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A b s t r a c t .  The unbiased estimator of risk of the orthogonally invariant es- 
timator of the skew-symmetric normal mean matrix is obtained, and a class 
of minimax estimators and their order-preserving modification are proposed. 
The estimators have applications in paired comparisons model. A Monte Carlo 
study to compare the risks of the estimators is given. 
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1. Introduction 

Let X = (xij)  be a p x p skew-symmetric random matr ix  whose upper  triangle 
element xij  (i < j )  is independent ly  and normally dis t r ibuted with known variance 

o 2 = 1. We consider or thogonal ly invariant (equivariant) es t imator  ~- = ~ , (X)  of 
the mean mat r ix  E X  = .~. such tha t  

~ ( X )  '= ' = Q , . , ( Q X Q  ) Q  for all Q ~ O(p),  

where (9(p) denotes the group of p × p orthogonal  matrices. The  skew-symmetric  
mat r ix  X has a singular value decomposit ion 

(1 .1 )  X = UD(l) U' 

with l = ( l l , . . . , l t ) ,  11 >_ . . .  2 It >_ O, t = Ip/2], a vector of the nonnegat ive 
singular values, 

diag 0 ll 0 
D(/) = I ( _ l  I O), (_l 2 l~) 

diag -11 0 ' -12 

' ' ' "  --lt 0 (o 
' ' " '  - l t  0 ,0 ifp----2~+l, 
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and U a p × p orthogonal  matrix.  It can be easily proved tha t  an es t imator  ~- is 
orthogonally invariant if and only if it can be expressed as 

(1.2) ~ = U D ( ¢ ( l ) )  U'., 

where ~(1) = ( ~ l ( l ) , . . . ,  ~t(1)) is a vector of functions of I. 
In this paper,  we discuss orthogona]]y invariant est imation of ~ with the usual 

quadrat ic  loss function 

We shall construct  a class of or thogonal ly invariant est imators  which dominate  the 
minimax est imator  with a constant  risk ~ u B  = X .  Since the risk depends only on 
the singular values ~ = (~1 , . . . ,  ~t), ~1 _>""  _> ~t >_ 0, of =., we can put  .~. = D(~) 
wi thout  loss of generality. 

Our est imation problem has following applications. Suppose tha t  there  are m 
'objects '  (e.g. t rea tments ,  stimuli, etc.) 0 1 , . . . ,  0,~ and tha t  we want to compare  
them. In such a case, paired comparisons me thod  is used frequently, where the 
basic experimental  unit is the comparison of two objects  Oi and Oj (i < j )  and 

for 

is observed as the degree of 'preference'  of Oi over Oj. Put t ing  yj~ = -Y i j ,  Yii = O, 
we see tha t  the observed mat r ix  Y = (Yij) is m x m and skew-symmetric.  For such 
da ta  Scheff6 (1952) proposed an analysis of variance based on the linear model  

Y = M + E ,  

M = a l ~  ~ - I ~oL  ~ + r ,  

with M an m x m skew-symmetric mean matrix,  E = (cij) an m × m skew- 
symmetr ic  random matr ix  whose upper  triangle element £ij (i < j)  is indepen- 
dently dis tr ibuted as N(0,  or2), a an m x 1 main effect vector, 1.,~ = ( 1 , . . . ,  1)' an 
m x 1 constant  vector, and F = Q,~MQ,~,  Q,~ = I,~ - (1/m)1,~1,~' ,  an m x m 
skew-symmetric interact ion effect matrix.  The  ordinary est imators  of M and r 
are Y and Qm YQ,~ ,  respectively. Our orthogonally invariant est imators  can be 
applied to the est imation of M and r .  

The  outline of the paper  is as follows. In Section 2 the joint density of the 
singular values of X is derived. Using the obta ined density, the unbiased estima- 
tor  of the risk of the orthogonal ly invariant es t imator  ~ of (1.2) is given by the 
method  developed essentially by Sheena (1991), who gave another  derivation of 
the unbiased est imator  of Stein's risk of the covariance estimation. In Section 3, 
we give a class of the minimax est imators  of the skew-symmetric mean matrix.  
The  est imation problem of matr ix  mean of Stein (1973) is contrasted with our 
problem here. The  obta ined est imators  are, however, non-order-preservin9 in the 
sense tha t  there  exists .~. such tha t  

(1.3) _> ..-_> V (l) _> o) ¢ 1. 
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In Section 4 one modification method  of making a non-order-preserving est imator 
(including the estimators given in Section 3) order-preserving is presented. The 
modified est imator is shown to dominate the original estimator in the same manner  
as Sheena and Takemura (1992). Section 5 gives a Monte Carlo s tudy to show the 
performance of the estimators proposed in Sections 3 and 4. 

2. Unbiased estimator of the risk difference 

We star t  with deriving the joint density of the singular values of X .  The 
density of X is 

(2.1) 1 } 
(27r)p(p_l)/4 exp - t r ( X  - .~.)'(X - ~)  (dX), 

where (dX) = I]i<j dxij is Lebesgue measure on R p(p-1)/2. Note tha t  we only 
have to t reat  the case of 11 > " '  > It > 0, which holds true with probability 1 in 
our application. In this case, it is easy to show tha t  the orthogonal matr ix  U in 
(1.1) is uniquely determined as an element of the left quotient space blp = O(p)/7-{p, 
where 

{d i ag (H1 , . . . ,  Ht) I Hi ~ (9+(2)} if p = 2t 
~ P =  {diag(H1, ,Ht ,~- I ) [HiEO+(2)}  i f p = 2 t + l  

is a subgroup of O(p), and 0+(2)  denotes the group of 2 × 2 orthogonal matr ix  
with determinant  1. The Jacobian of the t ransformation (1.1) is given by 

(2.2) (~x)  = eonst. # IF[ (l? - 1 9 ) ~ l .  (dv) ,  
odd l < i < j < t  

t 
where dl = ~ I i = 1  dli and [X]odd 7_ X (if p is odd), 1 (otherwise) (Khatri  (1965), 
Lemma 2). Here (d U) in (2.2) is a differential form on b/p, defining an invariant 
measure on b/p such that 

fQ (dU) = L ( d U )  for all I) C Lip, Q E O(p). 
D 

See Kuriki (1992) for the details. Combining (2.1) and (2.2), and integrating it out 
with respect to U, we get the joint density of the singular values li > - .. > It > 0 
of X as 

{1 }[HI Kpexp -~ ~ l i  2 l~ 2 II( l?  -19)~F(l,_=)~l, 
odd i<j  

where Kp = Kp(~) is the normalizing constant,  and 
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with a~ = ( U ' N  U)2,~-~,2~. Here the method of Sheena (1991) is exploited. Noting 
that 

~DY - ai exp 
p j 

we have 

{ 1 3~ } [31~i. 1 OF (2.3) E~[~a~] = ~6 ~exp -~  19 19 1](19 - l ~ ) ~ / [ d l  
odd j<k 

with 
= {(11, . . . ,  lt) I I~ > . . .  > l~ > 0}. 

If ¢i is absolutely continuous as a function of li, by integration by parts we have 

J odd 

• l-i(19 -1~2)2r '~ 1 [ I  dlj 
j<k li=li+l j~:i 

- Kp ~ ~exp  - ~  ~ 1 9  19 
3 odd 

with 

£ i  : { ( 1 1 , - . - ,  li--1, l i 4 -1 , . . . ,  lt) [ l l  > "'" > li--1 > li+l > "'" > It > 0}, 

where we put l0 = oo and lt+l : 0 for simplicity. Expanding the second term of 
R.H.S. of (2.4) we obtain the following lemma. 

LEMMA 2.1. Suppose the conditions that 
(a) ¢~ is absolutely continuous as a funct ion  of li; 
(b) as li ~ I~-1 and l~ ~ li+l, 

j # i  

Then the identi ty  

Oli [ l~ odd jCi li 
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holds provided that each expectation exists, where {X}odd : 23 (if p is odd), 0 
(otherwise). 

Noting that 

112 - Zll 2 - I I X  - Zll ~ = ~ ( ~ 2  - l~  ~) - 2 ~ ( ~  - li)ai, 
i i 

we immediately obtain the unbiased estimator of the risk difference. 

THEOREM 2.1. If  the conditions (a), (b) of Lemma 2.1 are satisfied, the iden- 
tity 

(2.5) E ~ [ I I ~  - zll 2] - E~[IIx - zll~l 

= E ~ [ ~  l £ * ~ - 2 x l ~ ° ¢ ~  Ol~ 

- - (2  -I- {4}odd) E Oi - 8 E li2gbi : lj2-Oj 
i i<j li2 - -  lJ 2 

with ¢i = 1 - ~i/ l i  holds provided that each expectation exists. 

3. Orthogonally invariant minimax estimator 

Using Theorem 2.1 we give a class of orthogonally invariant minimax estima- 
tors. 

THEOREM 3.1. Let c~ and 3 be continuous piecewise differentiable functions 
on (0, oo) such that 

(a) o < ~, 3 <_ 1; 
(b) ~', 3' _> 0; 
(c) E~[~'(E5 l f ) ]  < ~ ,  E~_[3'(Ej lf)J < o ~ .  

If  p >_ 3, then the orthogonally invariant estimator ~ of (1.2) with ~ = l~(1 - ¢~), 

4c~ ( ) ~7" ~"~ 1 + {23 ( j ~  lj2) 1 }odd/~ 9 

is minimax. 

PROOF. It can be checked that the conditions (a) and (b) of Lemma 2.1 and 
that E~[II~, - ~l] 2] < oc. Substituting (3.1), we see that R.H.S. of (2.5) becomes 

li 2 
-1~ . (1  - ~) Z (l? ---19) ~ 

- S t ( t - 1 ) c d +  -43(1-/3) . / ~ - 8 t 3 '  , 
odd 
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which is finite and negative since 

[ ld 1 Ea (li2 _ / 9 ) 2  j < oc 

The proof is completed. [] 
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(if p is odd). 

The estimator O of (3.3) with 6i (3.4) seems the same type as ~cR  defined by 
(3.2), however, it turns out not to have finite risk nor to satisfy the boundary 
condition corresponding to (b) of Lemma 2.1 because the linkage factor contained 
in the joint density of the singular values of Z is of the form H~<j(l~ 2 - lj 2) (not 

of the form l-[i<j (/i 2 - 19)2). 

(3.4) = 2 Z  ! + P 1 
j# i  li2 lJ2 1~2 

with 

In the subclass that  ~ and fl are constant functions, the best choice is that  
c~ - fl - 1/2, i.e. 

(3.2) 6 i = 2  E 1 + {  1 } 
j ¢ i  li2 -- lj2 / ~  odd ' 

We denote the estimator ~ of (1.2) with 6i (3.2) by .~cn (Crude estimator). 
When the variance ~2 is unknown but there exists an independent estimator 

~2 such that  L,~2/~ 2 ~ ~2(~), the estimator 

~ =  U D ( ~ ) U ' ,  ~ = / i ( 1  ~+2¢~2 ) 

with 6i (3.1) is shown to be minimax. See Stein ((1981), Section 7). 

R e m a r k  3.1. Let Z = (z~j) be a p x n  (n >_ p + l )  random matrix whose ( i , j ) -  
th element zij  i8 independently and normally distributed with variance 1. Stein 
((1973), Section 5) considered the orthogonally invariant estimator O = O(Z)  of 
the mean matrix E Z  = O having the form 

(3.3) O = B d i a g ( ~ ( / ) ) C '  = ( I  - B d i a g ( O i ( l ) ) B ' ) Z ,  

where Z = B diag(/d C' ,  1 = (11 , . . . ,  Ip), l~ > . . .  > lp > 0, is the singular value 
decomposition of Z, ~i = li(1 - ¢~). The loss function is quadratic, i.e. 

I [ 0  - OI12 = t r ( O  - O ) ' ( 0  - O ) .  

Stein ((1973), p. 377, (17)) suggested some modifications based on the estimator 
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4. Order-preserving estimator 

The estimator given in Theorem 3.1 is non-order-preserving in the sense of 
(1.3). In this section, we show that non-order-preserving estimator is inadmissible 
and dominated by a modified estimator which preserves the order. We give two 
theorems without proofs, since a large part of them parallels the arguments of 
Sheena and Takemura (1992). 

THEOREM 4.1. Let ~(l) = (~ l ( l ) , . . . , ~ t ( l ) )  be a vector of functions of l = 
( l l , . . . ,  It) such that 

(a) {~i} majorizes weakly {~bi}, i.e. J - J ~i=11/)i > Ei:I ~)i for 1 < j <_ t; 
t -2 t (b) E~=1% -< E~=,  ~bi u- 

if 
(c) there exists ~ such that P=_ (~b 7k ¢) > O, 

then the estimator ;z = SD(~b) U' dominates ;~ = UD(g2) U'. 

One method of constructing ~ from ¢ is given as follows. 

THEOREM 4.2. Let ~ be the unique solution of 

rain { ~ ( f , i  - ~i)21 
t 

i = 1  

I r e  is non-order-preserving, then 

~ o P  = U D ( ¢ )  U ' ,  ~b = ( ~ l ,  . . . , ~ t ) ,  

dominates ~ = UD(~b) U'. 

Note that ~Pl _> "'" _~ ~t _~ 0 can be obtained by the isotonic regression, see 
Robertson et al. ((1988), Section 1.4). 

5. Monte Carlo study 

We study the risk performance of several proposed estimators with a Monte 
Carlo study. The variance ~2 = 1 is assumed to be known. We compare the risks 
of the estimators ~.uB of Section 1, ~cR  of Section 3, ~ o e  of Section 4 (based on 
.~cR), usual James-Stein estimator 

~p(p- 1)- 2 } 
~JS = 1 -  T - - - 7 ]  , - 

~ t r X  X 
X 

and positive-part James-Stein estimator ~'PP. Note that ~JS and ~PP are also 
orthogonally invariant, that ~JS is non-order-preserving, and that ~PP is order- 
preserving. The average losses of five estimators over I00000 replications are given 
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Table 1. Average losses of estimators. 

p ~ UB CR OP JS PP 

4 (0,0) 6.o 4.o 3.2 2.0 1.4 

(1,1) 6.0 4.4 3.9 3.1 2.6 

(2,2) 6.0 4.8 4.4 4.5 4.4 

(5/~/2,5/x/2)  6.0 5.0 4.6 5.4 5.4 

(4, 3) 6.0 5.1 4.8 5.4 5.4 

(5,'5) 6.0 5.0 4.6 5.7 5.7 
(4~/2,3~) 6.0 5.2 5.0 5.7 5.7 

(6,6) 6.0 5.0 4.6 5.8 5.8 

5 (0,0) 10.0 6.0 4.3 2.0 1.3 

( ] ,1)  10.0 6.6 5.3 3.4 2.8 

(2,2) 10.0 7".8 7.0 5.7 5.6 

(5/~/~,5/~/~) lO.O 8.7 8.2 8.0 8.0 
(4,3) 10.0 8.8 8.4 8.0 8.0 

(5,5) 10.0 8.9 8.4 8.9 8.9 

(4x/2,3~/2) 10.0 9.1 8.8 8.9 8.9 

(6,6) 10.0 8.9 8.,5 9.2 9.2 

in Table 1. The result indicates that:  When the nonnegative singular values 
~1,. • •, It of ~ are close together, the orthogonally invariant estimators ~ c R  and 
~oP save much risk; Making an estimator order-preserving is effective; If the singu- 
lar values of ~ are small, ~JS and ~PP are bet ter  than  the proposed orthogonally 
invariant estimators. 
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