for some co > 0 if rn > rl + 1. 

By Theorem 2 of Chow et al. (1979) {I (n*)- I /2(SQ - Q ) ] n , c  << co} is uniformly 
integrable for any fixed ~/ > 0 if rn _> 2. From Theorem 2.3 of Woodroofe (1977) 
([0"[ 99/25, C ~ C0} is uniformly integrable if rn _> 3. Hence from the above results 
and (3.9) with 5 = 6/5 we have the uniform integrability of {Zc, c _< Co}. Since 
Yc = - Z ~  {Yc, c << co} is uniformly integrable. Thus by (3.7), (3.8) and this result 
we get 

(3.10) b Z ( s N  -- ~) ---- - b ~ / ~ *  + 0 (1 /~*)  

= - ( c / A )  1/2 -~ o(c 1/2) as c --~ O. 
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It is clear that  

(3.11) 

and 

(3.12) 

E{(c~WQ - o ) / ( Q  + 1)} = (c~/n*)E[{n*/(Q + 1)}{(SQ - Q)/Q}]  

{ n * / ( Q  + 1)}{(SQ - Q ) / Q }  ~ 0 as c --* 0. 
a . 8 ,  

Next we shall show the uniform integrability of { ( n * / ( Q + I ) ) ( ( S Q - Q ) / Q ) ,  c < co}. 
By use of H61der's inequality and the fact tha t  Q > 1 we get tha t  for ~ > 1 

(3.13) E[{n*/(Q + 1)}{(SQ - Q)/Q}]~ 
<_ EI(n*)-I/2(SQ _ Q)(n*/Q)3/21 ~ 
_< {E I (~* ) -~ /~ (SQ _ Q ) ? ~ } ~ / ~ { E ( ~ * / Q ) ~ / ~ } s / ~ .  

Hence from (3.13) with ~ = 7/6 { ( ~ * / ( Q  + 1))( (Sq - Q)/Q),  c < ¢o} is uniformly 
integrable. This result, (3.11) and (3.12) imply that  E{(crI~KQ - cr)/(Q + 1)} = 
o(1/n*)  = o(cl/2), which, together with (3.2), yields 

(3.14) E{(SN  - -  0-) / ]~} ---- 0@ 1/2) aS C --+ 0. 

Combining (3.5), (3.10) and (3.14) we obtain E(ON -- 0) = - ( c / A )  1/2 + o(c 1/2) as 
c --+ 0, which gives (2.3). Therefore, the proof  of the proposit ion is complete. [] 

PROOF OF PROPOSITION 2.2. By  the definitions o f /~v (c )  and RN(c)  we get 

(3.15) R~-(c) : /~N(c) 4- 2(Ac)I /2E(ON - O) + c. 

From Theorem 2.1 of Ghosh and Mukhopadhyay  (1989) one gets RN(C) = 
2(A1/2ba)cl/2 + c(a 2 + 4b 2 - 2ab)/b 2 + o(c) as c --~ 0 if rn _> 4, which, together 
with (3.15) and Proposi t ion 2.1, concludes (2.4). Since by simple calculations 
~no (C) = 2(A1/2bcr)cl/2 4- c(a 2 + b 2 - 2ab)/b 2 4- o(c) as c -+ 0, (2.5) follows from 
(2.4). Thus, the proof  of Proposi t ion 2.2 is complete. [] 

PROOF OF THEOREM 2.1. From (3.15) with A = 1 

(3.16) RN(c) - RTv(c) = - 2 d / 2 E ( 0 N  - 0 )  - c .  

Hence, combining (3.16) and Proposi t ion 2.1 with A = 1, the conclusion in Theo- 
rem 2.1 follows. 
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