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A b s t r a c t .  The decomposition of the Kullback-Leibler risk of the inaximum 
likelihood estimator (MLE) is discussed in relation to the Stein estimator and 
the conditional MLE. A notable correspondence between the decomposition 
in terms of the Stein estimator and that in terms of the conditional MLE is 
observed. This decomposition reflects that of the expected log-likelihood ratio. 
Accordingly, it is concluded that these modified estimators reduce the risk 
by reducing the expected log-likelihood ratio. The empirical Bayes method is 
discussed from this point of view. 
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1. Introduction 

As Neyman and Scott  (1948) noted first, the maximum likelihood es t imator  
(MLE) does not perform well, when a number  of parameters  to be es t imated is 
large. As we will discuss later in familiar examples, such a number  could be very 
small, say 2 or 3. Since a model containing many  parameters  becomes popular ,  this 
fact is more impor tan t  in practice than  it was believed. To specify our s i tuat ion we 
concentra te  on the simultaneous est imation of the mean vector  # = (#1 , . .  •, #~) '  
and a single dispersion paramete r  0. Let  x = ( Z l , . . . ,  z,~) be a sample vector of 
size rt having the density function I-[p(zi; #i, O) = p(x; I_t, 0). 

There  are various approaches to improving the MLE. The  condit ional MLE is 
probably  the most classical one, which was begun by Fisher (1935) and advocated  
later by Andersen (1970). The  pract ical  application of the condit ional MLE is 
often seen in the est imation of the dispersion paramete r  (Yanagimoto and Anraku  
(1989)). When  the condit ional dis tr ibut ion given an es t imator  ) is free from #, the 

condit ional MLE 0c is defined by maximizing the condit ional likelihood. Suitable 
conditions for recommending the condit ional MLE are discussed by many  authors  
including Barndorff-Nielsen (1978), Lindsay (1982), Godambe  (1984), Cox and 
Reid (1987) and Yanagimoto (1987). 
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A striking estimator of # under the normality assumption was proposed by 
James and Stein (1961), which dominates the MLE ~ = x with respect to a loss. 
This estimator was first regarded as a rather pathological one, but its relation 
with the empirical Bayes method as noted in Efron and Morris (1973) attracts 
our attention more to this estimator. Because of its wide applicability, the em- 
pirical Bayes method is becoming a familiar technique in various fields, such as 
in nonparametric regression estimation, see Morris (1983), Cassella (1985) and 
Yanagimoto and Yanagimoto (1987), for example. 

The aim of the present paper is to obtain a common feature of these two esti- 
mators through the decomposition of the risk induced from the Kullback-Leibler 
separator (Kullback and Leibler (1951)). The Kullback-Leibler loss of an esti- 
mator (~(x), 0(x)), which will be called the KL loss and be written as (~, 0) for 
simplicity, is given by 

(1.1) KL(~, 8; ~, 0) 

= i,o  
The KL risk, RKL(~, t); #, 0), is given by the expectation of KL(~, 0; #, 0) with 
respect to p(x; It, 0). The formal extension of the KL loss to that for a pair of esti- 
mators ()1, 81) and (~2, 02) is possible by KL()I, 01; ~2, 02) in (1.1) and therefore 
RKL(ftl, 81; ti2, 82) also can be defined. In the theory of differential geometry the 
KL loss is -1-divergence (Amari (1985), Section 3.5). Our terminology is conve- 
nient for distinguishing the loss and the risk clearly. The KL risk will be of our 
primary concern. 

When the density function is a member of the exponential family, it is known 
(Kullback (1959)) that 

(1.2) KL(D~, 0u; #, 0) = log{p(x; D~, Ou)/p(x; #, 0)} 

for the MLE, ()~, 8~). We will write the right-hand side of (1.2) as LR(~ ,  8~; #, 0), 
and write the expectation of it as ELR([_t~, 0~; #, 0). 

The most familiar decomposition formula in the statistical theory would be 

(1.3) E ( m i -  #)2 = E ( x i -  ~)2 + n(g~- #)2. 

Suppose p(x;#,0) is the density function of Nn(#l,0S) where i = (1,...,1)' 
and I stands for the n x n identity matrix. Then dividing (1.3) by 20 we have 
KL(x, O; #1, O) = KL(x, O;/21, O) + KL(/tl, 0; #1, 0) with/2 = 2. Thus this derives 
a decomposition of the KL loss. Geometrically, this is a Pythagorean relation in 
the space of the probability distributions. The Pythagorean relation of the KL 
loss has been extensively investigated; see Simon (1973), Amari (1985) and Saville 
and Wood (1991). 

The main result of this paper is to show that a well designed estimator (/2, 8) 
can satisfy a decomposition 

RKL(D~, 0~; It, O) : RKL(D~, 0~; i~, O) + RKL(D, O; It, 0). 
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For simplicity of the statement we will suppress the words, "for every # and 8". 
Since the KL risk is positive in our examples, this equality implies the inequal- 
ity RKL([,~,, 0~; #, 8) > RKL(fit, 0; #, 8), yielding inadmissibility of the MLE. An 
advantage of this approach is to obtain an inequality showing inadmissibility of 
the MLE through an equality regarding the decomposition of the KL risk. In 
addition, the equality RKL([t, O; #, 8) = ELR(fz, 0; #, 8) holds in our examples. 
Since this equality holds also for the MLE, it follows that RKL(f.t~, 0~,; #, O) - 
RKL([,,O;#,O) = ELR(~,,O~,;#,O) - ELR(f.t,O;#,O) (= ELR(f_tu, O~,;[*,O)). Con- 
sequently, we can conclude that such an estimator reduces the KL risk by reducing 
the expected log-likelihood ratio. 

The examples of the estimator satisfying the decomposition include the condi- 
tional MLE of the variance of the normal distributions and the Stein estimator of 
the means of the independent normal distributions. Our results present a common 
reason of favorable performance of these estimators. In the light of their deriva- 
tions from completely different ideas, the observed notable correspondence looks 
surprising. 

In Section 2, simple forms of the KL loss under the exponential dispersion 
model are derived, and then fundamental properties are obtained in Section 3. 
The main results on the Stein estimator and on the conditional MLE are given in 
Sections 4 and 5. Section 6 treats the empirical Bayes method in relation to the 
Stein estimator. 

2. The exponential dispersion model 

To obtain a common feature of the decomposition, our attention focuses on 
a restricted family of the exponential dispersion model (Jorgensen (1987)). The 
exponential dispersion model was introduced to describe a wide class of error 
distributions in the generalized linear model (Nelder and Wedderburn (1972), 
McCullagh and Nelder (1989)). Properties of this model and other related mod- 
els were extensively studied by many authors including Barndorff-Nielsen (1978), 
Morris (1982), Blaesild and Jensen (1985), and Jorgensen (1987). Since our inter- 
est is in the comparison of estimators, we will not pursue much the mathematical 
refinement of the regularity assumptions and an extension of the model. 

We introduce here a slightly different notation for the restricted model to 
emphasize the role of the mean parameter. The density function having mean # 
and dispersion parameter 0 is expressed as 

(2.1) P(Z;# 'O)=exp{ c(#)(x-#)+C(#)-C(x)O +b(O)+a(z)}  

where the function C(#) is a primitive of c(#). The function c(#) is the canonical 
link function in the generalized linear model. This model is a member of the 
exponential family, having the natural parameters c(#)/O and 1/8. In a usual 
expression of the exponential dispersion model the parameters 0* = c(#) and 

= 1/0 were employed. The parameters # and 0 are then orthogonal, that is, 
the Fisher information matrix is diagonal. The variance is O/c~(#) and therefore, 
we call 0 the dispersion parameter. Three familiar distributions, the normal, the 
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gamma and the inverse Gaussian, belong to this family. The explicit forms of the 
functions appearing in (2.1) are given in Table 1. 

Let x be a sample vector from a population having the density function (2.1). 
Then the MLE of #, p~, is x. Next suppose that all the means are common, 
that is, # = #1. Then the MLE of # is x and that of 0 the solution of the 
equation C(2) - ~'. C(xi)/n + h(O) = 0 with h(O) = -b'(O)O ~. The family of 
distributions is reproductive; more explicitly the sample mean 2 has the density 
function p(2; #, O/n). This yields the following factorization of the density function. 

(2.2) p(x;#,O) = exp { c ( # ) ( 2 - # ) + C ( # ) - C ( 2 )  } 
o m + b(O/~) + ~(~) 

. exp{ ~C(~) ; E  C(xd 

+ ~b(o) - b(O/~) + ~ ~(~) - ~(~)} 

(= L(~; ~, O/~)LC(~; 0 I ~)). 

Note that the second factor in (2.2) is free from #. The conditional MLE of 0, 0c, is 
obtained by maximizing LC(x; 0 I 2) by discarding the former factor L(2; #, O/n). 

Now we give explicit forms of the log-likelihood ratio and the KL loss in this 
family. First we present the former one, LR(~, 0; #, 0) = log{p(x; ) ,  O)/p(x; #, 0)}, 
which is expressed as 

(2.3) ~ ( C(f~i) (x i  - ~ i )  @ C ( ~ i )  - - c ( ]£ i ) (x i  - ~Li) + C([gi )  - C ( x i )  

+ ~(b(~) - b(O)). 

The expectation of this statistic with respect to the population distribution will 
be written as ELR(f_t, O; #, 0). 

Next we give an explicit form of the KL loss. Using the equality E(O logp(x; #, 
O)/O0) : O, we obtain that E(C(z)) = C(#) - 5'(0)0 2 = C(#) + h(O). Thus the 
KL loss in a general form is then expressed as 

{ t (o) } +~ b(O) h(~) b(O)+ ~ - -  . 

This loss is simplified when only a part of parameters are of interest, In fact we 
get 

KL(#.O;~,O)=KL(#,O;#.O)=n{b(O), , h(O)o b ( o ) + h ( ~ }  " 
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Note that  the KL loss (2.4) is decomposed into 

KL(/2, O; I.t, O) = KL(/2, O; #, O) + KL(I.t, O; #, 0). 

This decomposition permits us to compare the KL risks of the estimators of # and 
0 separately. Therefore, we will compare estimators of # and 0 separately. 

3. Some properties 

In this section we give elementary, important  properties of the KL risk and the 
expected log-likelihood ratio. As noted above, we will compare those of estimators 
of # and 0 separately. We begin with the comparison of estimators of #. 

Let 12, /21 and ~2 be estimators of #, and ~) an est imator of 0. The first 
proposition presents a condition for the decomposition of the risk. 

PROPOSITION 3.1. The following three statements are equivalent: 
i) RKL(~I,  0,/.t, 0) = RKL( fh ,  O; [z2, O) + RKL(fz2, O; I.t, 0), 

ii) RKL(fzl ,  O; I.t, O) = RKL(/21 , O;/22, O) + t~KL(f.t2, O; #, 0), 
iii) E{~(c(/29~i) - e(#i))(/21i - /22i)} = 0. 

When either i) or ii) holds, [z 2 is superior to/21. 

The following proposition is concerned with a condition for the equivalence of 
the KL risk and the expected log-likelihood ratio. Here we assume that  /2 and 
are independent.  

PROPOSITION 3.2. The following three statements are equivalent: 
i) RKL([t, O; #, O) = ELR([t, O; #, 0), 

ii) RKL(ft ,  O; #, O) = ELR(/2, O; #, 0), 
iii) E{~(c( /2 i )  - e(#i))(xi  - /2 i ) }  = 0. 

The conditions iii) in both the propositions look close. In fact suppose tha t  
/21 = x (= /~)  and /22 = /2 satisfy that  of Proposition 3.1 and tha t  /2 satisfies 
that  of Proposition 3.2. These conditions are then equivalent. It holds also tha t  
ELR(f~, O; t*, O) = RKL(x ,  O; t*, O) - RKL(x ,  O; f~, 0). 

Next we discuss the comparison of estimators of 0. Let 01 and {)2 be estimators 
of 0, and/2 be an est imator of # independent  of the estimators of 0. The following 
two propositions correspond with Propositions 3.1 and 3.2. 

PROPOSITION 3.3. The following four statements are equivalent: 
i) RKL(#,  01; #, 0) = RKL(# ,  O1; #, 02) + RKL(# ,  02; #, 0), 

ii) RKL(~t, 01;/2, O) = RKL(ft ,  01; ft, 02) + RKL(/2, 02; ft, 0), 
iii) RKL(/2, 01; #, O) --- RKL(~,  01; ft, 0:) + RKL(ft ,  02; #, 0), 
iv) E{(h(01) - h({)2))(1/02 - 1/0)} = 0. 

P R O P O S I T I O N  3.4. The following two statements are equivalent: 
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ii) E{>-~(c(/2i) (xi - /2 i )  H- C(¢2i) - C(xi)  4- h(0)) (1/0  - 1/0)} = 0. 

This equivalence still holds when/1  is replaced by # in i) and ii). Condit ions 
iv) in Proposi t ion 3.3 and ii) in Proposi t ion 3.4 become equivalent when 01 is the 
MLE given 1i and 0 = 02. This is shown by evaluating Ologp(x;/1,  0 ) /00  at 0 = ~)1. 

It should be noted here that  the propert ies of the KL loss and the log-likelihood 
corresponding to the above four proposit ions also hold without  taking the expec- 
tation. In the following two sections, we will show that  Proposi t ions 3.1 and 3.2 
present favorable propert ies of the Stein es t imator  and that  Proposi t ions 3.3 and 
3.4 those of the conditional MLE of 0. 

4. Stein estimator 

James  and Stein (1961) showed that  a shrinkage est imator  /i s = (1 - (n - 
2)0/IPxll2)x dominates /1~ = x when the loss is the sum of squared differences, 
that  is, the KL loss. This result s t imulated various fields of the statist ical  me thod  
such as the ridge est imator  and the simultaneous est imation of many parameters .  
Stein (1956), Brown (1979), Berger (1980) and Dey et al. (1987) developed a 
series of techniques in improving naive simultaneous estimators.  Recent successful 
development of smoothing techniques is also heavily influenced by this est imator,  
as noted in the Introduction.  

Proposi t ions 3.1 and 3.2 are applicable in this situation. Set /1k = (1 - 
k0/Plxll2)x. Then /1~-2 = /is and /10 = /i~. The following proposit ion extends 
the results due to James  and Stein (1961). 

PROPOSITION 4.1. Set E~ = {/1~;k ¢ 0}. Then the following five s tatements  
for/1k E E~ are equivalent: 

i)/1k 
ii) RKL(/1~, O; #, O) = RKL(/1u , O;/1k, O) + RKL(/1k , O; #, 0), 

iii) RKL(/1k , O; #, O) = ELR(/1k , O; #, 0), 
iv) E { E ( ~ k i  - #k)(xi  - / i k i ) }  = 0, 
v) /1k minimizes  RKL(/1k , O; #, 0). 

PROOF. The equivalence of i) and v) is a result by Stein (1956), and that  
of ii) and v) was s ta ted essentially in Brandwein and St rawderman (1990). The 
equivalence of iii) and iv) is seen in Proposi t ion 3.2. Consequently, it suffices to 
show that  of iv) and v). The s ta tement  iv) is wri t ten as 

/Ixlr 2 Ilxll 2 JJ 

This s ta tement  is tha t  for v) as in James  and Stein (1961). [] 

The s ta tements  ii) and iii) provide us with a deeper unders tanding of the 
Stein estimator.  S ta tement  ii) can be regarded as a type  of Py thagorean  relation. 
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If statement ii) holds for the loss KL instead of the risk RKL, then the equality 
means the Pythagorean relation among the distributions p(x; #, 0), p(x; f~,  O) and 
p(x; #~, 0). The statement ii) is weaker; it means that the Pythagorean relation 
holds with taking expectation. Thus the risk RKL([_t~, 0;/~s, 0) is unexpected and 
should be avoided. Now the relation (1.2) and these two statements iii) yield 

(4.1) RKL(  , 0; 0) = ELR() , 0; 0). 

This equality shows that the difference between the KL risk of the Stein estimator 
and that of the MLE is equal to that of the expected log-likelihood ratio. Thus 
if this condition is satisfied, a lower average of the log-likelihood ratio results in 
a lower KL risk. This fact looks striking, since it superficially contradicts the 
familiar criterion of the maximum likelihood method. In this regard, it should be 
noted that the MLE minimizes KL(x,  0; ~, 0) (= logp(x; ~t, 0) +nb(O) + ~ a(xi)) 
in this setup, while our aim is to make RKL([.t, 0; #, 0) small. 

Various other extensions are possible, some of which will be discussed in the 
later sections. In here we note that the assumption of the common variance is not 
essential. Suppose that xi ~ N(#~, 0~), i = 1, . . .  ,n and 0i are known. Then it is 
possible to apply the Stein estimator to :ci/x/-O~i. Next suppose that there exists 
an unbiased estimator of 0 independent of x and that dO/O has the chi-square 
distribution with d degrees of freedom. As in Stein (1962), the extended Stein 
estimator becomes { # s =  1 (d+2)[lxll  2 x. 

Using i) or ii) of Proposition 3.1 and i) of Proposition 3.2, we can extend Propo- 
sition 4.1. 

5. The conditional MLE 

When a factorization property (2.2) holds, we can derive the conditional MLE 
of 0 by maximizing the conditional likelihood LC(x ;0  I 2). The restriction of 
our attention to the density function (2.1) yields a simple explicit form of the 
estimating equation for the conditional MLE, C(2) -} - ]  C(xi) /n+h(O)-nh(O/n)  = 
0. An explicit form of 0c is possible in the cases of the normal and the inverse 
Gaussian distributions, where the function h(O) is 0/2. The conditional MLE is 
~ ( x i  - 2)2/(n - 1) for the normal distribution, and ~-](1/mi - 1/2)/(n - 1) for 
the inverse Gaussian. Thus it holds t)c = nO~/(n - 1) in both cases. The factor 
n/ (n  - 1) is greater than 1, and therefore is regarded as an expansion factor in 
contrast to a shrinkage one in the Stein estimator. 

We discuss first the above two cases. Let 0k = kt~ and Eo = {t)k I k > 0 but 
k • 1}. The following proposition presents a good correspondence between the 
conditional MLE and the Stein estimator. 

PROPOSITION 5.1. Suppose that the underlying distribution is normal or in- 
verse Gaussian, and that Ok E Ee. Then the following five statements are equiva- 
lent: 
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i) 0k = 0c, 
ii) RKL(~I, 0~; #1, O) = RKL(xl, 0~; ~1, 0~) + RKL(~I, 0~; #1, 0), 

iii) RKL(,21, Ok; #1, O) = ELR(~I, Ok; #1, 0), 
iv) E(t)u - 0k)(1/0 - 1/t)k) = 0, 

v) 0~ minimizes RKL(~I, 0~; #1, 0). 

PROOF. The equivalence of the statements i), iii) and v) is due to Yanagimoto 
(1991). In addition, the proof follows from Propositions 3.3 and 3.4. 

We observe the good correspondence between Propositions 4.1 and 5.1. Again 
the statement ii) can be regarded as a type of Pythagorean relation. In addition 
the equality (4.1) holds also by replacing (/2~, 0;/2~; 0) with (21, 0~; z l ,  0c). Thus 
we can conclude that the reduction of the KL risk of the conditional MLE is 
realized by reducing the expected log-likelihood ratio. 

The relaxation of the assumption on the distribution is desirable for applica- 
tions. Consider the case of the gamma distribution. Unfortunately, ~)~/t)~ is not 
constant in this case. The simulation study by Yanagimoto and Anraku (1989) 
shows the condition iii) holds approximately, and therefore we can guess the in- 
equality RKL('21, 0~; ¢1, O) > t~KL(21, 0c; #1, 0) holds. This inequality is impor- 
tant for applications. Next, consider the one way design of the normal population. 
Let xij be a sample of size ni (> 0) from N(#i; 0), i = 1 , . . . ,  n. Set N = y~ r~. The 
MLE of #i is ~i and that of 0 is y~(x~j - 2~)2/N. The estimators,/2~, i = 1 , . . . ,  r~ 

and 0~ are mutually independent. On the other hand the conditional MLE of 0 
given xi is written as 0~ = NO~/(N-n)  when N - n  > 0. Recall that (N-n)Oc/O 
follows the chi-square distribution with (N - n) degrees of freedom. Thus we can 
apply an extended form of the Stein estimator discussed below Proposition 4.1, 
and consequently the Stein estimator of #~ becomes 

- 2 ) ( X  -  )0c ] 

To apply Propositions 4.1 and 5.1 we consider the N-dimensional parameter 
vector # which takes the value #i from the (Ni-1 + 1)-th component to the Ni-th 
with Ni being the sum of r~i up to i. Using the estimators of #i, we define/z~ 
and/~s in a similar way. Then Proposition 5.1 is applicable to compare (]~, 0~) 
and (/~, 0c), and an extended version of Proposition 4.1 is applicable to compare 
(/2~, 0c) and (/~s, 0c). Consequently, a combination of the Stein estimator and the 
conditional MLE derives the reasonable estimator (]~, ~)c), which dominates the 
MLE. Again the reduction of the KL risk of this estimator to that of the MLE 
reflects the reduction of the expected log-likelihood ratio. 

The simultaneous estimation of many parameters is an attractive, useful prob- 
lem. A practical way to obtain an estimator is to apply the empirical Bayes 
method. The decomposition of the KL risk provides us with new insight into the 
empirical Bayes method, which will be discussed in the following section. 
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6. Empirical Bayes method 

In spite of its fine performance, the empirical Bayes method does not look 
very familiar. For simplicity, our interest focuses on the estimation of the mean 
of p(x; #, 0) with a known dispersion parameter 0 in the case of the normal or the 
gamma distribution. In addition, we assume the conjugate prior; Pi and ~-i = 1/pi 
are samples of size n from a hyperpopulation having the normal and the gamma 
distributions with mean A and the dispersion parameter 6, respectively. Then the 
posterior mean, or equivalently the posterior mode, becomes/2 = (6x+OA1)/(6+O) 
in the normal distribution, and/2 = (A6x+O1)/A(6+O) in the gamma distribution. 
The derivation of the latter will be given in the proof of the proposition below. A 
decomposition formula is given under the Bayesian framework. 

PROPOSITION 6.1. Under the situation stated above we get 

(6.1) E{RKL(x, 0; . ,  0)} = E{RKL(x, 0;/2, 0) + RKL(/2, 0; 0)} 

where the expectation is taken with respect to the prior distribution. 

PROOF. The case of the normal distribution is obvious, and only the case of 
the gamma is shown here. The marginal likelihood of A and 6 to x is 

(6.2) L(x;A,6) = I-[ r (1 /0  + 1/6)01/e(6A)l/°x /°-1 
F(1/O)F(1/6) (0 4- ~6xi)1/0--1/6 " 

Thus the posterior density of T = ( . . . ,  1/#i, . . . )  is 

pp(x; T) = 1-I 11 A ~  
r (~ ~_ ~) (O~-)k6xi} (1/04-1/6) 

• T(l/O+l/6-1) exp{--Ti (0 4- ~) ) 

which yields the posterior mean, that is, ¢~ = A(0 + 5)/(0 + A6x 0. 
Applying the equivalence of i) and iii) of Proposition 3.1, we may show 

Axi - 1 ~-i(Ixi - 1) } 

where the expectation is taken with respect to the distribution of zi and a prior 
distribution of ~-i. By evaluating the mean of 0 log L(x; A, 5)/OA we can show that 
the mean of the former term vanishes. It is easy to show the case of the latter 
term. This completes the proof. [] 

The result under the Bayesian framework may be discouraging for a frequen- 
tist, since the hyperparameters A and 6 are assumed known. A simple way to 
avoid this assumption is to estimate the hyperparameters by using the likelihood 
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Fig. 1. The graphs of 2RKL([~, O; #, O) in the solid line and 2ELR(~,  0; #, 0) in the 
dotted line with 5 = Ilpl12: Case n = 10. 

of A and 6 as in (6.2). This treatment is a type of empirical Bayes method. Then 

we obtain an estimator/~(~, ~) free from the hyperparameters. When the sample 

size is large, the estimates A and ~ are expected to be close to their true values. 
Thus we conjecture that the decomposition (6.1) holds approximately when the 
sample size is large. 

To discuss this conjecture and to pursue the relation with the Stein est imator ,  
we consider the case of the normal dis tr ibut ion with A being assigned as 0. Since 
as ~ N(O, ((~ + O)I), the  maximum likelihood es t imator  of (~ is [[Ixll 2 - ~0]+/~,  
where the symbol [y]+ denotes max(0, y). Then  the resulting es t imator  of # is 
wri t ten as 

~ [llxl12 - n0] + 

This is close to the positive par t  Stein est imator ,  [/2s]+ , which is known to dominate  
the original Stein est imator.  The  difference of/2~ and [/2~] + is in the coefficients n 
and (n - 2). Recall tha t  the coefficient (n - 2) is opt imal  only in the original Stein 
est imator .  Accordingly, this es t imator  is appealing, since it is rout inely derived by 
applying the empirical Bayes method.  Note tha t  the dis tr ibut ion of/J~ depends 
on # only through its norm. As a result, the performance of the es t imator  does 
not depend heavily on the assumed prior distribution. 

Consider an asymptot ic  s i tuat ion where 11#[12/n converges to a positive con- 
stant.  It is shown tha t  the quant i ty  { RKL(  cs , O; #, O) - RKL(  x,  O; #~ , O) - RKL(~¢ , 
0; #, 0 )} /n  tends to zero. Recall tha t  this quant i ty  is wr i t ten  also as {ELR(~¢,  O; #, 
O) -  RKL(ft¢, O; #, O)}/n. The  evaluation of this quant i ty  is useful in practice,  since 
(n/2)  log(27r0) + n/2  - logp(x;  0; )¢,  0) is an unbiased es t imator  of the expected 
log-likelihood ratio. The close relation of ~¢ with the Stein es t imator  suggests 
tha t  this quant i ty  is not large for a modera te  sample size. To evaluate the dif- 
ference, we conduct  a numerical  study. Figures 1 and 2 present 2RKL(~¢, O; I.t, O) 
and 2ELR(f_t~, O; #, O) for 0 = 1 and (~ = I1#1] 2 in the cases of n = 10 and 40. We 
observe tha t  the KL risk is less than  the expected log-likelihood rat io for a small 
5, but  is greater  for a modera te  or a large one. The  difference between the former 
quant i ty  and the lat ter  ranges from -5 .50  to 2.36 when n = 40. The  ratio of the 
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Fig. 2. C a s e n = 4 0 .  

difference to n is small, though the absolute difference is not small. It appears 
that the fine performance of the empirical Bayes method in this example comes 
from the decomposition property of the Bayes estimator. 
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