
Ann. Inst. Statist. Math. 

Vol. 46, No. 1, 1-19 (1994) 

ROBUST PRIORS FOR SMOOTHING AND IMAGE RESTORATION 

HANS R. KONSCH 

Seminar fiir Statistik, ETH-Zentrum, CH-8092 Ziirich, Switzerland 

(Received December 9, 1991; revised January 25, 1993) 

A b s t r a c t .  The Bayesian method for restoring an image corrupted by added 
Gaussian noise uses a Gibbs prior for the unknown clean image. The potential 
of this Gibbs prior penalizes differences between adjacent grey levels. In this 
paper we discuss the choice of the form and the parameters of the penalizing 
potential in a particular example used previously by Ogata (1990, Ann. Inst. 
Statist. Math., 42,403-433). In this example the clean image is piecewise con- 
stant, but the constant patches and the step sizes at edges are small compared 
with the noise variance. We find that  contrary to results reported in Ogata 
(1990, Ann. Inst. Statist. Math., 42, 403-433) the Bayesian method performs 
well provided the potential increases more slowly than a quadratic one and 
the scale parameter of the potential is sufficiently small. Convex potentials 
with bounded derivatives perform not much worse than bounded potentials, 
but are computationally much simpler. For bounded potentials, we use a vari- 
ant of simulated annealing. For quadratic potentials data-driven choices of 
the smoothing parameter are reviewed and compared. For other potentials the 
smoothing parameter is determined by considering which deviations from a flat 
image we would like to smooth out and retain respectively. 

Key words and phrases: Gibbs distribution, Gaussian and non-Gaussian 
smoothness priors, maximum a posteriori estimation, images with disconti- 
nuities, simulated annealing. 

1. Introduction 

Since the pioneering pape r  by Geman ,  S. and Geman ,  D. (1984) there  has been 
much interest  in the Bayesian approach  to image analysis.  The  basic procedure  
is easy to unders tand.  I t  contains three  ingredients: A Gibbs  r a n d o m  field model  
as the prior,  a model  for image format ion  consisting typical ly  of blur, degrada t ion  
and superposi t ion  of noise, and Bayes formula  to obta in  the poster ior  given the 
image on which the analysis is based. Still the  implementa t ion  is compl ica ted  
by problems like choosing the actual  form and the  p a r a m e t e r s  of the prior  or 
the computa t iona l  difficulties. The  a im of this pape r  is to discuss some of these 
problems in one concrete example  since the tools for a general theoret ical  analysis 
seem to be lacking at this moment .  The  example  we have chosen comes f rom a 
recent pape r  by Oga t a  (1990) where a Monte  Carlo me thod  to es t imate  p a r a m e t e r s  
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of a Gibbs prior has been proposed. The clean image in this example is piecewise 
constant, and the task is to remove added noise without smoothing the edges of the 
clean image. Since there is no blurring or degradation in the image, this problem 
is a classical two-dimensional discrete smoothing problem. One can distinguish 
at least the following classes of priors: quadratic potentials, convex potentials 
with bounded derivatives, potentials with derivatives redescending to zero and 
inclusion of an unobservable edge process (Geman, S. and Geman, D. (1984)). 
Among these classes both the computational difficulties and the potential ability 
to produce the desired restorations increase. Hence one would like to understand 
how much is actually gained by using a computationally more demanding prior. 
The advantage of non-quadratic potentials for these types of problems has been 
stressed by several authors, e.g. Geman and McClure (1987), Besag (1989), Green 
(1990), Geman and Reynolds (1992), and Kitagawa (1987) in a one-dimensional 
setting. The differences between convex and non-convex potentials have not been 
investigated as far as I know. Ogata (1990) reported that a logarithmic potential 
did not produce better results than a quadratic one in this example. As a robustnik 
I believed strongly in the advantages of heavy-tailed models and I wanted to know 
the limits of the methods. Therefore I took up the same example again. This 
paper contains the main results which were quite surprising in many respects. 

In Section 2 we give a precise formulation of our study. In Section 3 we show 
that for quadratic potentials the computations greatly simplify, allowing us for 
instance to compare several methods for choosing the smoothing parameter. In 
Section 4 we discuss convex potentials with bounded derivatives. We show that 
they produce decent restorations for suitably chosen parameters. In Section 5 we 
discuss bounded potentials. We show that simulated annealing is able to come very 
close to the optimal restoration. Parameters are chosen by an ad-hoc argument 
requiring the knowledge of the noise variance and a prototype of a clean image. In 
Section 6 we briefly consider two additional clean images in order to see how well 
the same potentials and parameters perform when the clean image is somewhat 
different from this prototype. Again convex potentials with bounded derivative 
produce good restorations. The results are summarized in Section 7. 

2. Statement of the problem 

0 o Suppose that a clean image ( ij; 1 _< i , j  <_ n) is corrupted by additive Gaus- 
sian white noise (eij, 1 < i , j  <_ n), i.i.d. ~ A/(0, 02). The problem is to estimate 
(0°j) from the corrupted image 

0 (2.1) Yij = Oij + cij. 

We consider here the example of Ogata (1990) where n = 20, o 2 = 1 and 0 ° is the 
following step function 

(2.2) 
121 1 < i < 1 0 ,  l _ < j _ < 1 0  

0o = 1 < i < 10, 11 < j < 2o 
- 1 1 < i < 2 0 ,  1 _ < j _ < 1 0  

0 1 1 < i  <20 ,  11_<j_< 20. 
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The method we are using is the maximizer of the posterior density (MAP) for 
a prior of the following form: 

(2.3) 
(1 ) 

~(o) = z -1 exp 2~-~ ~ ¢((o~j - o~ ) /~ )  
(i,j)~(~,z) 

where (i, j)  ,.~ (k,1) means that the pixels (i, j)  and (k, l) are nearest neighbors. 
This form of the prior seems sufficiently general for the problem at hand. Because 
(O°j) is piecewise constant, there is no need to consider higher-order models (see 
Geman and Reynolds (1992)) where the difference 0ij - 0~l would be replaced by 
linear combinations filtering out polynomials of degree one or two. Also because 
the edges are parallel to the axes, there seems to be no need to include diagonal 
terms, i.e. second nearest neighbors. As concerns the choice of ¢, we are going to 
discuss the following three cases 

¢(x) = x 2 (Gaussian), 

{ x  2 I~1-< 1 (Huber), 
¢(x) = 2 1 z l -  1 Ixl > 1 

x Ix[ < 1 (truncated Gaussian). 
¢(x) = 1 ix] > 1 

In the Huber case, we obtain as ~ ~ 0, ~_2~ ~_~ const, the Ll-case. In the truncated 
Gaussian case 5 = 0 gives ¢(x) = l[x#0] which has been proposed by Leclerc 
(1989). The Huber prior is a representative of the class of convex ¢'s with bounded 
derivative, whereas the truncated Gaussian prior represents the class of bounded 
¢'s. We expect that our findings will generalize to these larger classes, at least 
qualitatively. 

By Bayes formula the posterior of (0ij) given (y~j) is 

(2.4) ~(0 1 y) = Z(y) -1 exp - (2~2)  -~ ~ ( y ~  - 0,;) 2 
i , j  

- (2~2) -~ ~ ~((o~j - o ~ ) / ~ ) ) .  
(i,j)~(k,l) 

Hence the MAP-estimator of (O°ij) is obtained by minimizing 

(2.5) H(OJY)=Z(Y~J-O~J) 2+9 Z e((O~j-O~)/~) 
i , j  ( i , j )~ (k , l )  

where fl = cr2/~ -2. An alternative to the MAP is the posterior mean E[O~j I Y]. I 
do not think that the posterior mean is computationally simpler. When 7c(0 I Y) is 
multimodal, the Markov chain used to simulate the posterior can take a very long 
time to switch from one mode to another. So the multimodal case poses problems 
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also for computation of the posterior mean. Furthermore compared with the MAP 
the posterior mean has more difficulties to bring out edges clearly. This is because 
the location of an edge can vary among different restorations with nonnegligible 
posterior probability. Averaging over these restorations then blurs this edge. For 
these reasons we consider only the MAP. 

The main difficulty in the present example is to obtain enough smoothness in 
those regions where (0°j) is constant without blurring the edges. One realization 
of (Yij) which we are going to use in the sequel is given in Fig. 1. The human 
eye can discover the larger of the two edges, but has difficulties with the smaller 
one. Ad-hoc techniques with moving robust filters are not satisfactory. Figures 
2 and 3 show the result of taking the moving median in a 5 x 5 window and the 
moving shorth in a 7 × 7 window respectively. The shorth is the mean of the 
shortest intervall containing half of the data, see Rousseeuw and Leroy ((1987), 
Chap. 4). It was chosen as a robust estimator which has a small bias even when 
there is a large fraction of outliers on one side. The median performs poorly, and 

b) 

a) 

N 
o 

5 

0 

Fig. 1. Bird's-eye-view (a) and gray-scale image (b) of one realization from (2.1)-(2.2). 
The gray-scales split the range [-3.62, 4.66] of the image into equal intervals. 
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Fig. 2. Bird's-eye-view (a) and gray-scale image (b) of the moving median smoother 
in a 5 x 5 window. Gray scales as in Fig. 1. 
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Fig. 3. Bird's-eye-view (a) and  gray-scale image (b) of the  moving shor th  smoother  in 
a 7 × 7 window. Gray scales as in Fig. 1. 

also the shorth fails to nicely reproduce the smaller edge. So there is a need for 
more sophisticated techniques. 

3. The Gaussian case 

From (2.3) and (2.4) we see tha t  with ¢(x) = x 2 both  the prior and the 
posterior are Gaussian with mean zero. Denote the inverse covariance matr ix  of 
the prior by T-2A, i.e. 

(3.1) Z = Z 2 
i j ,kl  i , j~k , l  

The computat ion of the MAP is in this case greatly simplified by the following 
result giving the eigenvectors and eigenvalues of A. 

THEOREM 3.1. The eigenvalues of the matr ix  A defined in (3.1) are A/j = 
2(2 - cos(w/) - cos(wj)) (1 _< i , j  < n) where w~ = 7c(i - 1 ) /n  and the eigenvector 
to A¢j has components  ei,~ej,1 (1 <_ k, l <_ n) where e/,~ = sin(w/k) - sin(w/(k - 1)) 
for  i > 1 and el,k =- 1. 

PROOF. A can be writ ten as a Kronecker-product 

A = A!~ ) ®/i~ + I~ ® A (x) 

/A (1)' (A(1)) 11 (A(~I))~ 1, (A(~l))ii 2 where (A~l))i,i+l k n ) i + l , i  = - 1 ,  = = = 

(1 < i < n), (A(1))O = 0 otherwise, and I~ is the identi ty matr ix of dimension 

n. It is easily checked tha t  the eigenvalues of A (1) are 2(1 - cos(c~/)) with eigen- 
vectors (e/,~)l<k<~. Hence the result follows from s tandard  facts about  Kronecker 
products,  see e.g. Bellman ((1960), Chapter  12). [] 

Remark  3.1. The fact tha t  eigenvalues of quadratic forms arising for Gaus- 
sian Markov random fields can be calculated without  imposing toroidal boundary  
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conditions has been observed in the stationary case by Speed (1978). One may 
ask if a similar result is available also for other choices of neighbors. Obviously we 
can take 

A = A(~ 1) ® I~ + I~ ® A(~ 1) + "yA(~ x) ® A(~ l) . 

This gives diagonal terms (0ij -0{+1,j±1) 2, but also additional terms for nearest 
neighbor differences at the boundary. In other situations, the eigenvalues of A 
seem much harder to get in closed form. 

R e m a r k  3.2. Because of the free boundary conditions in (2.3), the (O~j) are 
not stationary. In the Gaussian case we can easily compute second moments 
of increments with the help of Theorem 3.1. For instance the variance of the 
difference between nearest neighbors, Var[(0ij -0kl )  2] with (i, j )  ~ (k, l), is 0.7@ -2 
for (i, j )  at a corner, 0.6472 for (i, j )  and (k, l) both in the middle of one of the 
four boundaries, and 0.50T 2 for ( i , j )  in the center of the square. Thus the 0ij's 
are more variable at the boundary than in the center. This property makes the 
model also appealing for field trials. 

Theorem 3.1 allows us to compute the MAP-estimator according to the for- 
mula 

(3.2) 0 = Ddiag((1 + /~ l i )  1)DTy 

where hi = Xij are the eigenvalues of A and the columns of D contain the normal- 
ized eigenvectors of A. The results look similar to Fig. 4 of Ogata (1990), so we 
do not show them here. 

So the only remaining problem is the choice of the smoothing parameter/3 = 
cr2/T 2. This is a long-studied problem and several proposals for data-dependent 
choices of/3 have been made in the literature, see e.g. Hall and Titterington (1986), 
Kay (1988), Wahba (1990). Some of them assume o.2 to be known, others allow 
both cr 2 and r 2 to be unknown. We will discuss briefly the following methods: 

1. Minimizing estimated mean square error: It is easily checked that 

2 T 2 o .2 E ( 1  -/3Ai)/(1 +/3Ai) + E(/3Ai/(1 + GAi)) (D y)~ 
i i 

is an unbiased estimator of ~ i ( O i  - Oi) 2. Hence we can choose/3 by minimizing 
the above expression. 

2. Variance tuning: By the law of large numbers ~ e~ ~ n2cr 2. The unknown 

errors ei can be replaced by the residuals yi - 0i. This leads to estimating ~ by 
solving }--~(Yi - Oi) 2 = n 2cr2, i.e. 

+ (DT Yh2 = n2o.2. 
i 

3. Variance tuning with equivalent degrees of freedom: The residuals Yi - t){ 
have smaller variance than the ei. This can be taken into account by the so-called 
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equivalent degrees of freedom (Hall and Titterington (1986)) which gives in our 
situation: 

2 T 2 G2 ~(gA~/(1+gA{)) (o y)~ Z g A ~ / ( I + g A ~ ) .  
i i 

4. Marginal likelihood estimation: The marginal log likelihood of the Yi'S is 

E log(G2 -- T2/Ai) Jr- E ( G  2 + T2/A i ) - I (DTy)  2. 
i i 

So we can minimize this with respect to ~_2 for given G 2 or with respect to both G 2 
and m 2. A small prob]em arises here because the sma]]est eigenva]ue is zero. We 
simply exclude this eigenvalue from the sum above. 

5. Generalized cross validation (see Wahba (1990)): In our situation, this 
amounts to choosing/3 by minimizing 

E(flAi/(l +/3 i)) ( Y)i /3Ai/(1 + ~Ai) 
i 

2 

Each of the proposals 1-5 leads to an estimating equation of the form 

(3.3) ~ hi T l ( ~ ) ( D  y)~ = g(9)  
i 

with a suitable choice of hi and g. This equation is easy to solve numerically 
in all cases. In order to obtain some comparison of the methods without doing 
extensive simulations, we calculated approximate means and variances of/~ with 
the following argument. Denote by/30 the solution of 

(3.4) E hi (/3)E[(DTyi) 2] : 9(/9) 
i 

T 2 and set ui = (O Y)i -E[(DTY)~] . If E hi(~o)ui is small compared with E hi(/~o)" 
ED T 2 [( Y)i], it makes sense to consider a Taylor expansion of (3.3) around/30. This 
gives 

T 2 
0 = E(D y){hi(~) - g(~) 

i 

- (D y)~h~(9o) (90) • 
i 

Substituting the last term in brackets by its expectation, we finally obtain 

(3.5) - ~- h~(9o)Z[(D y)~]-g'(9o) • 
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From this we can see tha t  

(3.6) E[/3] - / 3 0  and 

(3.7) Var[/3] = a2(/3o) 

T 2 l 2 -- (90)} 

Table 1 gives numerical  values for the methods  1-5 together  wi th  the op t imal  
fi ob ta ined  by minimizing the sum of squared errors ~-~i(Oi - Oi) 2. Es t ima tes  
wi th  a2 known are closer to the op t imal  value t han  those who do not require 
cr 2. Methods  based on the  marginal  likelihood have smallest  variability, bu t  tend  
to unde r smoo th  more t han  generalized cross val idat ion and minimizing es t imated  
MSE. This  undersmooth ing  is p robab ly  due to the  prior being inappropr ia te  for 
the t rue  image (2.2). A similar phenomenon  has been noticed by W a h b a  (1985) 
for spline smoothing.  

Table 1. Comparison of data driven choices of the smoothing parameter with a Gaussian prior. 
/3 is computed for the image of Fig. 1. SSE(~) is the sum of squared errors. /3o and a(/30) are 
approximate means and standard errors of/) as defined in (3.4) and (3.7) respectively. 

Method /3 SSE(~) /3o a(/30) 

Minimizing estimated 1.52 57.4 2.03 0.49 
mean square error 

Variance tuning 3.59 58.9 5.63 2.09 
Variance tuning with 1.55 57.2 2.90 1.50 

equivalent degrees 
of freedom 

Marginal likelihood 1.21 60.8 1.36 0.18 
with ¢2 known 

Marginal likelihood 0.97 66.0 0.83 0.26 
with cr 2 unknown 

Generalized cross 1.43 58.1 1.27 0.50 
validation 

Minimizing sum of 2.16 55.5 2.03 0.23 
squared errors 

In this compar ison  one should however keep in mind tha t  no choice of fl 
achieves a decent restorat ion.  Ei ther  the edges are smoothed  away or there  is too 
much noise left in the areas where 0 ° is constant .  In view of this and in view of 
the square errors given in Table 1, any choice of fl between 1 and  3 is acceptable ,  
and it is not worthwhile to t ry  to improve the methods .  
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4. The Huber prior 

If ¢ is convex, the quant i ty  H(O ] y) of (2.5) which we have to minimize is 
strictly convex in 0. Moreover H(O ] y) goes to +ec  as any 0ij goes to ±oc.  Hence 
H(O ] y) has exactly one minimum which is global. An algori thm to find this 
minimum which is easy to implement is Besag's (1986) i terated conditional modes 
(ICM). It visits the pixels periodically in a given order and always minimizes 
H(O I Y) by varying only the component of 0 at the current pixel. Naively one 
might think tha t  this algorithm must converge to the MAP. However for a proof 
one needs differentiability of ¢ as noted by Besag et al. ((1991), pp. 9 10). In the 
case ¢(x) = Ix], ICM reaches a fixpoint after a finite number of steps, but  this 
fixpoint is usually very far from the MAP. This was a surprise at least for me. 
The fixpoints (there are many of them) are all the pixelwise minima of H(O ] y), 
and a pixelwise minimum need not be a minimum unless ¢ is differentiable. The 
phenomenon occurs already in the case of two pixels if ]Yl - Y2] < /3. Since the 
absence of computat ional  problems is the main advantage of convex ¢'s, the choice 
6 = 0 is not recommended. 

We are thus left with two parameters ~ /and  6 to be determined. It has been 
suggested, e.g. in Geman and McClure (1987) or Geman and Reynolds (1992), 
tha t  the scale parameter  5 is less crucial and can be chosen on a priori grounds 
like the size of a step in the clean image considered relevant. Based on this we put  
6 = 0.5. The restoration w i t h / f  = 0.75 given in Fig. 4 is disappointing. Varying 

did not help either. First I believed tha t  this shows a failure of convex ¢'s until 
by curiosity I once put  6 = 0.05,/3 = 0.075 (remember tha t  with our choice of the 
parameters /3 /6  should remain constant  as 6 --* 0). The result given in Fig. 5 is 
much more satisfactory. So the value of 6 is crucial here, and for good results it 
must be much smaller than  a step in the image considered to be of interest. For 
small 6, the ICM needs a rather large number of sweeps until convergence an 
indication of the problems tha t  occur when 5 = 0. Nevertheless one sweep of ICM 
is done really fast, so computat ion was not a problem, even for small 5. 

b) 

a) 
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~0 

Fig. 4. B i rd ' s -eye-v iew (a) and  gray-scale  image  (b) of t h e  M A P  wi th  t h e  H u b e r  prior ,  
/3 = 0.75 and  (f = 0.5. Gray  scales as in Fig. 1. 
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b) 

a) 

Fig. 5. Bird's-eye-view (a) and gray-scale image (b) of the MAP with the Huber prior, 
~ = 0.075 and 5 = 0.05. Gray scales as in Fig. 1. 

The choice of the smoothing parameter/~ was made by the following ad-hoc 
argument. For a lower bound we require that a single spike in a flat region is 
effectively smoothed out. So assume that 0k~ = const, for ( k , l )  ~ (i, j ) ,  y~j = 

const. + z and consider ~ij minimizing H(O ] y). One obtains 

So very large spikes will only be reduced by a constant. This is a consequence of 
assuming normal errors. But for 5 << cr and/~/~ _> 0.75a all practically occuring 
spikes will be reduced sufficiently. 

For an upper bound we require that reasonably large patches in the image 
should be retained. Assume first that the true image 0 ° of (2.2) is known. Then 
we consider the following two restorations 0 (1) and ~(2) 

where the rn~'s are the means of the Yij'S in  each of the four quarters. So in ~(2) 
the upper half of the small edge has been smoothed out. Now we require that with 
high probability 

(a.2) 

(~.4) H(~(x) I y) ~ H(~(~) ] y). 
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o f  course (4.4) does not guarantee tha t  the MAP is closer to 0(1) than  to ~(2), 
but  it should give an indication for reasonable values of the parameters .  By a 
s t raightforward computa t ion  we have for m2 > mlq-(5, ml  > rna+(5, (ml+m2)/2 > 
m4 +(5 

H(0(2) I Y) - H(~@) I Y) = 200(m1 - m2)2/4  - 10/3(21ml - m~l/(5 - 1). 

Since rnl - m2 ~ A/(1, 0.02), it follows tha t  

(4.5) P[H(~)(2) l Y) -> H(0(1) l Y)] -> 1 - ~((4/3/(5 - 10)2 ~/2). 

The  right hand side is practical ly one for /3/(5 _< 1.5. This explains the value 
/3/(5 = 1.5 we have used. Table 2 shows tha t  values of/3/(5 between 0.75 and 1.5 
give indeed good restorat ions in our case. Note also tha t  the sum of squared errors 
is much smaller than  with the Gaussian prior. 

Table 2. Sum of squared errors for the restoration using the Huber prior with (5 = 0.05 and 
varying/3. 

/5/(5 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 

SSE 26.1 22.1 23.1 25.9 31.1 37.8 45.1 53.1 

One might object  tha t  our way" of choosing the smoothing paramete r  depends 
strongly on knowing the clean image. But  first, this is not t rue for the lower bound 
which is already quite a good value. Second, we can still use similar arguments  
as long as we have an idea for what  kind of clean image our res tora t ion should 
perform well. We then  can compare  as above a faithful res torat ion with one where 
patches and edges we would like to retain are smoothed out. An al ternat ive is 
to use marginal  likelihood est imation as in Ogata  (1990). This requires however 
extensive computat ions .  

Finally we give here an argument  which explains why small values of (5 are 
needed. We note tha t  the MAP 0 is determined as the solution of 

0 = - 2 ( > j  - &;) +/3/(5 ~ ¢'((&j - 0~z)/e) 
(k,l)--(i,3) 

= - 2 ( > j  - 0~)  + 2/3/(5 2 y ~  x((&~ - 0~,)/(5)(&j - ~k,) 
(k,l)~(i,j) 

where ;~(x) = ¢'(x)/(2x). This  suggests the following i terat ive algori thm to cal- 

culate 0: P u t  0 (°) equal to the res torat ion with a Gaussian prior and smoothness  
parameter/3/(52. Then  calculate i terat ively for m = 1, 2 , . . .  

ar °lin°/zI   - ° j/2 + 9j 2 z ,  j 
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where  b('~)(i,j, ~,l) ~ H~(m-L) ~(,~-1) ~(~) = Xk[eij --~kZ )/6). So each is the  r e s to ra t i on  wi th  

a Gauss ian  prior,  s m o o t h i n g  p a r a m e t e r / ~ / 6 2  and  weights  for the  b o n d s  be tween  

ne ighbor ing  pixels. This  i tera t ive  p rocedu re  is exac t ly  w h a t  one ob ta ins  f rom the  

dual  edge mode l  of  G e m a n  and  Reyno lds  ((1992), Sect ion 3). N a m e l y  ¢ ( v  ~ )  is 
concave  and  wi th /3(b)  = 1/b we have 

~b(x) = inf (bx 2 + ~ ( b ) ) - l .  
0<b<l 

From this it can be shown that the procedure converges to the MAP. Ideally the 
weights should be zero at an edge and one otherwise. For fl = 0.75, 6 = 0.5 the 
weights b (I) are unity for all horizontal bonds except one where it is 0.94. The 

vertical bonds not crossing the edge are all unity, and those crossing the edge are 
given in Table 3. This suggests that with these parameters the MAP will bring out 

the larger edge a bit clearer than the Gaussian restoration, but the smaller edge 

will not change. This is confirmed in Fig. 4. In contrast, for fl -- 0.075, 6 = 0.05 

the weights b (1) are less than one for bonds close to either of the two edges, cf. 

Fig. 6. This explains the relative success of the restoration with these parameters. 

Unfortunately we are not able to compute analytically which values of 6 give good 

weights b (I), as a function of the size of patches and edges relative to the noise 

variance. 

Table 3. Weights b (1) for vertical bonds crossing the edge in the clean image for fl = 0.75 and 
6 = 0.5. The weights are defined in the text. 

column number 1 2 3 4 5 6 7 8 9 10 

weight .73 .75 .56 .70 .81 1.0 1.0 1.0 .98 .81 

column number 11 12 13 14 15 16 17 18 19 20 

weight 1.0 1.0 .88 1.0 .77 .90 .96 .83 .63 .81 

a) b) 

Fig. 6. Gray-scale image of the weights w(I) for horizontal (a) and vertical (b) bonds 
for /3 = 0.075 and 6 = 0.05. The weights are defined in the text. Gray scales split the 
interval [0, I] into equal intervals. 
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5. The truncated Gaussian prior 

We begin by discussing the choice of the smoothing parameter /9, using the 
same arguments as in Section 4. For the lower bound, the analogue of (4.1) is 

(8.1) 0ij = const. + { mm62/(4/9 + 62) ifif Izllzl >< (4/9(4/9 ++ 62) 1/262) 1/2 

From this we see that for 6 << cr we should have/9 _> 3or 2 in order to smooth out 
spikes occurring under Gaussian noise. On the other hand for the upper bound 
we again compare the restorations 0 (1) and 0 (2) of (4.2)-(4.3). We have 

H(0(1) l Y) - H(~(2) 1!1) = 200(ml - m 2 ) 2 / 4 -  10/9. 

Hence 
P[H(0(2) ]Y) > H(0(1) I Y)] > 1 - 0((i0/9) I/2 - 501/2). 

In order to have the right hand side dose to one, /3 should be _< 2. Hence with 
this prior it seems difficult to achieve decent local smoothing without removing 
relevant structure with non-negligible probability. In our specific realization both 
TYt 2 - -  T;% 1 and m4 - rn3 were very close to one, so here /9's larger than 2 can be 
used. 

A second problem with this prior is the computation of the MAP because 
H(.  I Y) has a large number of local minima. In particular, the result of ICM 
depends strongly on the starting value. For instance taking the observed image 
itself as starting value gives poor results. The results with the restoration based 
on the Huber prior (/9 = 0.075, 6 = 0.05) as the starting value are shown in 
Figs. 7-9 for/9 = 4 and various choices of 6. With/9  = 2 the pictures look very 
similar except for some additional outliers which are not smoothed out. So with 
6 = 0.5 the smaller edge disappears whereas with 6 = 0.05 many false edges are 
introduced. The choice 6 = 0.25 seems to be about right. 

One might wonder whether this sensitivity to the choice of 6 is reduced when 
looking at the global minimum. I have experimented with ICM for different start- 
ing values, including the clean image. From this I conjecture that for/9 _> 2, 6 = 0.8 
and/9 = 4, 6 = 0.25 the global minimum preserves only the larger edge whereas 
for/9 _< 4, 6 = 0.05 and/9 = 2, 6 = 0.25 it preserves both edges. So the choice of 6 
seems to be important also for this prior, and rather small values are required for 
a faithful restoration. However it seems that the smaller 6, the more local minima 
exist. The question thus arises whether there is an algorithm which comes at least 
close to the global minimum. The algorithm most widely discussed in the imaging 
literature for this task is simulated annealing, Geman, S. and Geman, D. (1984). 
We restrict ourselves in the following to the limiting case 6 : 0 because small 6's 
are interesting. Moreover for 6 = 0 the problem becomes discrete which simplifies 
the algorithm to some extent. Namely in order to compute the MAP for 6 = 0, 
we only have to partition the set of pixels {1 , . . . ,  n} 2 into connected components 
where the restoration is constant. Then the restoration is equal to the mean of 
t h e  Yij's in each component. The effect of the prior is to add a roughness penalty 
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b) 

a) 

N 

"T 

~o 5 -~ 

Fig. 7. B i rd ' s -eye-v iew (a) a n d  gray-sca le  image  (b)  of t h e  resu l t  of I C M  w i t h  t r u n c a t e d  
G a u s s i a n  p r io r , /3  = 4 a n d  6 = 0.5, us ing  t h e  r e s t o r a t i o n  of Fig. 5 as s t a r t i n g  value.  G r a y  

scales as in Fig. 1. 

b) 
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Same  as Fig. 7, b u t  w i t h  6 = 0.25. 

b) 

a) c~ 
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Fig. 9. Same  as Fig. 7, b u t  w i t h  6 = 0.05. 
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equal to /3 times the length of boundaries to the lack of fit t e rm  } - ] ( Y i j  - Oij) 2. 
Hence when looking at a fixed pixel, it may either belong to the same component 
as one of the neighboring pixels or it may form a component by itself. The change 
in H(O I Y) for these possibilities is easily computed. So we used the following 
variant of simulated annealing with Metropolis' algorithm. 

1. Choose a temperature schedule (T~)k=l ..... N. 
2. Choose the initial partition by having each pixel form a separate component 

and p u t k = l .  
3. At step k do the following: 
(a) Choose a pixel ( i , j)  at random. 
(b) Modify the current partition by letting (i, j)  belong to a different compo- 

nent, randomly chosen among all possibilities. 
(c) Compute the change A in H(. ]y) between the current and the modified 

partition. 
(d) Make the modified partition to the new current partition with probability 

min(1, exp(A/Tk)). 
4. Increase k by 1 unless k = N and go back to 3. 

Some care is needed at step 3(b) because it might happen that the modified par- 
tition has no longer connected components. In such a case we kept the current 
partition and increased k by 1. A drawback of this is that the algorithm is not 
parallelizable because we need the whole partition to check whether the compo- 
nents are connected. It is easy to see that  with the above transitions we can get 
from any partition to the partition consisting of one single component and vice 
versa. This is needed for the application of simulated annealing. 

I experimented with the above algorithm, taking /3 = 2 and /3 = 4 and a 
linear temperature schedule between 4/3/log(2) and/3/log(n2). It turned out that 
for good results N had to be 2000n 2. With /3 = 4 we then came very close 
to the restoration (4.2), only a few pixels were misclassified. With /3 = 2 the 
results were not as good. The restorations obtained had in addition to the four 
big components several small groups of outliers which were not smoothed away. 
Presumably (4.2) is still the MAP for /3 = 2, but there are other restorations 
where there is only a small difference in H(0 I Y). Still with /3 = 4 simulated 
annealing passed this rather difficult test and produced the desired results. The 
price in terms of necessary iterations is however rather high. The problem with the 
algorithm is that  once we are in a local minimum and Tk is low, then a long time 
is spent until the current partition is actually changed. It ought to be possible to 
speed up the algorithm at this stage. 

In Leclerc (1989) a different algorithm has been proposed. It chooses a de- 
creasing sequence (Sk ~ 0. At step k, ICM with (5 = (Sk and the current restoration 
as starting value is used to obtain the next restoration and then k is increased 
by one. We were unable to make this algorithm work. In order to bring out the 
smaller edge, 6 has to be small. When we finally reached a small enough (5, this 
smaller edge had already been smoothed out. 
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6. Two additional examples 

Here we briefly repor t  on the results we obta ined with our methods  in the two 
cases 

(6.1) 0i °. = 0 

and 

1 + 0.05(j - 0.5) 1 < i < 10 
(6 .2)  = - 1  + o . 0 5 ( j  - 0 .5)  11 < i < 2o 

respectively. The  noise (e~j) was the same as the one which was added to (2.2) to 
produce Fig. 1. The  noisy images are shown in Figs. 10 and 12. Wi th  (6.1) we 
wanted to see what  happens when we have more smoothness than  we expected.  
Also it gives us a check tha t  the techniques do not produce edges which are not 
there. Wi th  (6.2) we wanted to see whether  the techniques can distinguish between 
smooth changes and jumps.  In these two examples we always used the same 
parameters  ~ and (~ as before. The  aim was to see how well we can do when the 
t rue image is different from the p ro to type  used to determine the parameters .  

The results from using the Huber  prior with (~ = 0.05 and ~ = 0.075 are shown 
in Figs. 11 and 13. The  restorat ions look quite good. Note tha t  the Gaussian prior 
would have again difficulties with the edge in (6.2). It could of course do very well 
with (6.1) when we choose a large smoothing parameter .  But  in order to achieve 
the same sum of squared errors as the Huber  prior, we have to pu t / 3  ~ 20 which 
is very different from the opt imal /~ for (2.2). 

Wi th  the prior ¢(x) = 1[~¢0 ] there  are two questions: W h a t  does the MAP 
look like, and how close can we come to the MAP with simulated annealing? Let  
us first discuss (6.1). Then  I am quite sure tha t  the MAP for/~ = 4 is the constant  
res torat ion equal to the ar i thmet ic  mean of the observations. However simulated 
annealing could not find this res torat ion even when I increased the number  of 
sweeps to 3000n 2. It typically ended with 3 or 4 connected components .  Wi th  
/3 = 2 annealing left also addit ional  isolated outliers unsmoothed.  So in this case 

b) 

a) , t  

N 

Fig. 10. Bird's-eye-view (a) and gray-scale image (b) of (6.1) with added noise. The 
gray-scales split the range [-3.24, 3.11] of the image into equal intervals. 
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Fig. 11. Bird's-eye-view (a) and gray-scMe image (b) of the MAP for Fig. 10 with 
t3 = 0.075 and 6 = 0.05. Gray-scales as in Fig. 10. 
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Fig. 12. Bird's-eye-view (a) and gray-scale image (b) of (6.2) with added noise. The 
gray-scales split the range [-3.24, 4.58] of the image into equal intervals. 
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1o- ~0 ~5 20 

O0 S 

Fig. 13. Bird's-eye-view (a) and gray-scale image (b) of the MAP for Fig. 12 with 
,~ = 0.075 and 6 = 0.05. Gray-scales as in Fig. 12. 
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the MAP would be the optimal restoration, but I could not solve the computational 
difficulty. 

Finally in the case of (6.2) I believe that the MAP with fl = 4 has two 
connected components {(i,j);i <_ 10} and {(i,j);i > 10}. With fl = 2 the MAP 
has presumably the 4 components {(i,j);i < 10,j _< 14}, {(i,j);i < 10,j  > 14}, 
{(i,j);i > 10, j <_ 15} and {(i,j);i > 10,j > 15}. Again we could not quite reach 
the MAP with simulated annealing. It produced one or two additional components 
for fl = 4 and several additional components with fl = 2. So in any case this prior 
fails for the image (6.2). 

7. Discussion 

We have shown that in our example it is possible to restore the edges with 
a Gibbs priors which penalizes large differences between neighboring pixels less 
severly than a Gaussian prior. There seems to be no need to introduce an un- 
observable edge process here. Also the main improvement occurs when passing 
from a quadratic to a convex potential with bounded derivative. In this case the 
computation of the restoration is rather easy. The absolute value potential which 
is the limit of the scale parameter going to zero should however be avoided because 
it makes the computation of the MAP difficult. Using a bounded non-convex po- 
tential allows an almost perfect restoration provided one has an algorithm which 
attains the global maximum of the posterior distribution. We have shown that at 
least in one case simulated annealing can do this. Still it is doubtful whether the 
slightly improved restorations are worth the much larger computational effort. 

For all our results the good choice of both the scale and the smoothing param- 
eter are crucial. The scale parameter should be much smaller than the steps in 
image. One possible interpretation for this is that we should use potentials which 
are concave for all positive arguments. The smoothing parameter has been chosen 
by considering what happens to constant regions of different size and height in an 
image. It would be interesting to know whether Bayesian likelihood and ABIC 
(Akaike (1980)) give similar parameter and model choices. This would require 
high-dimensional integrations as in Ogata (1990). Finally there is the question 
how our findings generalize, e.g. to more complex images and situations with blur. 
It is clear that more complex images require additional terms in the prior, but  
with such modifications we expect a similarly good performance of robust priors. 
The examples in the last section give additional evidence for this. 
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