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A b s t r a c t .  When random samples are drawn from a 3-parameter distribution 
with a shifted origin and the observations corresponding to each sample are bi- 
nary, criteria for the existence of minimum contrast estimates are given. These 
criteria can be drived by a method, called the probability contents boundary 
analysis. The probabilities of the existence of maximum likelihood estimates 
and least squares estimates are evaluated, by simulation with 1000 replica- 
tions, in the case where the underlying distribution is a 3-parameter lognormal 
distribution or a 3-parameter loglogistic distribution. 
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1. Introduction 

Suppose tha t  individuals exposed to a level, x, of a stimulus are observed for 
the occurrence of a certain response. Such observations are called binary response 
data.  Impor tan t  fields of application are: (i) Bioassay, where, different level of 
stimulus may represent different doses of a toxine, and the binary response is dea th  
or survival (see Finney (1971)); (ii) Analysis of survival data,  where, different level 
of stimulus may represent different elapsed time, and the binary response is failure 
or survival (see Elandt -Johnson  and Johnson (1980)). Similar si tuations arise in 
many  other  fields (see Mann et al. (1974), Cox and Snell (1989)). 

It is usual to model the relation between the level x of stimulus and the 
probabil i ty  P(x)  of a response as H ( P ( x ) ) =  ah(x) +/3, where the parameters  c~ 
and ~ are to be est imated.  The stimulus me tamete r  h(x) is usually taken to be a 
logarithmic function of x. Some of typical  choices of the response me tamete r  (or 
linearizing t ransformat ion)  H(z)  tha t  have been used in the l i terature  are given 
below: 

(i) The  logit t ransformat ion  H(z)  = log probit(z) ;  
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(ii) The probit transformation H(z) = (I) - l (z) ,  where (I) is the standard nor- 
mal distribution function (d.f.); 

(iii) The log-log transformation H(z) = - log( -  log z); 
(iv) The complementary log-log transformation H(z) = log(- log(1 - z)); 
(v) The angular transformation H(z) = sin -1 x/z. 

Similar transformations called the link function are found in the generalized linear 
model (see McCullagh and Nelder (1989)). 

We shall introduce a general relationship (a 3-parameter model) H(P(x)) = 
ah(z - A) - ~, where the parameters a, ~ and A are to be estimated, and the 
stimulus metameter h(z) and the response metameter H(z) are known and H(z) 
has the inverse function H - l (u) .  The parameter A is called a shifted origin (or 
threshold parameter). The relation as- l (P(z) )  = a log(x  - A) - / ~  was found in 
Finney (1971), in which, however, only the case A = 0 was treated. This model im- 
plies that P(z) is a 3-parameter log-normal d.f. with the shifted origin A. Another 
generalization is found in Prentice (1976). The maximum likelihood estimation 
is adopted in many literature for estimating the true parameter. Simultaneously, 
we are faced with the problem whether the maximum likelihood estimate (MLE) 
based on a binary response data exists or not. As for the maximum likelihood 
estimation based on the interval-censored data from a 3-parameter distribution 
with a shifted origin, there are two useful methods for deriving criteria for the 
existence of MLE's. One is the method of using the Brower fixed point theorem 
(see Cheng and Amin (1982)). This gives an asymptotic criterion. Another is 
the method of using the continuous topological extension of the log-likelihood to 
a compact set including the parameter space (see Nakamura (1991)). This gives 
a criterion for every finite size of sample. However, criteria given by Cheng and 
Amin (1982) and by Nakamura (1991) can not be applied to the binary response 
case. 

The purpose of this paper is to give criteria for the existence of minimum 
contrast estimates based on the binary response data when P ( x )  = H - 1 ( ~ h ( z  - 

A) - fl), that is, P(x) is a 3-parameter d.f. with a shifted origin and when h(s) is 
a slowly varying function at infinity. In Section 2, a minimum contrast estimate 
(MCE) is defined. The MLE and the least squares estimate (LSE) are special 
types of the MCE. A family ~-, in which P(x) is supposed to be, of 3-parameter 
distributions is considered. This family S covers the families adopted in Cheng 
and Amin (1982) and in Nakamura (1991) as a special case. An approach for 
finding a criterion for the existence of MCE's is discussed. In Section 3, criteria 
for a 2-parameter subfamily of the 3-parameter family 5 and for the 3-parameter 
family 5 r are derived. In Section 4, various kinds of practical criteria are given. 
In Section 5, the simulation study is designed to evaluate the probabilities of the 
existence of MLE's and LSE's in the case where the family 5 r is the 3-parameter 
lognormal family or the 3-parameter loglogistic family. 

2. Mathematical formulation and approach 

Let F(a)  (_= / J - - I ( z ) )  be a continuously differentiable distribution function 
on the real line 7% with a positive density function f(z), let h(s) be a strictly 
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increasing and continuously differentiable function on the interval 74+ = (0, ec) 
such that  h(T4+) = 7~ and define t(x, 0) (0 = (a,/3, A) E 74+ x 7~ x 74) by t(x,  O) = 
a h ( x - A ) - , d ,  i f x  > A a n d t ( x ,  0) = - o o i f x _ <  A. Throughout  this paper,  it 
is assumed that  h(s) is a ((¢~, hi),  (~2, h2), ~b)-slowly varying function at infinity, 
that  is, it is real-valued on [So, oc), for some so > 0, and the following conditions 
are satisfied: 

(i) ¢1(s), O2(s) and ¢(s) are non-constant  and positive functions on [.so, oc). 
(ii) ¢2(s) = o(¢~(s)) (s --+ co) and ¢(s) = o(¢2(s)) (s -+ oo). 

(iii) hi (x) and h2 (x) are non-constant  function on 74. 
(iv) For each x c 74, 

h(X zr- 8) = ~(8) 4- hl(X)¢l(8 ) @ h2(x)02(8 ) _L 0(¢(8))  (8 ~ 00). 

For detailed discussion on the slowly varying functions, see Ash et al. (1974), 
Senata (1976) and Hirai et al. (1992). 

We shall give examples of the slowly varying function h(s). 

Example 2.1. 
(i) Consider the case h(s) = log s. By  Taylor's expansion, we see that  h(s) is 

((¢1, hi) ,  (¢2, h2), ¢)-slowly varying function at infinity, where hi (x) = x, h2 (x) = 
- - X 2 / 2 ,  0 1 ( 8 )  = 8 - 1  , 0 2 ( 8 )  = 8 - 2  a n d  ~(S) = 8 3. 

(ii) Consider the ease h(s) = s ~ - s  -~, where 0 < r < 1. By  Taylor 's expansion, 
we see that  h(s) is ((¢1, hi),  (¢2, h2), @-slowly varying function at infinity, where 
in case 0 < r < 1/2, 

h i ( x )  = x, h~(x)  = ~x, ¢1(~)  = ~ - ~ ,  ¢~(~)  = ~ - ~ - 1  and  ¢(~)  = ~ - ~ ;  

in case r = 1 / 2 ,  

h i ( x )  = x,  t~2(x) = x / 2  - x 2 / s ,  

®1(~) = s - ~ / ~ / 2 ,  ~2(~) = s -2 /3  and 0(~) = s-5/~;  

in case 1/2 < r < 1, 

hl(X ) = x, h2(x  ) = f(/~ - 1)x/2, 
O~(s)=rJ 1., @ 2 @ ) = s  *-2  and ¢ ( s ) : s  - < - 1 .  

Especially h(s) = , / ~ -  1/~/~ is called the Birnbaum-Saunders  t ransformation (see 
Mann et al. (1974)). 

Let (X~I , . . . ,  X ~ )  (1 < i < N)  be a random sample from the unknown distri- 
but ion P(x)  - F( t (x ,  00)) E 3 r --- {F( t (x ,  0)); 0 E 74+ × 74 x 74} and suppose that  
information available for each Xij  is only that  its value lies in a proper  subinterval 
Cij of 74 with nonempty  interior. The collection C = {Cij; 1 < i < N,  1 <_ j <_ ni}  
is called a pooled interval-censored (p.i.c.) data.  When  N = 1, the p.i.c, da ta  C is 
simply called an interval-censored (i.c.) data. The p.i.c, da ta  C is called a grouped 
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data  if N = 1 and each Clj belongs to a set of mutual ly  disjoint intervals whose 
union is equal to 7~. The p.i.c, da ta  C is called a binary response da ta  if there 
exists a strictly increasing N sequence {xi} such tha t  Cij C { ( -oc ,  xi), [xi, oc)} 
for all j = 1 , . . . ,  n~ and for all i = 1 , . . . ,  N. Note tha t  the strictly increasing N 
sequence {x~} often corresponds to levels of the stimulus. Cheng and Amin (1982) 
discussed the existence of MLE's  in the case where h(s) = log s, the p.i.c, da ta  C is 
a grouped da ta  and F(x) is the s tandard normal distribution function. Nakamura 
(1991) discussed the existence of MLE's  in the case where h(s) = logs  and the 
p.i.c, da ta  C is an i.e. data. In this paper, we shall t reat  the case where the p.i.c. 
data d is a binary response data and the case N _> 3. 

Remark 2.1. Consider an another model: H(P(x)) = ( ( x -  A)/cr) ~, where 
the parameter  (7, ~, or) ~ 7~ x 7~+ x ~ +  is to be estimated. This model implies 
tha t  P(x) c {G(((x - )~) /a )~) ; -oc  < ~ < oc,7  > 0, a > 0}. Here G(x) is a d.f. 
on ~+ .  Define a l ( x )  = a(exp(x)) .  Then Gl(Z) is a d.f. on 7~ and Gl('71og(x - 
~) - 7  log a) = G(((x - A)/cr)~). Hence this model can be reduced to our model. 

Remark 2.2. Here we adopt the rule: F ( - o c )  = 0 and F(oc)  = 1. 

For est imating the true parameter  00 E 7~+ × ~ x ~ ,  we adopt a positive 
function S(n) of positive integer n and a measure D(z~ p) :  [0, 11 x [0, 1] ~ ( -oc ,  oc] 
satisfying the following conditions: 

(D.1) For every fixed p C [0, 1], D(z,p); as a function of z, is a continuous 
function from [0, 1] into the compact metric space ~ = [-oc,  oc] with the usual 
metric (see Bourbaki (1965)). 

(D.2) For every fixed p c [0, 11, D(z,p), as a function of z, is a real-valued 
and continuously differentiable function on (0, 1). 

Define g : 7~+ x P~ × P~ ~ P~ by 

N 

e(o) = 0)), + D(1  - F(t(x , 0)), 
i=1 

where Hi0 (resp. nil)  denotes the number of Cij, 1 _< j _< ni with Cij = (-oc, xi) 
(resp. C~j = Ex~,oc)). Following the terminology and the definition of Pfanzagl 
(1969) (or Grossmann (1982)), we say g(0) a contrast function and define a mini- 
mum contrast estimate (MCE) for 7~+ x ~ × ~ is a solution 0 E P~+ x ~ × 7~ of 
the following minimization problem: 

g(O) = min e(0). 
0C7~+ xT~xT~ 

Some measures D(z,p) used for the estimation of parameters are as follows 
(see Takeuchi (1975), Berkson (1980) and Cressie and Read (1984)). 
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Example 2.2. 
(i) Maximum likelihood (m.1.): S(n) = 2n and 

D(~ ,p )  = O, p = O, 

oc, p C 0 ,  z = 0 .  

(ii) Least squares (1.s.): S(n) = 1, D(z,p) = ( z -  p)2. 
(iii) Hellinger distance (H.d.): S(n) = 1, D(z,p) = - v / ~ .  
(iv) Kullback-Leibler separator (K.L.s.): S(n) = 2n and 

Remark 2.3. Other interesting examples are the minimum chi-square and 
the least absolute deviation. Unfortunately, our argument  can not cover the least 
absolute deviation: S(n) = 1 and D(z, p) = I z -  P I, because it is not differentiable. 

Our aim in this paper is to give practical criteria for the existence of an MCE 
for 74+ × 74 x 74 when h(s) is a ((¢1, hi),  (¢2, h2), @-slowly varying function at 
infinity. In order to do this, we shall propose an approach called the probability 
contents boundary  (PCB) analysis. Before describing this analysis, we need some 
notat ion and definitions. Let 8 denote the closure of a subset 8 of Euclidean 
N-space 74N and 81 - 82 denote the difference between two subsets 81 and 82 of 
74N. Let expand the parameter  space 74+ × 74 × 74 to the set 74+ × 74 × [ -oc,  oc) 
as follows: 

t(x,(~,~,-oo)) = ~ h l ( X ) - 9 ,  (~,9) •74+ ×74. 

Note tha t  the contrast function g(O) can be expanded to the set 74+ x 74 x [-oc,  oc). 
Let Z = { ( z ~ , . . . , z x )  E 74N;0 < z~ _< . .-  _< zN < 1} and define F : 74+ × 
74 x [-oc,  oc) --+ Z by F(O) = (F( t (x l ,O)) , . . . ,F(~(xN,  O))). The set OF(O) = 
F(@) - F(@) is called the probabili ty contents inner boundary  (PCIB) of the 
family 5c(@) _= {F(t(x,  0)); 0 E E)} with respect to the mapping F ,  where O is an 
arbi t rary nonempty subset of 74+ × 74 x [-oc,  oo). Define L(z) (z E Z) by 

N 

L(z) = Z S(~d(D(z~, ~ 0 / ~ )  + D(1 - z~, n~l/nd), 
i = 1  

where z = ( z l , . . . ,  zN) E Z.  It follows from condition (D.1) tha t  L(z)  is continu- 
ous on the compact set Z and L(F(O)) = f(0). A parameter  0' called an MCE for 
O if 0' C @ and ~(0') = min0~o g(O). 

The following result is fundamental  to our analysis. 

THEOREM 2.1. Let @ be a subset of 74+ × 74 × [-oc, oc). An MCE for (9 
exists if and only if 

(2.1) there exists z* • F ( e )  such that L(z*) <_ ~b(O), 
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where Mb(O) = inf{L(z);  z E 0F(O)} ,  which is defined ~o be oo if OF(O) = 0 
(empty set). 

PROOF. Pu t  Mc = i n f {L ( z ) ; z  E F(O)}  and M = i n f { L ( z ) ; z  E F(@)}. 
The continuity of L(z)  yields the relation M = Mr. It is obvious tha t  Mc < 
Mb(O). Hence M < Mb(O). The existence of an MCE, together with this inequal- 
ity, means tha t  (2.1) is satisfied. Conversely assume tha t  (2.1) is satisfied. Let z* 
be tha t  of (2.1). If L(z*) = M, then an MCE exists. Let M < L(z*). Choose 

e F (O)  so tha t  Mc = L(k).  Then L(~) = M < L(z*) < Mb(O). This means 
tha t  2 E F(O) .  Hence an MCE for O exists. This completes the proof. [] 

In order to make condition (2.1) available, we have to investigate the structure 
N i - -1  N - i  

of 0F(O) .  Put  1 = ( 1 , . . . ,  1), ai(z) = ( 0 , . . . , 0 ,  z, 1 , . . . ,  1), 1 < i < N; 0 < z < 1 
i - 1  N - - i  

and bi(z,z') = (O, . . . ,O,z ,  z ' , . . . , z ' ) ,  1 < i < N -  1; 0 < z < z' _< 1. 

The following result is due to Nakamura (1984) and is useful for deriving a 
practical criterion for the existence of an MCE for 7£+ x 7£ x { -oc} .  

THEOREM 2.2. The PCIB 0F(7£+ × 7£ x {-oo})  can be expressed as 

O F ( 7 £ + × 7 £ × { - o o } ) = { z l ; O < z < l } U  o4(z);0 < z < 1 . 

In order to find the structure of 0F(7£+ x 7£ × 7£), we make the following 
conditions. 

(H.1) The function h(s) is not convex linear, i.e., 

h( x+ (1 - ¢  h(x) + (1 - 

for each x, y E 7£+ and for each u E (0, 1). 
(H.2) hi (x) is continuous on 7£. 

(H.3) l im~__.oo¢l(x+s)/¢l(s) = 1 for all x E 7£. 
Note tha t  condition (H.2) implies tha t  hi  (z) = Kx,  where K is a positive constant  
(see Hirai et al. (1992)). Wi thout  loss of generality, we may assume tha t  hi (z) = x 
by replacing ¢1 (s) by K¢1 (s). 

The following result is useful for deriving a practical criterion for the existence 
of an MCE for 7£+ × I~ × 7£. We do not give the proof here but  details are 
available from the author  if required (see Nakamura and Yokoyama (1992), Hirai 
et al. (1992)). 

THEOREM 2.3. Let conditions (H.1) (H.3) be satisfied. Then the PCIB 



MCE IN BINARY R E S P O N S E  M O D E L  747 

0F(7%+ × 7% x 7%) can be expressed as" 

( 0 OF(7%+×7%×7%)={zl ;O<z<l}U {o4(z);0 < z < 1 
k i=1 

/N-~ }) 

u f(7%+ × 7% × {-oo}). 

Now, we make some remarks about the practical meanmg of the PCIB 
0F(7%+ × g × 7%). The element z l  of the PCIB implies that: (i) In the in- 
terval [xl, xN) of the stimulus, we always observe no response; (ii) In the interval 
( -0% xl) of the stimulus, we observe the response with probability z; (iii) In the 
interval (XN, oc) of the stimulus, we observe the response with probability 1 - z. 
The element ai(z) of the PCIB implies that: (i) In the interval ( -oc ,  x~_,) of 
the stimulus, we always observe no response; (ii) In the interval [xi-1, x~) of the 
stimulus, we observe the response with probability z; (iii) In the interval [z~, x~+~) 
of the stimulus, we observe the response with probability 1 - z; (iv) In the in- 
terval [x~+l,oo) of the stimulus, we observe no response. A similar interpreta- 
tion to above can be obtained for the element bi(z, z I) of the PCIB. The relation 
F(7%+ x 7~ x { -oc})  C OF(Tt+ x 7% x 7%) implies that the two-parameter fam- 
ily {F(c~x - fl); (c~, fl) C 7%+ × 7%} competes with the underlying three-parameter 
family 5 c. Hence, the PCIB can be interpreted as a competing model to the three- 
parameter model. 

3. Criteria 

In this section, we shall give criteria for the existence of MCE's for 7%+ × 7% x 
{ -oc}  and for 7%+ × 7% x 7%. For convenience sake, put p{ = nio/ni and qi = 1 -Pi,  
1 < i < N. By the definition of L(z), 

(3.~) 

(3.2) 

N 

L(z l )  = ~ S(ni)(D(z, pi)+ D(1 - z ,  qi)), 
i : 1  

Z(ai(z)) = ~ S(nj)(D(O, pj) + D(1, qj)) 
j<i 

+ s(~)(D(~,p~) + D(1 - ~, qd) 

+ E S(nj)(D(1,pj) + D(O, qj)), 
j>i 

I<i<N. 

Choose zi (resp. zo) E [0, I] so that L(ai(£i)) = mino<z<l L(a{(z)) (resp. L(201) : 
mino<~<lL(zl)) ,  1 ~ i < N. Put  Dz(z,p) = OD(z,p)/Oz, D~(+O,p) = 
lim~_+oD~(z,p) and Dz(1- O,p) = ]im~_l_oD~(z,p). HereafteL we further 
assume that the measure D(z,p) satisfies the following condition: 

(m.3)  - o o  _< m z ( + 0 , p )  < oo a n d  - o o  < D z ( 1  - 0 ,p )  _< oo for all p ~ [0, 1]. 
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Next theorem gives a criterion for the existence of an MCE (&,/3,-oc) for 
7~+ × 7~ × {-~}. 

THEOREM 3.1. An MCE (&, ~, -oc) for 7~+ x 7~ × {-co} exists if conditions 
(3.3)-(3.5) or conditions (3.6) (3.8) are satisfied. 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 
(3.8) 

L(iol)  _< min L(a/(2i)), 
I < i < N  

N N 

Z S(ni)Dz(4-O,pi) < ~ S(ni)D~(1 -O,  qi) 
i = 1  i = 1  

N N 

and ~ S(ni)Dz(4-O, qi) < Z S(ni)Dz(1-O,  pi), 
i = 1  i = 1  

N N 

Z S(n~)D~(~o,p~)~ < Z S(~dDz(1 - ~o, q~)~; 
i = 1  i = 1  

L(ak(2k)) = rain C(a~(~d) <_ L(2ol) ,  
I < i < N  

Dz(4-O,pi) < Dz(1 -O,  qi) for all i = 1 , . . . , k ,  
D~(4-O, qi) < D ~ ( 1 -  0,pi) forall i = h , . . . , N .  

Paoo~.  Put O = T~+ x 7~ × {-oe} and assume that (3.3) (3.5) are satisfied. 
It follows from Theorem 2.2 that Mb(O) = min(L(2ol), minl<i<N L(ai(2i))). By 
virtue of (3.3), Mb(O) = L(~ol). On the other hand, (3.1) and (3.4) yield that 
2o E (0, 1). Hence 

N N 

(3.9) Z s(~dD~(~o,p~) = Z S(~)Dz(1 - 2o, q,). 
i = 1  i = 1  

Put u = F - l ( z o ) ,  where F - l ( z )  is the inverse function of F(x). Define a path O(s) 
(s > 0) by O(s) = ( s , - u  - es,-oc); where c is an arbitrary real number. Since 

N L(F(O(s) ) ) = }-~-i=1S(ni)(D(F( (xi ÷ c)s 4- u),pi) 4- D(1 - F( (xi + c)s 4- u), qi) ), 

N 

L'(F(O(s))) = Z S ( n i ) ( x i  4- c)f((xi 4- c)s 4- u) 
i=1 

• (Dz(F((x~ 4- c)s 4- u),p~) - D~(1 - F((x~ 4- c)s 4- u), qi))- 

Hence, by (3.9), 

N 

lira L'(F(O(s))) = f(u) Z S ( n { ) ( x i  + c)(Dz(2o,pi) - Dz(1 - ~o, qi)) 
s---~+O 

i = 1  

N 

= f(u) ~ S(ni)xi(Dz(2O,pi) - Dz(1 - Zo, qi)). 
i = l  
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With  the aid of (3.5), L'(F(O(s))) < 0 for sufficiently small s > 0. Noting tha t  
l i m ~ + 0  L(F(O(s))) = L(~01), we see tha t  there exists z* E F (O)  such tha t  
L(z*) < L(#01) = Mb(O). This, together with Theorem 2.1, yields tha t  an MCE 
for (9 exists. 

Assume tha t  (3.6)-(3.8) are satisfied. Theorem 2.2 and (3.6) yield Mb(O) -- 
L(ak(~:~)). The inequalities Dz(+O, pk) < Dz(1 - O, qk) and D~(+0, qk) < Dz(1 - 
0,pk) imply 0 < #~ < 1. Define O(s) (s > 0) by O(s) = (s, sxk - uk , -oc) ,  where 
uk F-l(#/c) .  Noting tha t  L(F(O(s))) N = = ~i:1 S(n~)(D(F((x~ - xk)s + uk),pi) + 
D(1 - F((xi - x~)s + u~), qi)), we have 

L'(F(O(s))) 

= E S(n~)(x~ - x~)f(ai(s))(D~(F(ai(s)),pi) - Dz(1 - F(a~(s)), q~)) 
1_<i<;~ 

+ Z S(ni)(xi - xk)f(ai(8))(D~(F(ai(s)),pi) - D~(1 - F(ai(s)), qi)), 
k<i<_N 

where ai(s) = ( x i - x~ ) s+uk ,  1 < i < N. Hence, by (3.7) and (3.8), L'(f(O(s))) > 
0 for sufficiently large 8. This, together with the fact lim~-~+oo L(F(O(s))) = 
L(ak(#k)), yields tha t  there exists z* C F((9) such tha t  L(z*) < L(ak(#k)) = 
Mb((9). Thus, by Theorem 2.1, an MCE exists. This completes the proof. [] 

In order to give a criterion for the existence of an MCE (&, ~, t )  for T/+ × 7~ × 7~, 
we prepare some notat ion and definitions. By the definition of L(z), 

L(bi(u, v)) = S(ni)(D(u,p~) + D(1 - u, qi)) 

+ Z S(nj)(D(v,pj)  +D(1 - v, qj)) 
j>_i+l 

+ Z S(nj ) (D(O,pj )+D(1,  qj)), l < i < N - 2 .  
j<i-1 

Denote by (gi, vi) E [0,1] x [0,1], 1 _< i _< X - 2 ,  an optimal solution of the 
following minimization problem: L(b~(~, ~i)) = min0<~<~<l L( bi(u, v) ). Choose 
an integer m so tha t  L(b,~(~,~, Vm)) = minl<i<X-2 L(bi(gi, vi)). Pu t  

R(x,  s) = (h(x + ~) - h ( s ) ) / ¢ l ( s )  - h l (~)  - h2(x)¢2(~) /¢ l (~) .  

Note tha t  R(x, s) = o(1) (s ~ oc) and 

(3.10) h(x + ~) = h(~) + hi (~)¢(~) + h~(~)¢~(~) + ~ ( ~ ) m ~ ,  ~). 

Let us make the following conditions. 
(H.4) (O/Os)R(x,s) = o((d/ds)(e2(s)/¢~(s))) (s ~ oo) and (d/ds)(¢2(s)/ 

q)l(S)) < 0 for sufficiently large s > 0. 
(H.5) h'(~) > 0 on n +  a~d h(~) = o(h'(s))  (~ -~ +0).  
Now we^prove the main result which gives a criterion for the existence of an 

MCE (&,/3, A) for ~ +  × ~ × ~ .  
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THEOREM 3.2. Assume that conditions (H.1):(H.5) are satisfied. Let condi- 
tions (3.3) (3.5) or (3.6) (3.8) be satisfied and let 0 = ( ~ , ~ , - o c )  be an MCE for 
~ +  × T~ × { - o c } .  Then an MCE (&, 8, ~) for T~+ × 7~ × Tt exists if any one of 
the following conditions is satisfied: 

(i) e ( 0 ) <  L(b,~(g~,9~))  and 

(3.11) 
N 

Z S(ni)h2(xi) f (&xi  - ~)D~(F(&xi - ,2), pi) 
i=1 

N 

< ~ S(n~)hs(x~)f(&x~ - ~)D~(1 - F(~x~ - ~ ) ,  qi). 
i=1 

(ii) L(bm(it,~, ~,~)) < g(O), 0 < ~t,~ < ©~ < 1 and 

(3.12) E S(ni)h(xi-x.~)Dz(~,p~)< Z S(n~)h(x~-x.~)D~(1-~.,,q~). 
i > m + l  i > m + l  

(iii) L(b,~(it,~,~,~)) < g(O), ~,~ = 0 < ~ < 1 and for some x E (x,~,x,~+l), 

(3.13) Z S ( n i ) h ( x i -  x ) D z ( ~ , p i )  < ~ S ( n i ) h ( x i -  x)Dz(1 - ~,~,q~). 
i > m + l  i > m + l  

(iv) L(b,~(gm, ~?m)) -< g(0), 0 < ~2~ = 4m < 1 and for some x C (Xm-1, Xm), 

(3.14) Z S(ni)h(xi- x)D~(~,pi) < Z S(ni)h(xi - x)Dz(1- ~.~,qi). 
i > m + l  i > m + l  

PROOF. Pu t  3/15 = MD(7~+ × 7~ x 7~). By Theorem 3.1 and by (3.3)-(3.5) 
or (3.6)-(3.8), an M C E  0 for 7~+ × T~ × { - ~ }  exists. Theo rem 2.3 gives Mb = 
min(L(£01),  minl<{<N-1 L(ai(~i)), L (b~(£~ ,  ~?~,)), ((0)). From Theorems  2.2 and 
3.1 it follows tha t  Mb(TE+ ×7~× { - o c } )  = min(L(ff01), minl<~<N L(ai(~i))) > ~(0). 
Hence, Mb : min(t( ), 

Assume tha t  (i) is satisfied. Wi th  the  aid of the above discussion, this con- 
di t ion implies tha t  MD = ~(0) = L(F(O)). Define a pa th  O(s) = (a(s),/3(s), l (s))  
by 

a ( s ) =  • 

Note tha t  ¢1(8) > 0 for sufficiently large s > 0, since h(s) is a ((qh, hi) ,  (¢2, h2), ¢)- 
slowly varying function at infinity. We show tha t  

(3.15) j i m  t(x, 0@)) = t(x, 0) for each x ~ 7~. 

The  expression (3.10) and t(x, O(s)) = a(s)h(x + s) - fl(s) give 

. . . .  +2(s) 
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This, together with ¢2(s) = o(¢1(8)) (8 --+ OO) and R(x, s) = o(1) (s --+ co), yields 
N 

(3.15). From (3.15) and L(F(O(s))) = Y~'-i=l S(ni)(D(F(~(xi, O(s))),pi) + D(1 - 
F(t(xl,  O(s))), qi)), it follows that  lim~--+oo L(F(O(s))) = L(F(O)) = Mb(T~+ x 7~ × 
{ - o c } ) .  Note that  

and 

L'(F(e(s))) 
N 

= ~ S(n{)ff--~t(x{,O(s))f(t(zi, O(s))) 
i = 1  

• (D~(F(~(xi, O(s))),p 0 - Dz(1 F(~(x~,O(,))),q~)) 

o g ¢~(~) 
t ( x , O ( ~ ) )  = ~ h ~ ( , ) g ~ ¢ l ( , )  + ~ R ( , , ~ ) .  

By (H.4), we have 

~ +~(~)]-~ 
~li~moo &d, ¢ l ( s ) J  L'(F(O(,))) 

N 

= ~ S (n i ) f (&x i - , 2 )  
i=1 

• (D~(F(&xi -  ~),Pi) - Oz(1 - F ( & x i -  ~),qi))hz(xi). 

The inequality (3.11) and (H.4) yield that  L'(F(O(s))) > 0 for sufficiently large 
s > 0. Hence there exists z* E F(T¢+ × ~ ×  g )  such that  L(z*) < Mb. By 
Theorem 2.3, an MCE for ~g+ × 7g × / g  exists. 

Assume that  (ii) is satisfied. By the same reasoning as in the previous case, 
we can see that  Mb = L(bm(~tm, Vm)). Put  tl = [ ? - l ( ~ m ) ,  ~2 = -F--l(?)m), Yl = Xrn 
and Y2 = x,~+s. Define O(s) = (ct(s),/3@), A(s)) (s > 0) by 

~2 - -  ~:1 

~(~) = h ( ~  + y~ - > )  - h ( ~ ) '  
9(*) = ~(,)h(s) - el; A ( s )  = y l  - s .  

Then t(y~, 0@)) = ti for a l l ,  > 0 (i = 1,2). It can be easily seen that  for each 
x>_y2, 

h ( 8 )  - -  h ( , s  - -  x - Yl) 
~(X, 0(8))  = h($)  - - ~ - ~ J 7  Y 2 2 : 7 1 )  (~2 - ~1) -~ ~1, 

h'(,) 
2 

= (~2 - ~1) h ( ~ )  - h ( ~  + y~ - y l )  

~(~) ( 1 )  (~-++0). 
+h77 ° 

X > Yl, 

( h ( s  + x - > )  - h ( ,  + y2 - > ) )  
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rn--1 

The  first equali ty and h(T¢+) = 74 yield tha t  l i m ~ + o  F(O(s ) )  = ( 0 , . . . ,  O, ~ ,  ¢3,~, 
. . . ,  5,~) = b,~(g,~, 5,~). The second equality, together  with h(T¢+) = 74 and (H.5), 
yields 

(3 .16)  lim t (x ,  O(s)) = (t2 - /~ l ) (h (x  - Yl) - h(y2 - Yl)). 
~-~+o h ' ( s )  

It can be easily seen tha t  

L ( F ( O ( s ) ) )  = ~ S ( n i ) ( D ( O , p i )  + D(1, qi)) 
i<m 

+ s ( ~ ) ( n ( ~ , p ~ )  + n ( 1  - am,  q ~ ) )  

+ S ( n m + l ) ( D ( v m , P m + l )  -I- D(1 - ~)m, qm+l)) 

+ ~ S ( n i ) ( D ( F ( t ( x i , O ( s ) ) ) , p i )  + D(1 - F ( t ( x i ,  O(s) ) ) ,q i ) ) .  
i>_m+2 

This and (3.16) give 

2 • h (~) , 
hm ~-77-s~ L (F(O(s ) ) )  

~ + o  h (s)  

i>_m+2 

(t2 - t~) (h(x~ - y l )  - h(y2  - y l ) )  

= (t2 - t l ) f ( t 2 )  E S ( n i ) h ( x i  - y l ) ( D z ( 5 ~ , p i )  - Dz (1  - 5,~,qi))  
i>_m+2 

- (t2 - t l ) f ( t 2 ) h ( y 2  - Yl) ~ S(?~i)(Dz(~)m,Pi) - D z ( 1  - Vm, qi)). 
i>_m+2 

Since (~,~,~,~) is a minimizing point  of L ( b ~ ( u , v ) )  over the set {(u,v);  0 < u < 
v _< 1} and since 0 < ~2~ < ~?m < 1, 

s ( ~ { ) ( D z ( ~ , p { )  - D z ( 1  - ~ , q { ) )  = o. 
i>_m+l 

Hence 

lira ~ L ' ( F ( O ( s ) ) )  

= (t2 - t l ) f ( t 2 )  E 
i>_m+l 

S ( n i ) h ( x i  - y l ) ( D z ( v ~ , p i )  - D~(1 - ~?~, qi)). 

We see, by (H.5) and (3.12), tha t  L ' ( F ( O ( s ) ) )  < 0 for sufficiently small s > 0. 
Hence there  exists z* E F(74+ × 74 × T~) such tha t  L ( z * )  < Mb. Hence, by 
Theorem 2.3, an MCE for 74+ × 74 × T~ exists. 
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Assume that  (iii) is satisfied. By the same reasoning as in the proof  of the 
previous case (ii), we have Mb = L(b,~(O,~,~)). Choose x • (x,~,x,~+l) and 
u •  (0 ,5~) .  P u t y l  = x ,  Y2=X,~+l ,  tl = F - l ( u )  a n d t 2  = F  1(5,~). The rest of 
the proof can be carried out by the same way as in the above case (ii). 

Assume that  (iv) is satisfied. By the same reasoning as in the proof  of the 
previous case (ii), we obtain MD = L(b,~_l(0,~?.~)). Hence our assertion follows 
from the same argument  as in the previous case (iii). This completes the proof. [] 

Remark 3.1. Theorem 3.2 gives a criterion for the existence of an M CE  for 
7~+ x 7~ × ~ .  This criterion contains optimal solutions &, /3, ~0, ~i (1 < i < N) ,  
(g~, ~?~) (1 < i < N - 2). In general, these optimal solutions do not have explicit 
expression by the xi's, the pi 's and the qi's. Hence some iterative technique is 
needed to make this criterion available. The iterative techniques and simulational 
results will be discussed in the next section. 

4. Examples 

In Section 3, criteria were given for the existence of an MLE. These criteria, 
themselves, are not practical because the est imation is not specified. In this section 
we shall give practical form of these criteria for two kinds of estimation. Define 

N -- --1 N 
~ '  = E i = I  T~i, P = T~. E i = I  ftiPi a n d  ~ = 1 - 

(i) Maximum likelihood estimation. Let S(n) = 2n and D(z,  p) = - p  tog(z/p) 
((z,p) • (0,1] x [0, 1]), D(O,p) = oc (p • (0,1]) and D(z,O) = 0 (z • [0, 1]). Con- 
ditions (3.3) (3.5) become: 

j - 1  N 
~-~-i=~ nipi ¢ 0 or ~-~i=j+l niq~ ¢ 0 or nj (pj logpj  + qj log qj) _< n . ( ~ l o g ~ + ~ l o g ~ ) ,  
I <_j <_N; 

0 < p < l ;  

N N 

Z ~iqixi < q Z •ipixi" 
i=1  i=1  

In this case, conditions (3.6)-(3.8) do not hold simultaneously. Recall tha t  

N 

2-1g(a,/3,  - o c )  = - Z n~(pi log F(ax i  - /3)  + qi log(1 - F(c~xi - /3)))  
i=1  

N 

+ Z logp  + log qd, • n +  × n; 
i=1  

N 

+ Z ni (Pi log Pi + qi log q~), 
i=1  
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0 < u < v < l ;  l < i < N - 2 .  

As was stated in Section 3, a computational procedure is needed to evaluate the 
values of optimal solutions & and/9. This procedure will be discussed in the next 
section. On the other hand, optimal solutions (%,~i) (1 _< i < N - 2) can be 
represented explicitly by the p's. Put V~l = min{p~, (N - i + 1) -1 ~-~,j>_~pj} and 

vi2 : max{pi, (X - i) -1 }-~-]_>i+l PJ}- Then 

2 (N i)(V/21 __ 2 2(v~1 v i e )  }-~y>i+lPJ, (4.1) vi = V i l '  V i l  -F -- Vi2 ) < - -  

vi2, otherwise; 

, [ h ,  0 _ < ~ < p ~ ,  
(4.2) 

[p~, p ~ < ~ < l .  

Hence the integer m and the value L(b,~(~,~, ~,~)) can be calculated exactly with 
ease computation. The inequality (3.11) becomes 

N niqih2(xi) f (dxi_:~)  

i:l 

N n{pih2(x{)f(&xi - ~) 

The inequality (3.12) becomes 

E 1 - ~ vm 
i > m + l  i>_m+l 

The inequalities (3.13) and (3.14)become 

niq~h(xi - x) nipih(xi - x) 
E 1-gin < E {j,~ 

i > m + l  i>_m-bl 

(ii) Least squares estimation. Let S(n) = n and D(z,p) = ( z -p )  2. Conditions 
(3.3)-(3.5) become: 

N 

~p~ _ ~.p2 _< 
i = 1  

0 < p < l ;  

m i n  iP i  - -  iq i  , 
I<_j<_N ~ i<J " " 

N N 

i = 1  i = 1  

Conditions (3.6)-(3.8) become: 

n 2 2 

i<k  i >k  

: -  m a x  
I<j<_N 

p~ > 0  

q i > l  

{ E - E } 
i<j i>j 

for all i = 1 , . . . , k ;  

for all i = k , . . . , N .  

N 

< ~ n~p~ - n.p~; 
i = 1  
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Recall that  

N 

i=1  

2-1L(bi(u, v)) = u 2 - 2 p ~ u  + (X - i)v 2 - 2 

(~,/~) E 1¢.+ x ~; 

pj v + E p T ,  
\j>_i+l i=1 

0 < u < v < l ;  1 < i < N - 2 .  

Let vii and vi2 be the same as in the maximum likelihood case. Then (~2i, Di) can 
be given by (4.1) and (4.2). Hence the integer m and the value L(b,~(~,~, ~,~)) 
can be calculated exactly with ease computat ion.  The inequality (3.11) becomes 

N N 

i=1  i=1  

The inequality (3.12) becomes 

N N 

Z ~ h ( x ~ -  ~)  < Z ~pih(~- ~) .  
i=1  i =1  

The inequalities (3.13) and (3.14) become 

N N 

~ h ( x ~ -  ~)< Z ~mih(x~- x). 
i=1  i =1  

By the same reasoning as in the previous case (i), a computat ional  procedure is 

needed to evaluate values of optimal solutions & and /~. This procedure will be 
discussed in the next section. 

5. Simulation experiments 

In this section we shall evaluate probabilit ies of the existence of MLE's  and 
LSE's  for 7-£+ x 7~ x 7~, by our criterion (see Theorem 3.2), in the case where 
h(x) = logx and d.f. F(x) is the logistic d.f. or the s tandard  normal d.f. As was 
shown in Example 2.1, h1(£ ) = Z and h2(£ ) = --£2/2 for the case h(x) = logx.  
To make criterion obtained in Theorem 3.2 available, we have to evaluate values of 
20, 2i, &,/),  (di, 4i) (1 < i < N - 2). Recall tha t  these optimal values are defined 
by the following minimization problems: 

L(201) = win L ( z l ) ,  
O<z<l 

L(o4(~i)) = win  L(ai(z)), 1 < i < N, 
0 < z < l  

L ( b i ( g i , © i ) ) =  win L( bi(u, v) ), l < i < N - 2 ,  
0 < u < v < l  

e(&, /3, - o c )  = win e(c~, f l , - o c ) .  
(c~,~)~7~+ x ~ 
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Functions L ( z l )  and L(a~(z)) are those of one variable. Hence, it is easy to cal- 
culate values of z0, zi (1 < i < N) when D(z,p) is convex on [0, 1] or D(z,p) is 
expressed as a simple form. Since c92L(bi(u, v))/Ou 2 = S(ni)(Dzz(U, pi) + Dz~(1- 
u, qi)), 02L(bi(u, v))/cguOv = O, 02C(bitu, v))/Ov 2 = E j > i + l  S(nj)(Dz~tv,pj) + 
Dz~(1 -v ,  qj)), the function L(bi(u, v)) is strictly convex on the convex set {(u, v); 
0 _< u _< v _< 1} if O(z,p) is strictly convex on [0, 1] and has continuous second 
partial derivative D~(z,p) with respect to z. Hence, it is easy to calculate values 
(a~, ~ )  (1 < i _< N - 2). It is difficult to show tha t  g(~, f l , - o o )  is convex on 
the convex set T4+ x T4 even if D(z,p) is strictly convex on [0, 1]. It is shown for 
the maximum likelihood est imation tha t  g(a, fl, - o c )  is strictly convex on T4+ x 
when the density function f(x) is strictly log-concave on ~ (see Burridge (1981)). 
Note tha t  f(x) is strictly log-concave if F(x) is the logistic d.f. or the s tandard 
normal d.f. Hence, the function g(c~, f l , - c o )  for the maximum likelihood estima- 
tion is strictly convex on T4+ x T4 in our case. However, it is difficult to prove 
the strict convexity of g(c~, fl, - oo )  for the least squares estimation. Therefore, we 
adopt Davidon method as an iterative method for finding (&, ~). Davidon method 
does not need the strict convexity of g(~, fl, - oo )  and the twice differentiability of 

9,-oo). 
In this simulation study, we used log x as a stimulus metameter  h(x) and, as 

distributions, the loglogistic distribution and the lognormal distribution. 

The simulation experiments were carried out on NEC-PC9801RA (personal 
computer,  32-bit word). The method of Box and Muller was used to generate nor- 
mal random variables from uniformly distr ibuted deviates which were produced by 
the method of Fishman and Moore (1982). The logistic variables were generated 
from uniform random variables by using the inverse function of distribution func- 
tion. Random variables having the loglogistic distr ibution (resp. the lognormal 
distribution) were obtained from random variable having the logistic distribution 
(resp. normal distribution). 

Consider the loglogistic distribution F(x) = x(1 + x) -1 and the case N = 4. 
Let nl  = n2 = n3 = n4 = n and put  x 1 = t ,  g9 2 = t + l . 5 ,  x3 = t+3 .0 ,  x4 = t+4 .5 .  
Various selections of sample size n we)e taken (n = 10, 30, 50, 100, 500) and 
the values of t used were 0.111 (about equal to the lower 10% point of loglogistic 
distribution F(x)), 0.25 (lower 20% point), 0.428 (lower 30% point), 0.666 (lower 
40% point), 1.0 (lower 50% point), 1.5 (lower 60% point), 2.333 (lower 70% point),  
4.0 (lower 80% point). Simulated results based on 1000 replicates are displayed in 
Table 1. 

Consider the lognormal distribution F(x) = ( 1 / x / ~ ) f ~  e-t~/2dt and the 
case N = 4. Let nl  = n2 = n3 = n4 = n and put xl  = t, x2 = t + 0 . 5 ,  x3 = t +  1.0, 
x4 = t + 1.5. For each of sample size n (n = 10, 30, 50, 100, 500), the values of 
t used were 0.28 (about equal to the lower 10% point of lognormal distribution 
F(z)), 0.43 (lower 2o% point), 0.59 (lower 30% point), 0.78 (lower 40% point), 1.0 
(lower 50% point), 1.3 (lower 60% point), 1.7 (lower 70% point), 2.3 (lower 80% 
point). Simulated results based on 1000 replicates displayed in Table 2. 

On a careful analysis of the Tables 1 and 2, we find tha t  the percentage of 
samples, assuring the existence of an MLE or an LSE, of 1000 samples tends to 
increase as the size n increases and tends to decrease with the increase of the 
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Table 1. Percentages of samples satisfying our criterion (see Theorem 3.2) for the existence of 
an MLE and LSE in brackets, of 1000 simulations of sample size n. 

t 

n 0.111 0.25 0.428 0.666 1.0 1.5 2.333 4.0 

10 91.5 79.4 71.7 59.7 46.6 32.8 27.3 21.3 

(56.8) (55.2) (49.4) (46.7) (45.8) (43.8) (38.1) (34.1) 

30 99.2 96.1 88.7 82.1 66.1 52.5 39.1 28.4 

(82.2) (80.3) (72.7) (65.3) (61.4) (55.2) (51.4) (46.9) 

50 99.9 98.3 94.5 87.9 75.7 61.3 47.4 34.9 

(90.4) (89.4) (81.3) (73.1) (66.0) (60.3) (54.8) (47.4) 

100 100.0 98.7 98.7 96.1 89.1 75.9 61.5 44.8 

(97.1) (95.5) (90.4) (82.6) (72.6) (65.9) (59.0) (54.0) 

500 100.0 99.8 99.6 99.4 98.7 95.8 85.9 68.9 

(100.0) (100.0) (99.9) (98.5) (93.5) (83.6) (75.1) (65.7) 

Table 2. Percentages of samples satisfying our criterion (see Theorem .3.2) for the existence of 
an MLE and LSE in brackets, of 1000 simulations of sample size n. 

t 

n 0.28 0.43 0.59 0.78 1.0 1.3 1.7 2.3 

10 76.7 67.7 57.7 49.5 43.7 36.6 30.0 23.2 

(71.8) (63.7) (58.6) (54.4) (50.6) (46.9) (43.1) (41.3) 

30 90.2 81.5 71.8 65.4 58.4 48.6 42.2 33.7 

(93.4) (94.0) (85.8) (79.8) (67.4) (62.0) (56.7) (50.2) 

.50 96.3 88.4 81.5 73..3 66.3 54.6 47.1 36.1 

(98.5) (97.6) (95.2) (86.6) (81.3) (71..3) (62.6) (53.9) 

100 99.0 93.0 89.3 82.1 73.7 63.5 56.5 51.7 

(100.0) (99.9) (99.1) (95.9) (90.2) (81.3) (71.6) (56.8) 

500 99.9 98.9 99.7 99.3 92.3 85.2 72.8 64.0 

(100.0) (100.0) (100.0) (100.0) (99.8) (98.5) (84.8) (68.2) 

percent point of the distribution. As is evident from these tables, the probability 
of the existence of an MLE (or an LSE) is close to one when n is sufficiently large 
and t lies in between 10% and 50% points of both distributions. These tables also 
send out a warning that  the probability for the existence of the desired estimate 
is low when the sample size is small (_< 30) or when the sampling plan is bad. We 
conclude that  an MLE (or an LSE) does exists if the sample size is large and if 
the sampling plan is well. 
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