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Abs t rac t .  Given a sequence of independent random variables with density 
f we estimate quantities 0 of the form 0 = f ¢(f(x))dx, ¢ a known function, 
by inserting histograms and kernel density estimators for the unknown f.  We 
obtain conditions for consistency and asymptotic normality and discuss the 
choice of cell size and bandwidth. 
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1. Introduction 

Let X1, X2, •. • be a sequence of independent and identically distr ibuted ran- 
dom variables with density f .  We wish to est imate a real-valued functional of 
f tha t  can be writ ten as the integral of a known function ¢ of f ,  i.e., we are 
interested in quantities of the form 

(1.1) 0 = / ¢( f (x))dx .  

We assume tha t  f is bounded and satisfies a weighted Lipschitz condition (see 
(2.1) below) and tha t  the known function ¢ :  [0, oc) + N is continuous and has 
a continuous and bounded second derivative on (0, oc); we need ¢(0) = 0 for the 
integral to exist. 

Problems of this and related type appear in a variety of situations. They are 
discussed in Section 4.4 of Prakasa Rao (1983) and in Section 6.5.2 of Silverman 
(1986). Following Prakasa Rao ((1983), p. 266) the case with ¢(x) = x 2 is 'of ex- 
treme importance in nonparametr ic  inference problems'; see also Bha t t acharyya  
and Roussas (1969), Schuster (1974), Ahmad (1976) and Jones and Sheather 
(1991) in connection with this functional. Other related references are Schweder 
(1975) and van Es (1992). 

Most authors deal with the est imator for 0 tha t  arises if a kernel density 
est imate is inserted for the unknown density in (1.1). In some situations the 
resulting est imator turns out to be v/~-consistent. This good asymptot ic  behaviour 
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may seem surprising on first sight, given that the estimate is based on a density 
estimator which is known to converge at a slower rate. Obviously, via the integral, 
random terms are added and some sort of 'stochastic cancellation' occurs. 

In the present paper we continue to consider estimators of 0 that  are of the 
above 'plug-in' type, but here the emphasis is on estimators that are based on 
histograms. Most papers on the case ¢(x) = x 2 exploit the special form of ¢ alge- 
braically. We will show that  analytic properties of ¢, such as those given above, are 
sufficient to obtain rate of convergence results and, moreover, asymptotic normal- 
ity (Theorem 2.1). We also consider kernel type estimators (Theorem 2.2) where 
we need slightly stronger assumptions on the local behaviour of f .  It is one of the 
main conclusions of this investigation that the choice of cell size (if histograms are 
used) or bandwidth (if we use kernel estimators) is much less important than in 
the density estimation context, a fact which has been observed by other authors 
too. Further, it appears that  the asymptotics for histogram based and kernel based 
estimators are identical. A possible practical consequence of our findings therefore 
is that, at least to the order considered here, there is no advantage in using the 
kernel method. Histogram-based estimators are, of course, easier to calculate. 

These results are given in Section 2. In the third section we briefly discuss our 
assumptions on ¢ and f .  

The methods of this paper can be extended to functionals of the form 

0 = / ¢(f(x))¢(F(x))r](x)dx 

where F denotes the underlying distribution function and •, f~ and r/are known; 
see Ahmad and Lin (1983) for applications and consistency of kernel type estima- 
tors of such quantities. Functionals that involve derivatives of f seem to require a 
different approach and will not be discussed here; see Chapter 4 of Prakasa Rao 
(1983) and Hall and Marron (1987), Bickel and Ritov (1988). 

2. Main results 

We first introduce some notation. For all n E N, 1 E 7/and h > 0 let 

: =  ((1 - 0 . 5 ) h ,  (z + 0 . 5 ) h i ,  
n 

{nhl := Z lIm(Xi) '  
i=l 

Phl := P(Xx e Ihz); 

here la denotes the indicator function of the set A. We define the estimator Onh 
of 0 by / 1 

0~h := ¢(fnh(x))dx where J~h := ~ ~nhIlihz. 

In words: {nm counts the number of X-values among the first n that  land in Im 
and fnh is the histogram based on the partition {Ira : 1 E 7/}. Note that  only 
finitely many cells are non-empty; in particular, the integral exists. The value 
0nh is obtained on using a histogram with cells of length h as an estimator of the 
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unknown density. In our results we let n tend to infinity and take h to depend 

Oil ?%. 
For our first result we assume tha t  f satisfies the following condition: there  

exists a ~ > 0 and a bounded  function g : R ~ R with f g(x)2dz < oc such tha t  

(2.1) ]f(x 4- y) - f(x)] <_ lylg(x) for a l l  x ~ R, lyl < ~- 

This will be satisfied if f has as bounded  derivative f '  with f '(x) = o(Ixl- ) as 
o~ for some ~ > 1/2. 

The following theorem gives conditions on the asymptot ic  behaviour  of the 
sequence of cell sizes {h~} which imply asymptot ic  normal i ty  of the histogram- 
based es t imator  of the density functional. An interesting aspect of this result  is 
the fact tha t  rate and limit variance are independent  of the choice of the sequence 
{h,~}, provided tha t  the sequence satisfies the asymptot ic  restrictions ment ioned 
earlier. 

The  theorem will be proved on using the theory  of empirical processes. Let  P 
be the dis tr ibut ion of X1 and let P~ denote  the empirical (probabili ty) measure 
tha t  assigns mass 1/n to each of X 1 , . . . ,  X~. Following empirical process conven- 
tions we write Q(9) for f 9(x)Q(dx). Let Z~ := ~fl~(P~ - P )  be the empirical pro- 
cess, indexed by (bounded,  measurable) functions g via Z~(9 ) = xf~(P~(g)-P(g)). 
We write <--+distr' for convergence in distr ibution and denote  the normal  distribu- 
t ion with mean # and variance o-2 by N(#, o-2). Note tha t  ¢'(f(X1)) is a bounded  
random variable. 

THEOREM 2.1. Under the above assumptions, if h4~ = o(n -1) and h~ 2 = o(n) 
as n --~ oc then 

~ ( O n h ~  -- O) --~distr N ( 0 ,  0 -2) with 0 -2 = va r (¢ ' ( f (X1) ) ) .  

PROOF. Fix n E N and / E 7/. Write h for h~ to avoid a flood of double 
indices and assume h _< (~. Expand  ¢ at phi~h: 

where zhl(y) is some number  between y and phz/h. Insert  f~h(x) for y and integrate  

over /hz: as f~h(x) is constant  on /hZ we get 

where ~nhl is a random variable with values between ~nhl/(nh) and Phl/h. Now 
insert f(x) for y in the above Taylor expansion and use fz~z (f(z) -phz/h)dz  = 0: 

~,z ¢ ( f ( x ) ) d x = h ¢ ' T ' + 5  hz - T /  
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We can now express the difference between es t imator  and t rue parameter  value as 
follows, 

(2.2) 
IcZ 

h Z 1 l i /  

+ 7 - ¢ (~hz)  lc2 

1 
h I ¢"(Zhl(f(x)))dx. 

Some care is needed with the in terpreta t ion of the sums as l ranges over an infinite 
set. For the first t e rm it is enough to note  tha t  only finitely many  of the ~h l 'S  are 
not equal to 0, tha t  ¢~ is bounded  on compact  intervals and tha t  the phl'S sum to 
a finite value. Below we will show tha t  the second te rm is of order op(n-1/2); the 
arguments  used for this imply Ll -summabi l i ty  of the second series for any fixed n 
and h. Similarly, the bound given below for its individual terms implies absolute 
summabil i ty  of the third series. 

Since ~nhl has a binomial dis tr ibut ion with parameters  n and PAl we obtain 
for the second te rm on the right hand side of (2.2), using ~-2~lPhl = 1, 

EE 
lEZ x>O ICZ 

From h~ 1 = o(n- ~/2) and Chebychev's  inequali ty we obtain the desired op (n-  112)_ 
behaviour.  

Note tha t  the third te rm on the right hand side of (2.2) depends on n th rough  
h only; also, no random terms appear  in tha t  term. Using (2.1) we get 

< h2 fz~ g(x)2dx 

so that 

~ h / ¢"(z~z (x ) )dx  

1 sup I¢"(x)lh 2 ig(x)2d~ = o(h~). 
<- 2 x>0 

Using the other  bound on h, h~ = o(n-U4), we see tha t  this t e rm too contr ibutes  

an asymptot ical ly  negligible amount  to x/~(O~h~ -- 0). 
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The asymptot ic  distribution of v/~(0nh~ -- 0) is therefore determined by the 
first term in (2.2): we can write 

x/n(~)~h,~ -- 0) : Z~(fJ~) + op(1) 

where ~b~ = Y~'~l~z ¢'(pt~l/h,~)11h~. Let fa~ := ¢ ' o f  and let 5 be the set of functions 
Cn, n c N U {co}. These are bounded and measurable functions on N. For such 
functions ~b the following norms are finite, 

I/~ll~ := sup I~(x)l ,  IIWlI2,P := ( p ( ~ 2 ) ) 1 / 2  II~kI2,~ := (Pn(~2)) ~/~. 
xc• 

We obviously have II~!l~,P -< IIWlI~, 11~112,~ _< I1~11~- In particular, 9 r is a subset 
of the L2-spaces associated with P and P~. 

We regard Z~ as a random quant i ty  with values in the space of bounded 
functions on b c and we plan to show tha t  Z~ converges in distribution as n -+ oc. 
This will follow from the central limit theorem for empirical processes as given in 
Pollard ((1984), p. 157), once we have shown tha t  S is a pointwise bounded, total ly 
bounded, permissible subset of L2(P) and tha t  the sequence {Z~} is uniformly 
stochastically equicontinuous, i.e. 

(2.3) Vr/> 0Ve > 035 > 0:  l imsup P ( sup IZ~( f ) -  Zn(g)I > rl~ 

o 

< e  
~-+~ \(/,g)eF(~) / 

where F(~5) = {(f,  g ) :  f ,  g E 9 r ,  IIf -g l l2 ,p  < e} and P denotes the probabili ty on 
the background probabili ty space on which the random variables Xn, n E N, are 
defined. 

From our assumptions it follows tha t  ¢~ is bounded on compact intervals, also, 
f is bounded. This implies I1¢~11~ < oo and further, using 

[g?~(x)l _< sup I¢'(phl/h)l , phl/h <_ Ilflloo, 
lEZ 

tha t  s u p { l ~ ( z ) l  : x E ~ , n  E ~} < oo; hence ~- is pointwise bounded. From the 
mean value theorem and boundedness of g in (2.1) we obtain the existence of some 
c < oc such tha t  

(2.4) I1~ - ~ 1 1 ~  <- ch~ for all ~ c ~.  

This shows tha t  b r consists of an L2(P)-converging sequence, together with its 
limit. As a consequence 5" is compact and therefore total ly bounded. 

Permissibility is needed to obtain measurabil i ty of quantities such as 
supfc j :  IZ,~(f)l. In our case 2 is countable and all such quantit ies are automati-  
cally measurable. Alternatively, it is straightforward to check the conditions listed 
in the definition of permissibility in Pollard ((1984), p. 196). 

Finally, we have to check stochastic equicontinuity. By the equicontinuity 
lemma, see p. 150 in Pollard (1984), (2.3) will follow from the existence of an en- 
velope to F in L 2 (P),  which in turn  follows from the above boundedness argument,  
and 

(2.5) Vr/> 0Ve > 03"y > 0:  l imsup P(J2(7,  P~,5 c) > r/) < e 
77,---400 
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where 

J2 (v, P~ be) = 2 log 

and N~(u, P,~,.7") denotes the number of balls of radius u in I[" 112,~-norm tha t  are 
needed to cover b e. Centering one of these balls at the limit function ~boo we see 
tha t  N2(u, P,~, .7") is bounded from above by one plus the number of ~ ' s  outside 
a ball of radius u about  ~b~o with respect to I1" I1~. From (2.4) and hn = O(rt -1/4) 
it follows tha t  the latter is at most 0(6-4) .  This means tha t  J2(*y,P~,be) can 
be bounded by a (deterministic) function /(7) with I(7) i 0 as 7 ~ 0 (the same 
elementary calculations as in Pollard ((1984), p. 146) apply); in particular, (2.5) 
holds and the equicontinuity lemma applies. 

This completes the check of the assumptions of the empirical central limit 
theorem. By the latter, Z~ ---+distr Z where Z is a Gaussian process with mean 0 
and covariance function 

cov(Z(f l ) ,  Z(f2)) = P ( f l  - P ( f l ) ) ( f 2  - P(f2))  

( = cov(f l(X1),  f2(X1))) for all f l ,  f2 E be; 

Z has almost all its paths continuous with respect to the L2(P)-seminorm. In 
particular, 

(2.6) Z(~b~) -+ Z(~boo) almost surely. 

According to the Skorohod-Dudley representation theorem (Pollard (1984), p. 71) 
there exist 2~, Z on a suitable probability space such tha t  Zn has the same 
distribution as Z~ and Z has the same distribution as Z such tha t  Z~ converges 
to 2 almost surely, i.e., 

sup 12~(~)  -- 2 (~)1  -~ 0 
0E$" 

almost surely. 

As (2.6) also holds for Z we obtain 

12~(~n)  - 2 ( ~ ) 1  _< sup 12~(~)  - 2 (~)1  + 12(~n)  - 2 (V)~) l  
Oe5 c 

--+ 0 almost surely as n ~ oc. 

Now note tha t  2~(~br~) has the same distribution as Zn(~n). As explained above 
the latter differs from v/-~(0~ - 0) by op(1) only. Almost sure convergence implies 
convergence in distribution, hence the s ta tement  of the theorem follows on noting 
tha t  the asserted limit distribution is the distribution of Z(~boo). [] 

A technical aside in connection with the above proof: it is tempting to write 

I Z ~ ( ~ )  - z ( ~ ) l  ~ ~ / ~ R ~ ( I ~  - ~ 1 )  + ~/~P( l~ /~ - ~ool) 
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However, the rate of convergence of ~b~ to ~oo is not fast enough for the last 
expression to be of order op(1). Indeed, some cancellation occurs if we subtract  
P(@n - ~b~) from Pn(~n - f ~ ) ;  this effect is lost in the above crude argument.  

We now consider the est imator of 0 tha t  arises if a kernel density est imator 
instead of a histogram is used as an est imator for the density. Let K,  the kernel, 
be a probability density, symmetric  about 0 and with support  [-1,  1]. For h > 0 
let Ka be defined by Kh(X) = h - X K ( h - l x ) .  The kernel density est imate for f 
with kernel function K and bandwidth  h and the associated est imator of 0 are 
then given by 

L,~(~) := - K~(~- XO, ~ : ¢(L~(~))d~. 
n 

i:1 

The role of the cell size of histograms is taken over by the bandwidth  if we use 
kernel density estimators. We need a stronger assumption on the local behaviour 
of f :  we assume tha t  f has a derivative f '  tha t  satisfies, for some (5 > 0, 

(2.7) If '( x + Y) - f '(x)L <- lYlg(x) for all x ~ ~, lYl < 6, 

where g is an integrable function. 

THEOREM 2.2. Under the above assumptions, i fh~ = o(n -1) and h~ 2 = o(n) 
as n --+ oc then 

x/-~(Onh, ,  --  0)  ---+distr N(0,  0 -2) with 0-2 = var(¢ ' ( f (X1))) .  

PROOF. Write K~ for Kh,~ etc. and assume h < 6. We have 

O(y) = ¢ ( f ( x ) ) +  (y - f ( x ) ) ¢ ' ( f ( x ) )  + ~(y  - f ( x ) )2¢" ( { ( x ,  y)) 

with some ~(x, y) between y and f ( x ) .  This gives 

(2s )  ,/;(~h-0)= , / ~ ( f L h ( x ) ¢ ' ( f ( z ) ) d x - E j L h ( x ) * ' ( f ( x ) ) d z )  

+ , / ~ / ( Z f ~ ( ~ )  - f ( x ) ) ¢ ' ( f ( x ) ) d x  

+ ,/~ ~ 

We consider each term on the right hand side of (2.8) separately. Let 

~ ( V )  := f K ~ ( x  - y )¢ ' ( f ( z ) )dx ;  

it is straightforward to deduce from our assumptions on ¢ and f tha t  

I1~ - ¢ ' o / 1 1 ~  = o(h~). 
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With/f"~ denoting the empirical distribution function we have 

f = f 
so the first term on the right hand side of (2.8) can be written as Z ~ ( ~ ) ,  where 
Z.~ again denotes the empirical process. The reader will recognize that this is 
similar to the situation considered in the proof of Theorem 2.1. Indeed, the same 
arguments as given there apply, and it follows that the first term converges in 
distribution to the normal distribution given in the statement of the theorem. 

It remains to obtain op(1)-behaviour for the two other terms in (2.8). We 
have 

E]nh(X) f (x )  = / K ( y ) ( f ( x  + hy) - f (x))dy.  
J 

Also, from (2.7), 

]f(x + hy) - f (x )  - hyf'(x)] < h2y2g(x) 

so that, using symmetry of K, 

Finally, from the assumptions that ¢" is bounded and Chebychev's inequality we 
see that for the last term it is enough to show 

(2.9) E / ( f ~ h ( X )  -- f (x))2dx = o(n-1/2). 

This, however, is a statement on the mean integrated squared error (MISE) of a 

kernel density estimator. We can now use the standard arguments that yield the 

well-known statement on the MISE-optimal choice of bandwidth in kernel density 

estimation (see Section 3.3.1 in Silverman (1984), for example): the MISE can 

be written as the sum of a squared bias term and a variance term. Under our 
assumptions on f and K, these are of order O(h 4) and O ( n - l h  -1) respectively; 
hence, (2.9) follows from our assumptions on h. [] 

If the density itself has to be estimated then the stronger local assumptions 
on f, i.e. (2.7) as compared to (2.1), result in a better speed of convergence, for 
example, O(n -4/5) for the kernel method as compared to O(n -2/3) for histograms 
if the mean integrated squared error is considered. This is not the case in the 
situation here--the asymptotic rate is the same for both the histogram and the 
kernel based estimator of the density functional. However, both our theorems 
give sufficient conditions; to what extent these conditions are necessary we do not 
know. 



DENSITY F U N C T I O N A L S  75 

3. Discussion 

An interesting aspect of the results above is the following: if we take the cell 
length or bandwidth of the estimators to be asymptotically proportional to n -v, 
then the optimal rate Op(1/x/~)  for the difference between estimator and param- 
eter holds if 1/4 < 7 < 1/2. Note that this range does not depend on f or 4~. If 
our conditions on ¢ and f are not satisfied then the range of smoothing parame- 
ters that entails Op(1/~f~)-behaviour of 0~h - 0 may well depend on quantitative 
features of ~ and f such as the growth rate of 4- 

Our assumptions on ~ and f can be classified into global and local ones. 
Among the four categories arising some are obviously needed, whereas others re- 
strict the applicability of our results. It is clear, for example, that local irregu- 
larities of ~ will be 'invisible through the data'. Radical examples would involve 
a discontinuous ~b, but it is also possible to construct examples exhibiting this 
phenomenon with q5 and f continuous. On the other hand, interesting function- 
als exist that are based on Q-functions with unbounded second derivative near 
0: Silverman ((1986), Section 6.5.3) discusses applications to projection pursuit 
where ~b(z) = z l o g x  is of interest. Estimation of entropy is also discussed in 
Ahmad and Lin (1976) (the proofs in this reference, however, are not correct), see 
also van Es (1992) and the references there. 
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