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A b s t r a c t .  Consider the construction of an interval estimate for a scalar pa- 
rameter  of interest in the presence of orthogonal nuisance parameters.  A con- 
ditional prior density on the parameter  of interest tha t  is proportional to the 
square root of its information element, generates one-sided Bayes intervals tha t  
are approximately confidence intervals as well, having coverage error of order 
O(1/n),  where n is the sample size. We show that  the frequency property of 
these intervals also holds conditionally on a locally ancillary statistic near the 
true parameter  value. 
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1. Introduction 

Let K K1, Y2,... be independent and identically distributed random variables 
with density function that  depends on a p-dimensional parameter 0 = (01, . . . ,  @). 
Given a set of observations yn = @~,. . . ,  yn) we write l(O, yn) for the log likelihood 
function and L(O, yn) = l(O, y~)/n for its standardized version. The derivatives of 
l(O, Y) and the corresponding cumulants are denoted by 

l~ : 040 , Y)/O0~, l~s = 0240, Y)/O<OOs, 
~ = E ( Z ~ ; 0 ) ,  ~ = E ( l ~ ; 0 ) ,  

~ s , t  : cov(l~s, 4; 0), ~,,~,t = cum(l~, l~, 4; 0) 

and so on. Interest centers on one particular component of the parameter, 01 
say, treating the remaining components as a nuisance parameter. We assume that  
the nuisance parameter 02 = (02, . . . ,  0p) is orthogonal to 01 with respect to the 
expec ted  Fisher  i n fo rma t ion  mat r ix ;  t h a t  is ~1,~ = 0 for r - 2 , . . .  , p  (Cox and  
Reid (1987)). 

The upper bound for the parameter of interest 01 of Bayes size a, that  is 
gene ra t ed  f rom the  pr ior  dens i ty  

(1.1) 7r(01,02) = ~ 1 , z ( 0 1 ,  02)9(02), 
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where NI,1 is the information element for 01 and g(.) is an arbitrary function of 
the nuisance parameter, also has probabilistic properties of interest in a frequency 
approach; it is an approximate confidence bound covering the true parameter 
value with sampling probability a + O ( l /n )  (Peers (1965), Stein (1982), Tibshirani 
(1989), Nicolaou (1991)). The specified part of the prior density (1.1) coincides 
with the reference prior for 01 with 02 given, derived by Bernardo (1979) on the 
grounds of information concepts. In some cases, a specific choice of the marginal 
prior for the nuisance parameter reduces the coverage error to order O(1/nx/~). 
However, the resulting joint prior need not yield sets with good confidence proper- 
ties for the nuisance parameter as well. In the case of a scalar nuisance parameter 
a conditional prior for it can be proposed by a similar argument considering vise 
versa 02 as the parameter of interest. Then, if the ratio of the information ele- 
ments for 01 and 02 can be written as h(O1)/g(02) for some functions h(.) and 9('), 
a unique joint prior good for inferences about both parameters and consistent with 
their conditional priors is given by V/Sl,l(01, 02)g(02). 

In the single-parameter problem Welch and Peers (1963) have shown that the 
appropriate choice is the Jeffreys' prior. A normal approximation to the corre- 
sponding posterior distribution of 0 (Johnson (1970)) yields a pivotal quantity W~ 
that can be used to construct approximate confidence limits with coverage error 
of order O(1/n). The statistic Wn is a transformation of the maximum likelihood 

pivot of 0, T~ = ~ ( 0 0  - 0), of the form 

1 

= + \ -62,v ' 

where L2(0) = E((/')2; 0). The dash denotes differentiation with respect to 0 and 
the hat evaluation at the maximum likelihood estimator 0. The asymptotic ex- 
pansion for W~ in terms of the log-likelihood derivatives and their cumulants gives 
W~ = -S /x f i~+Op(1/n  ), where S is the locally sufficient statistic for 0 introduced 
by McCullagh ((1984), Formula 26). His approach is to form a pivotal statistic 
that is independent of a locally ancillary statistic at 00; then, inferences based on 
the marginal distribution of this statistic are automatically conditional. Hence, the 
frequency property of the Bayes intervals that are generated from Jeffreys' prior 
also holds conditionally given a locally ancillary statistic. A parameterization in- 
variant form of S is obtained by expressing it in terms of the signed likelihood 

ratio statistic Zdev = sgn(00 -- 0)//2(/(0, y~) -- l(Oo, y~)), adjusted by its mean, as 
/ 

(1) 
~ -  - -  Zdev --  E ( Z d e v )  -[- Op 

Furthermore, S / x / ~  agrees to the order Op(1/n) with the modification of the 
signed likelihood ratio that Barndorff-Nielsen derives ((1986), Section 3.5), using 
a different approach based on approximations of the conditional distribution of the 
maximum likelihood estimator given the observed value of an approximately an- 
cillary statistic. In fact, Barndorff-Nielsen's conditional confidence intervals have 
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coverage error of order O(n -3/2) and his methods extend to encompass the possi- 
bility of nuisance parameters (Barndorff-Nielsen (1991)). However, their derivation 
requires specification of the approximate ancillary statistic. 

In this paper we show that the conditional probability of coverage of the 
one sided Bayes intervals for the parameter of interest that result from the prior 
density (1.1), still differs from the nominal probability of coverage by O ( l /n) ,  given 
a statistic that is second order locally ancillary near the true parameter value 00. 
The description of the argument is presented in Section 2. Some technical details 
are given in the Appendix. 

2. Main result 

For each set of observations we generate the posterior distribution function of 
01, p(. ] y~), corresponding to the prior density (1.1). This evaluated at the true 
parameter value 001 can be approximated by the standard normal distribution as 

where, summing over any index that is repeated, 

~ 1 1  fCgkll 1 (r2 1)L11L111 LiJ~l~3)  
(2.1) Wn • T,z- ~ 001 ~/~11 ~ ' 

T~ = x/n(001- 0 1 ) / ~ L  7T and L ij is the matrix inverse of Lij (Lemma A.1 of the 
Appendix). The distribution of the adjusted pivot Wn can be approximated by an 
Edgeworth expansion that has the standard normal distribution as a leading term. 
By virtue of the chosen prior density the 1/x/~ term of the expansion vanishes, and 
hence the normal approximation holds up to O(1/n). Consequently, p(0ol ] y~) 
is, under repeated sampling, approximately uniformly distributed over the range 
(0, 1) and the corresponding posterior quantile covers the true parameter value 
with sampling probability c~ + O(1/n) (Welch and Peers (1963), Peers (1965)). 

This result remains valid conditionally on the observed value of a statistic 
A = A(yn,Oo) that is locally ancillary to the second order near 00 i.e. whose 
distribution at 00 +5/xfn,  for some fixed 5, differs from that at 00 by terms of order 
O(1/n). The construction of locally ancillary statistics is discussed by Cox (1980) 
and McCullagh ((1984, 1987), Chapter 8). To proceed some additional notation is 
necessary. Consider the linear functions of the log likelihood derivatives V~ = l~, 
Vrs i r z i,r = l~s -/3~sl~ and denote their cumulants by ~'s. The coefficients/3~t ~i,st~ , 
are defined so that ~,st = cov(V~., Vst) = 0. In the following, when we suppress 
the dependence of the cumulants on the parameter value we mean that they are 
evaluated at 0o. Define the asymptotically normal random variables of zero mean 
and constant variance 

n z n 1 
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and their transformations R~ = Z,., R ~  = Z~8 - 9~tsZt. A second order ancillary 
statistic A is an array with components of the form 

where the coefficients 

9 ;7  = + 
( ~i jk i,jk Drs Pjk,tu ~- 9tu Iljk,rs)Viv = Urs,tu,v 

are determined by the ancillarity requirement. The solution to the second equation 
is not unique. 

For the c~-quantile of p(. I Y~) to be an approximate conditional confidence 
limit for 01, it suffices to show that the statistic W~ is independent of the ancillary 
A to second order, locally at 00. The second order independence follows if the 
third-order joint cumulants of W~ and A satisfy 

(2.2) cov(W~,Ar~) = O (1) cum(W~, W~,A~) 

:O(1)  cum(W~,A~8,At~):O(1). 

We now proceed deriving approximations for these cumulants to show that they 
vanish up to the required order. An asymptotic expansion of W~ in terms of the 
Op(l) quantities R's is obtained as 

(2.3) 

where 

= - 

= w x  + + op  , 

1 (2yi,J(~l i -- 9~i)f{ j @ L~i,rijJ,Slllr.sf~i]~j 
\ 

--l/l'l~l(f~ll ~-9~l~t @lYilllli!j~j)-~- (lyl'l~l)2~) }, 
and C is a constant function of 0o, not depending on n 

C = ~ 1 0ull u~'3ulij + _ _  
2Ull 001 2 6 ' 

by substituting into (2.1) the following expansions 

( 2 1 ~ i ' J Z l i Z j  @Ni'rgJ'Sl~lrsZiZj~ (1> 
~/~(001 __ 01 ) = __~1,1 Zl _f_ 2 ~  / @ Op , 

( - L l l ) - 1 / 2  = (/~ 1,1) 1/2 { 1 -  +t~l,l(Zll--Fbilal%i,jzj)} --Op ( 1 )  , 
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Combining the orthogonality condition with the cumulant formulae, derived in 
Lemma A.2 (see the Appendix), we obtain, after some algebra, that 

c o v ( W n , A r s )  = - Px~'I (Pl,rs -- ~ 5 , i ' J / ~ i s , j , r s )  + 0 ( 1 )  , 

cum(W~, W~, A ~ )  (1) 
~/~ (5,1,Z,rs -~- 25,z'Y s,l,jl@s,li -- 5,1'15,1,1/@s,ll -- 2~sY l/1,il/1,j ) ~- 0 

cum(Wn, A,s, Ate) 

= -- (l/1,rs,tu -- Pl,iiPrs l/tu,jk -I- Ptu l/Jk,rs)) @ 0 . 

At this stage we substitute the explicit formulae for the constants 3's and take 
into account that u.,~t = 0, to deduce that 

cum(V~n, Wn, Ars ) 
5,1,1 

- x/~ (5,1,1,~, + 25,~s,11 - 5,~,n - (5,~,,kl + 5,~,~,l)5,i'ks,J'Zs,l,is,l,O) 

+o(0 
- , / ~  ( -1 ,~ ,~ ,  + 5,~,~1 - ( 5 , ~ , 1 ,  + 5,~s,~,1)) + o 

o(0  
(1) (0 

c u m ( W n , A r s , A t u )  : - - g  ~ ( 5 , a , r s , t u - -  5,1,rs,tu) ~-O = 0  

as had to be proved. 

Remark 1. Assume for simplicity that the nuisance parameter is one dimen- 
sional and consider the signed log likelihood ratio statistic for testing a given value 
of 01 

Zdev = sgn(O01 -- 01 ){2 ( / (01 ,02 ,  Yn) -- /(001,02, Yn)), 

where 02 is the restricted maximum likelihood estimator of 02 with 01 fixed at 001. 
Regrouping the terms of the modified pivot l/Vn we obtain 

IKVn = [ r  n 1 T2 ~ ( Ll1/3/2]  
6 ~  n 111k- } J 

-(_Llx)I /2  A ^ 

001 2t~11 
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The espressions in the square brackets are the asymptotic expansions in terms 
of the derivatives of L evaluated at 0, of ZdCv and its posterior mean E~(Zd~v) 
respectively (see Ghosh and Mukerjee (1992), for the derivation of the posterior 
distribution of Zd~v). Therefore, W~ has a parametrization-independent expression 
as W~ = Zd~v -- E~(Zd~v) + Op(1/n). Note that in proving the local sufficiency of 
W~ we used an alternative expansion in terms of expected rather than observed 
quantities; W~ in (2.3) is the asymptotic expansion of Zd~v about the true param- 
eter point, and - C / v ~  is its approximate expected value. 

t~emar'k 2. The assumption that 01 is orthogonal to the nuisance parameter 
is nontrivial; for a general non-orthogonal parameter the frequency property of the 
Bayes intervals for 01 does not hold conditionally on the locally ancillary statistic. 

Example. Let Yl,. . . ,Y~ be a sample from the gamma distribution 
f(y, ~, #) = (#/n)~y '~-1 exp(-~y/p)/F(n) and suppose that the parameter of in- 
terest is the mean #, the shape ~c being a nuisance parameter. The joint prior 
density for which the posterior quantiles are approximate confidence limits with 
coverage error O(1/n) conditionally on a locally ancillary statistic as well as un- 
conditionally is 

- 

# 

where ~ '(n) = }-~.i~0 (~ + i)-2 is the trigamma function. An approximation to the 
c~-posterior quantile for the mean, derived by inverting the asymptotic series of 
Lemma A.1, is 

z~ 2z~ + 1 )  
(2.4) /2 1 + ~ - - ~ +  3 n ~  ' 

where z~ is the c~-quantile of the standard normal distribution. 
Alternatively, Barndorff-Nielsen's ((1986), Example 3.3) modified signed like- 

lihood ratio statistic for p, given to the order concerned by 

3v/n~ ~ ' 

follows the standard normal distribution to O(1/n) conditionally on an approxi- 
mate ancillary statistic. Therefore, an approximate conditional confidence bound 
may be determined by solving r* (#) _< z~. Taking into account that the orthogo- 
nality of the parameters implies that ~ ,  = ~ + Op(1/n) and expanding 

= - P)2  + P)3  + o p  , 

we find that the asymptotic expansion of the resulting bound agrees with expres- 
sion (2.4). 
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Appendix 

The following lemma gives the asymptot ic  behavior of /9(001 I Y~) (Peers 
(1965), Johnson (1970), DeBruijn (1981)). 

LEMMA A.1. Under certain regularity conditions (Nicolaou (1991)) i fT~ = 

v/~( Ool - 01) / ~ the posterior distribution function of 01 evaluated at the true 
parameter value 0ol is approximated as 

p(00~ p y~) = ~(T~)  - ~11 
l°g~- - (Tn2 -- 1) Lll/~1116 LiJ~ 1~3 ) ¢(Tn) 

where 7r is the corresponding prior density and • and ¢ are the standard normal 
distribution and density function. The hat denotes evaluation of the functions at 
the maximum likelihood estimator O. 

LEMMA A.2. The ordinary and generalized cumulants of R~, R~.~ ignoring 
t e ~ s  of order 0(1/~)  are 

ERr = 0, eov(R~, R~) = ~,~ cum(R~, R~, Re) - "~'~'~ 
, x / ~  ' 

cov(R~ R ~ t ) =  0, cov(Rr R ~ R t ) -  "~'~'t cov(R~,  R t R ~ ) -  ~ ' t ' ~  ' ' ~ '  v ~ '  

cov(R~ R ~ R ~ ) -  "~'~'~ cov(R~,  R ~ R ~ v ) -  ~ ' ~ ' ~  ' ~ / ~ '  ~ '  

cum(RT~, Rt , R~ R~ ) = O, 

cum(Rr,  Rs, Rtu) -- r'r,s,tu cum(Rrs,  Ruv, RtRwz) = O. 

The proof of Lemma A.2 follows from tedious, elementary calculations us- 
ing the formulae (3.2) of McCullagh (1987) to express generalized cumulants  as 
combinations of ordinary cumulants.  
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