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A b s t r a c t .  An orthogeodesic statistical model is defined in terms of five con- 
ditions of differential geometric nature. These conditions are reviewed together 
with a characterization theorem for exponential orthogeodesic models. Orthog- 
onal projections, relevant for maximum likelihood estimation in exponential 
orthogeodesic models, are described in a simple way in terms of some of the 
quantities in the characterization theorem. A unified procedure for performing 
maximum likelihood estimation in exponential orthogeodesic models is given 
and the use of this procedure is illustrated for some of the most important 
models of this kind such as 0-parallel models, ~--parallel models and certain 
transformation models. 
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1. Introduction 

The  concept  of an or thogeodesic  s tat is t ical  model  was in t roduced in Barndorff-  
Nielsen and Blaesild (1993). A statistical model M is orthogeodesic if it satisfies 
the following five conditions of differential geometric nature: 

(i) M is a product manifold of the form M = X × ~,  where X and ~ are 
differentiable manifolds. 

(ii) The factorization of M is orthogonal with respect to the expected (Fisher) 
in format ion  metr ic  i on M.  

(iii) For every value of X E X the restr ic t ion of the  metr ic  i to the submanifo ld  
Mx = {(X, ~P) : ~P E ~}  does not depend on X. 

(iv) For every value of X C X and for some value c~ ¢ 0 the  submanifo ld  M x is 

expected  c~-geodesic, i.e. the shape  tensor  x H  of M~ corresponding to the expec ted  
c~-connection vanishes identically. 

(v) For every value of X c X the  submanifo ld  M x is expec ted  1-flat, i.e. 
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the Riemannian curvature tensor xR of M x corresponding to the expected 1- 
connection vanishes identically. 

A discussion of these conditions and of a set of equivalent conditions, formu- 
lated in terms of local coordinates on M, may be found in Barndorff-Nielsen and 
Bbesild (1993) in which also various examples of orthogeodesic statistical models 
are given. Apart from the one-dimensional location-scale model all the examples 
are concerned with exponential models such as ~-- or 0-parallel models, certain 
exponential transformation models and proper exponential dispersion models and 
generalizations hereof. Furthermore, Barndorff-Nielsen and Blaesild (1993) give a 
complete characterization of the structure of exponential orthogeodesic models, re- 
viewed in Section 2 below, but they do not discuss the implications of this structure 
on the statistical inference of such models. A first step in that direction is taken 
in the present paper which discusses maximum likelihood estimation in exponen- 
tial orthogeodesic models. The discussion is based on some relevant orthogonal 
projections which are described in a simple way in terms of some of the quantities 
in the characterization theorem. Despite the fact that the statistical properties of 
the exponential models mentioned above are very different, the maximum likeli- 
hood estimation in these models follows a certain scheme. To be more specific, let 
/(X, ~P) denote the log likelihood function for the orthogeodesic parameter 06 ¢) 
and let ))¢ denote the maximum likelihood estimate of X for fixed value of ¢. 
Under mild regularity conditions it is shown that  )~¢ = )~, where • denotes the 
maximum likelihood estimate of X in the full model. Consequently, the maximum 
likelihood estimate ~ of ~p may be found by maximizing l(2, ~). Thus maximum 
likelihood estimation in an exponential orthogeodesic model may be considered 
as consisting of two steps. The situation is similar to that of estimating the two 
parameters p and ~2 of the univariate normal distribution N(p, cr 2) based on a 
sample x l , . . . ,  x~. Here one has 

= = = ( x l  + - . -  + 

and d -2 is found by maximizing 

n 
/(~,o -2 ) = - ~  log~r 2 - _ _  1 E ( x i _  5)2. 

2o- 2 
i 

The normal model is considered as an exponential orthogeodesic model in Example 
5.2. 

Besides the characterization theorem of exponential orthogeodesic models, 
Section 2 introduces the necessary notation. Section 3 contains some further re- 
sults concerning some of the quantities in the characterization theorem, which 
are of use in the discussion, in Section 4, of maximum likelihood estimation in 
exponential orthogeodesic models. Finally, the results are illustrated in Section 5. 
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2. Exponential orthogeodesic models 

Throughou t  the paper  we consider a d-dimensional exponent ia l  model  M with 
model function of the form 

(2.1) exp{OPtp(x) - t~(0) - 0(x)}.  

We assume tha t  the exponential  model is steep (in the terminology of Barndorff-  
Nielsen (1978)) and we let @ denote  the canonical parameter  domain. Through-  
out the paper  we use the summat ion  convention and as in (2.1) we use the let- 
ters p , ~ , . . ,  to indicate a rb i t ra ry  components  of the canonical pa ramete r  0 = 
(01, . . . ,  0 a) as well as of the canonical statistic t = ( t~ , . . . ,  ta). Furthermore ,  we 
restrict  the parameter  domain of M to int O, the interior of O, i.e. we assume tha t  
M is a core exponential  model (in the terminology of Barndorff-Nielsen (1988)). 
The  mean value mapping defined on int O will be denoted by % i.e. ~-~(0) = Eo{tp}. 

We use w = ( w l , . . . ,  w a) as an al ternat ive paramete r  of the exponential  model  
(2.1), i.e. M = {P~ : w E f~}, where P~ is the probabil i ty  measure corresponding to 
w and where the parameter  space f~ is an open subset of R a. Generic components  
of w are indicated by aS, w ~, w t , . . . .  Moreover, we let {0~} denote  the coordinate  
frame {cg/0w ~} at w and for an a rb i t ra ry  real-valued funct ion f defined on ~q we 
write f/~(w) = O~f(w), f/rs(w) = OrOsf(w), etc. Fur thermore ,  we use {its(W)} to 
denote  the expected information i(w) and {K~(w)} to denote  the inverse i -1 (w). 

As indicated in the in t roduct ion we are part icular ly interested in the s i tuat ion 
where there  exists a parametr iza t ion  of the model M of the form cz = (X, f ) ,  
where X and ~ are variat ion independent .  The  domains of variat ion of X and 

are denoted by X and qJ, respectively, and the variat ion independence means 
tha t  ~q = X × ~.  We use the suffices a, b, c , . . .  and i, j, k , . . .  to denote  generic 
components  of X and ~, respectively. For fixed X E X we use M x to denote  the 
submodel  {P(x,f) : g) E ~}  and similarly we let M f  = {P(x,f) : X E X}  for ~ C ~.  

Wi th  this nota t ion we have the following theorem concerning the s t ruc ture  of 
an exponential  orthogeodesic model,  the proof  of which may be found in Barndorff-  
Nielsen and Bl~esild (1993). 

THEOREM 2.1. Let w = (X, ~) be a parametrization of the exponential model 
(2.1) such that X and ~ are variation independent. Then the model (2.1) is or- 
thogeodesic relative to w if and only if  there exist scalars a(~) and 7(X), vectors 
Bo(X ) and D~(X) and matrices A~(X) and C~(X) satisfying the conditions 

(2.2) A (x)cf(x) 

(2.3) AVx)cg/o(x)  : o, 

(2.4) A ~ ( x ) D ~ ( X )  : 0, 

(2.5) = o 

and 

(2.6) = 
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such that 

(2.7) 

(2.s) 

and 

(2.9) 

0P(X, ~) = ~biC~(g) + DP(X), 
rp(X, ~b) : CVo (~b)A~(x)+ Bp(x) 

COROLLARY 2.1. 

(2.12) 

has Laplace transform 

The formulas (2.1), (2.7) and (2.9) imply that, disregarding a quantity which 
depends on z only, the log likelihood function in terms of (X, ~) is 

(2.10) I(X, ¢; x) = - a ( ~ )  - 0'(X) + ¢iC~(x){tp(x) - Bp(X)} + DP(x)to(x) 

from which it follows that 

(2.11) ijk(X, ~;) = ijk(~;) = c~/j~(~). 

Furthermore, Barndorff-Nielsen and Bbesild (1993) proved the following 

The quantity P(x; X) with components 

P~(x; x)  = C~(x){ t~(x)  - B~(x ) }  

(2.13) E 0 { e x p ( ¢ P d }  = e x p ( ~ ( ¢  + ;)  - ~(V)) .  

Consequently, the distribution of P depends on ~ only, i.e. P is a pivot provided 
is known. 

Note that the quantity P depends on x through t(x) only, i.e. P may be 
considered as a function of (t; X), which we will do from now on. Similarly, since t 
is minimal sufficient, the log likelihood function may be considered as a function 
of t and expressed in terms of P we have 

(2.14) l (x,  ~; t) = - ~ ( ~ )  - ~ (x)  + e~s~(t; x)  + Dp(x)tp.  

3. Further results 

This section contains some further results about some of the quantities in 
Theorem 2.1. Some of the results are used in the discussion of maximum likelihood 
estimation in exponential orthogeodesic models in Section 4. 

LEMMA 3.1. The derivatives of w = (X,9) with respect to the canonical pa- 
rameter 0 are given by 

(3.1) ~p =Tp/ti ~t. 
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In particular one has 

(3.2) 

and 

(3.3) 

PROOF. 

X/p (cVj(¢)A /b(X) + Bp /b(X) )  iab 

Mult iplying the ident i ty  

• 7" 8 ' 

by 0~t we obta in  
~rt~2/p = : Tp/cr ~ : Tp/t 

from which (3.1) follows. Since the parameters  X and ~ are i -or thogonal  one 
obtains  tha t  i ~j = 0. Using this fact together  with the  formulas (2.8) and (2.11) 
it is easily seen tha t  (3.2) and (3.3) are consequences of (3.1). [] 

COROLLARY 3.1. Expressed in terms of the parameter (X,~b) the expected 
information {ip~} for the canonical parameter 0 (the covariance matrix of t) and 
its inverse {i pa} are, respectively, 

(3.4) ip.  = (a/j(~)A~/a(X) + Bp/a(X))(t~/k(~))Ak/b(X) -}- B./b(X))i ab 

+ 

and 

(3.5) p ~b k i p" = (oJc~./a(X) + D/a(X))( Ck/b(X) + D~b(x))i ab 

+ jk 

PROOF. Formula  (3.4) is a consequence of (3.2) and (3.3) and of the  formula 

• z i ~ 8 ~po- rs~/pLJ/a 
• a b • j k = ¢,~bX/pX/~ + ~jk¢/p¢/~. 

Formula  (3.5) follows, using (2.7), from the formula 

i pc~ = irsoPrO~s / 
-~- iabOP/a 0a/b + iJke;je~k" [] 

LEMMA 3.2. Let m be the point in M corresponding to (X,~) and let p~ 
denote the orthogonal projection (with respect to the information metric i) on 
T,~Mx, the tangent space at m to the submanifold M~. Similarly, let PC denote 
the orthogonal projection on TmM~. The matrices corresponding to these linear 
mappings are, respectively, 

(3.6) (Px);  : Akp(X)C~(x) 

and 
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(3.7) (p>); : 6; - A~(x)C~(x) 
i ~ cr a = {~ c~/~(x) + D/Ax)}x/~.  

PaOOF. To prove (3.6) we use the following well-known result: If L is the 
q-dimensional linear subspace of R d spanned by the rows in the q × d matrix A 
then the orthogonal projection on L with respect to a positive definite matrix E 
has the matrix 

(3.8) PL = E A T ( A E A T ) - I A ,  

where A T denotes the transpose of A. 
Considering the local coordinates corresponding to the canonical parameter 0 

we have that Ep~ = ip~ and L = Tram x = span{0k} where, using (2.7), 

Consequently, we may use (3.8) with A as the matrix given by 

= c ; ( x ) .  

Prom (3.4) we obtain that 

( / k E / k T ) j k  p o" = Aj Ep~A k 
= cy(x){(~/,(~)A~p/Ax) + Bp/~(X))(~/~(x)A;/b(x) + < / d x ) ) ~  ~b 

• l 7% 0 -  + zmA~,()¢)A~(x)}Ck (X). 

The formulas (2.2) and (2.3) imply that 

(3.9) A ~ /~ (x) Cf  (X) = 0 

and from (2.2), (2.5) and (3.9) we find 

( AEA T)jk = imC~ (x)AZ~(x)A~(x)c~ O¢) 
• l n 

= % l n ~ j f k  

: g j k .  

Consequently, using (3.4), (3.9), (2.2) and (2.3), we get 

= ~pv~. .~ j  ~ a..a k 

= { ( O e / l ( ~ ) ) d l p / a ( X )  + B p / a ( X ) ) ( O ~ / n ( ¢ ) A n / b ( X )  "4- ~ v / b ( X ) ) i  ab 

+ imd~ (x)d~ (X)}Cy (x)iJkc~ (X) 

= h~A~(x)A~(x)Cj ~(x)¢~c~(x) 
= imA~(x)6~iJkc~(X) 

= izjAZo(x)iJkC~(X) 
k l o- = ~z A~(x)Ck (X) 

= A}(x)Cf(x) 
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and the proof of (3.6) is complete. 
Since the tangent  spaces T r a m  x and T m M ~  are i-orthogonal the first equali ty 

in (3.7) is obvious. To prove the second equali ty in (3.7) note tha t  (2.7) and (3.3) 
imply 

~7 (7 (7 a ~ k 
6p = Oip = Ol~Xip + Oik~lp 

i c7 (7 a c~ k = {4 + + (x )Ap(x)  

which was to be proved. [] 

4. Maximum likelihood estimation 

The maximum likelihood est imate ()~, ~) of (X, 4)  may be found directly from 

the log likelihood function (2.14). Here, however, we derive the formulas for (2, ~) 
by a geometric argument  in line with the nature of the model. 

T H E O R E M  4.1. The m a x i m u m  likelihood est imate ( ~ , ~ )  of (X, f ; )  is the 
unique solution to the equations 

(4.1) {6~ - A ~ ( x ) C ~  (x)  } { G  - B~(X)} = 0 

a n d  

( 4 . 2 )  - : 

PROOF. The maximum likelihood est imate rh of rn is the unique point in M 
for which the differential of the log likelihood function vanishes, i.e. 

d,~l = O. 

Expressed in terms of the canonical parameter  0 the differential of 1 is 

dml = l / pdO p 

= (tp -- "rp)dO p. 

Considering the score vector t - r as a tangent  vector we have to find a point  
= rn(t)) such that  

(4.3) 0 = t - -? c T < M .  

Clearly, with the notat ion in Lemma 3.2, formula (4.3) is equivalent to the formulas 

(4.4) px (t - ~-) = 0 

and 

(4.5) p¢( t  - r)  = 0 

or, equivalently, using (3.6), (3.7) and (2.8), to the equations 

(4.6) k , Ap(X)C k  (X){G - a / /  (fa)Aa~ (X) - B , (X)}  = 0 

and 
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( 4 . r )  ~ ~ ~ {~ Ci/~(X) + D/~(X)}X/p{G - ce/j(~)A~(x) - B,(X)} : 0. 

Using (2.2) formula (4.6) is seen to be equivalent to 

A ~ O(.)Cf (x) { t~ - B,(X)} - A~ (x)ce /k (,O ) : O. 

Multiplying by C/'(X) and using (2.2) the equivalence between this formula and 
formula (4.2) is easily established. 

Applying (2.3) and (2.4) formula (4.7) becomes 

i ~ ~ a 
{@ Ci/a()(~) @ D/a()(~)})(~/p{ter - B o - ( X ) }  = 0 

which, using (a.7), is seen to be equivalent to (4.1). [] 

Let rc denote the mean value of the quantity P defined in (2.12). Using (2.2) 
and (2.7) we find 

(4.8) ~{(x, W) : &~,e)P{(t; x) 

= C g ( x ) { ~ / j ( , O ) A ~ ( x )  + B ~ ( x )  - B,(x)} 

= 6 ~ / ~ ( ~ )  

= ~/~(~). 

Thus rc depends on (X,~b) through ~b only and (2.8) implies that  the mapping 
-~ {c~/i(~b)} = rc(~b) is in fact one-to-one. Denoting the inverse mapping by ~b, 

i.e. ~b = ~b(rc) we have the following. 

COROLLARY 4.1. Let (~,~, ) denote the maximum likelihood estimate of (X, 
ga). Then ~ is the unique solution to the equations 

(~;  - A ~ ( x ) C f  ( x ) ) ( t ~  - B~(x)) = o (4.9) 

and !b is given by 

(4.10) 

COROLLARY 4.2. 

= >(P(e; 2)), 

Suppose for every value of ga that the maximum likelihood 
estimate Re of X in the submodel M e = {P(x,e) : X c X} is a unique solution 
to the likelihood equations. Then Re = X, where ~ is the maximum likelihood 
estimate of X in the full model, i.e. ~¢ does not depend on ~. 

PROOF. From (2.14) it follows that  the likelihood equations in the submodel 
M e is 

( 4 . 1 1 )  1/a - - - - ~ P i / ~ ( t ;  X)+  D?a(X)t~ -~/a(X) = 0 
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and under the present assumptions it suffices to prove that )) is a solution to (4.11). 
Using that 

(4.12) ta = Tp(~, ~) = ee/j(~)AJ(~) + Bp(~) 

it  fo l lows  f rom (2 .12) ,  (2 .3)  a n d  (2 .5)  t h a t  

Pi/a(t; )l) = (~/j( ~)AJ (x)CiP/a(X) = O. 

Moreover (4.12), (2.4) and (2.6)imply that 

D;a (X)tp - "//a(X) = DP/a (X){ct/ j(~)AJ (x) + Bp(~) } - ~//a()() = 0 

and the proof is complete. [] 

In the submodel M x = {P(x,¢) : ¢ e ~} the maximum likelihood estimate ~x 
of ~ is the unique solution to the equation 

i.e. 
~ = W(P(~; x ) )  

which may be seen from (2.14) and (4.8). 

5. Examples 

In this section we give three examples of the result in Corollary 4.1 concerning 
maximum likelihood estimation in exponential orthogeodesic models. For the sake 
of notational convenience we consider exponential models of order 2 only. In the 
terminology of Barndorff-Nielsen and Blaesild (1993) the models considered in the 
examples below are examples of, respectively, O-parallel models, T-parallel models 
and transformation models. However, due to the fact that these rather different 
models are all orthogeodesic, the formal way of performing maximum likelihood 
estimation in these models is the same. 

Example 5.1. Suppose that x~ , . . . ,  x .  are independent random variables and 
that x~ is Poisson distributed with mean value exp(a + bti) where ti is a regression 
parameter. The joint density of x l , . . . ,  x~ is 

1 

i 

i.e. of the form (2.1) with 0 = (b, a) and tT(x) = (• i  tixi, }--~i Xi). It is easily seen 
that 

(5 .1)  = z_~ , , e < = T 2 ( - h ( b ) ,  1),  
i 
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where 

Furthermore,  formula (5.1) implies that  

e bt~ . 

Setting ~ = in% we have, according to Theorem 2.1, that the model is ortho- 
geodesic relative to (b,¢)  with AT(b) = { -h (b )  1}, B(b) = O, C(b) = {0 1}, 
D(b) = (b,- l n ( E  ~ e<)) and ~(~)  = e~, since 

and 

0 = (b, ~) = ~(0, 1) + (b, - 

T z 

72 1 

In this si tuation formula (4.9) takes the form 

{0 0} = 0 .  

Consequently, the maximum likelihood est imate D of b is determined from the 
equation 

~-~i tiebti E i  tiXi 

From (2.12) we find that  

i 

i.e. in this si tuation the quant i ty  P does not depend on b. Since 7c = E(b,¢)P = 7-2 
the equation (4.10) is equivalent to 

The model in this example, often referred to as a log-linear Poisson regression, 
has been considered by Barndorff-Nielsen (1978) who noted that the quantity ~ xi 
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is a cut which is S-sufficient for 7-2. This is in accordance with the fact tha t  the 
model is 8-parallel in the terminology of Barndorff-Nielsen and Bla?sild (1983a). 

Ezarnple 5.2. If Zx,. .  •, z~ are independent  and identically N(X, (r2)-distrib - 
uted it is easily seen that  the density function of Z l , . . .  ,z~ is of the form (2.1) 
with 8 = (81, 82) = (X/~ 2, -1/(2cr2))  and t T = (}-~ z~, }-~.iz~). Moreover, the 
model is orthogeodesic relative to ()6 02) as may be seen from Theorem 2.1 and 
the following equations: 

and 

(5.2) 

(81  ' 82  ) = ( ~ / 0 . 2 ,  _ _ 1 / ( 2 0 . 2 ) )  = 8 2 { _ _ 2 X  1} ,  

~-2 n()~2 + ~2) 282 + n~2 

In this si tuation the quant i ty  P is, using (2.12), 

(5.3) P ( t ; x )  = C ( x ) { t - / 3 ( X ) }  -- { - 2 X  1} i = E ( x i  _ x) 2. 
2 2 

E zi - nX 
i 

Since formula (4.9) takes the form 

1 
2X 0 / 

it follows that  

(5.41 ~ ~ 1 Z = = - -  Xi .  
n 

i 

Finally, the formulas (4.8), (4.9) and (5.2)-(5.4) imply that  02 is determined by 
the equation 

n 

202 - ~ ( x ~ -  ~t 2 
i 

or, equivalently, that  

(5.5) e 2 =  l ~ ( x ~ -  5) 2. 
7Z 

i 

The results (5.4) and (5.5) are of course well-known as is the stochastic inde- 
pendence of the quantities 2 and ~r 2, a result which is an immediate  consequence 
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of the fact that the model is a reproductive r-parallel model, cf. Barndorff-Nielsen 
and Bl~esild (1983b). 

Example 5.3. Suppose that a direction on the unit circle is determined by 
an angle in the interval from 0 to 27r. Furthermore, suppose that Vl , . . . ,  vn are 
independent observations from the transformation model based on the von Mises- 
distribution with concentration parameter ~p and mean direction determined by X. 
The joint density of v l , . . . ,  v~ is then 

(5.6) a(~p)~e>(Cos X E i  cos vi-!-sin X E i  sin v~) 

Here a(~p) = {27cI0(~)} -1 where I0 denotes the modified Bessel function of the 
first kind and of order 0. 

Formula (5.6) is of the form (2.1) with t T = (}-~i cosvi, 2 i  sinvi), 

(5 .7)  

and 

(5.s) 

Furthermore, since 

0 = ~(cosx,  sin?() 

- -  - ~  in  a ( ~ )  = ~(~). 

/ 
rl ~ cos X 

it follows from Theorem 2.1 that the model is orthogeodesic relative to ()~,~). 
Letting 

the equation (4.9) for determining 2 takes the form 

R sin X sin(x - d) 0 

and, consequently, one has 

(5.10) 2 = d. 

Furthermore, using (2.12), (5.7), (5.9) and (5.10), we find 

P( t ;  ~) = R c o s ( ~  - 2) .  

Thus P(t; ~) = R and using (4.10) the maximum likelihood estimate is determined 
from the equation 

~ ' ( ~ )  = _~. 
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