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A b s t r a c t .  In this paper we derive the asymptotic normality of L-statistics 
with unbounded scores for a large class of time series. To handle the dependence 
structure, we use the concept of rn(n)-decomposability as an alternative to 
classical mixing concepts. 
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I. Introduction 

Linear combinations of functions of order statistics (L-statistics) are a well- 
established class of statistics in robust  and nonparametr ic  theory. Their  usefulness 
does not remain restr icted to the i.i.d, case but  extends to other  models like t ime 
series; see e.g. Chernoff et al. (1967), Stigler (1969), Shorack (1972), Shorack and 
Wellner (1986), respectively Gastwir th  and Rubin (1975), Koul (1977), Por tnoy  
(1977, 1979), Mar t in  (1978) and Mar t in  and Yohai (1986). 

In this paper  we consider asymptot ic  normal i ty  of L-stat ist ics for a wide class 
of t ime series where we use a new way (re(n)- or asymptotic decomposability) to 
specify the dependence structure.  On the one hand, this new concept allows us to 
avoid the usual mixing conditions tha t  are hard to unders tand  intuit ively since they  
may fail to hold in very decent cases (Andrews (1984)), and tha t  are occasionally 
hard to work with (Pham and Tran (1985)). On the other  hand, the concept is 
ta i lor-made for dealing with linear processes or, more generally, processes with a 
finite order Volterra expansion (Priestley (1981)), and bilinear processes (Rao and 
Gabr  (1984), Chanda  and Ruymgaar t  (1990)). 

We will focus on L-stat ist ics with score functions tha t  are allowed to grow 
indefinitely near the endpoints  of the unit interval. This case is technically more 
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in teres t ing--and more d i f f i c u l t ~ h a n  the case of scores tha t  are zero in neighbor- 
hoods of the endpoints of the unit  interval. For the latter simpler case and a more 
elaborate discussion and illustration of m(n)-decomposabil i ty we refer to Chanda  
et al. (1990). 

For ease of reference, however, let us recall the definition of rn(n)- 
decomposability for a real valued t ime series. Let X 1 , X 2 , . . .  be a stochastic 
process where the Xi  are real valued with a common d . f . F .  Suppose tha t  
for each n E N we have a decomposition Xi = Xi,,~(~) + Xi,,~(~), for some 
rn(n) c {0, 1 , . . . ,  n}, where the Xi,,~(~) have a common d.f. E~(~), and where 

(1.1) the Xi,rn(r~ ) are rn(n)-dependent,  

(1.2) max _> c ( n ) )  _< 
l < i < n  

for  s o m e  - -  0 as  

Such a process is defined as rn(n)-decomposable. It should be noted tha t  the rn(n)- 
dependence mentioned in (1.1) is the ordinary concept for fixed n. For different 
values of the sample size n, however, we allow the order rn(n) of the dependence 
to be different. In many cases rn(n) will increase as a power of n. Working with 
decomposable processes for large n typically requires a specification of the orders 
of magni tude of rn(n), e(n) and ~(n). In interesting examples of t ime series it is 
inevitable tha t  re(n) ~ oo, as n ~ oc; yet in many cases suitable rates of e(n) 
and ~(n) can be obtained for rn(n) << n. 

To prove the asymptot ic  normali ty we use the classical Chernoff-Savage ap- 
proach which was first applied by Moore (1968) to L-statistics. In Section 2 we 
formulate the assumptions and give the main result. In passing we give a first out- 
line of the proof. The necessary tools from empirical process theory tha t  might be 
of independent interest are summarized in Section 3, and the asymptot ic  normali ty 
of the first order terms is dealt with in Section 4. In Section 5 we derive the asymp- 
totic negligibility of the remainder term and, finally, in Section 6 we simplify the 
expression for the variance under an additional weak-stat ionari ty condition and 
give some examples. 

2. Assumptions and main result 

ASSUMPTION 2.1. The underlying process X 1 , . . . , X n  is decomposable and 
hence by definition satisfies (1.1) and (1.2). The common d.f. F of the X~ is 
continuously differentiable on N with derivative f satisfying II/11~ < oc, and 
{x E ~ : f ( x )  > 0} convex. 

Let -~n be the empirical d.f. of the Xi at stage n and Fn the empirical d.f. 
of the transformed random variables ~i = F ( X i ) .  Assumption 2.1 entails the 
decomposability of the {i, since by the mean value theorem we have 

(2.1) ~ = f (X~, ,~)  + ffi,,~f(X~,r~ + of(i,,~) = ~,,~ + ~,,~, 

for random 0 E (0, 1). The common d.f. of the ~i is uniform (0, 1). As usual we 
define the corresponding reduced empirical process by 

(2.2) Un = {Un(t) = nl /2( f 'n( t )  - t ) , t  E [0, 1]}. 
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Throughout this paper the numbers 

(2.3) A,/3, C • (0, oo), 

will be used as generic constants that are independent of all the relevant parame- 
ters, as in particular the sample size n, and that may differ from line to line. 

For each q > 0 and n • N there exists a continuously differentiable increasing 
function gv: [0, 11 --+ [0, 1] with 

(2.4) 
1 q 1 _q] 

gq([O, 1]) C ~ n -  , 1 - ~ n  ; 

eq(t) = t, t • [n - q , 1  -- n--q]; 0 <_ ~ )  < 1. 

The dependence on n is suppressed in the notation. Given a func t ionK: (0 ,1 ) - -+  
we define 

(2.5) Kq(t )  = K(gq( t ) ) ,  t • [0, 1]. 

When K is differentiable we have according to the chain rule that K~ 1) = 

(d/dt)K(6(t)) = t • (0, 1), and hence 

(2.6) IK~l)(t)l ~ IK(1)(eq(t))[, t E (0, 1). 

A particularly useful function is 

(2.7) R(t) = { t ( 1 - t ) }  1 t C (0,1). 

Let us observe that 

(2.s)  0 < max R~(t) _< C n  "rq. 
0< t< l  

To describe the class of L-statistics that we are going to consider, let J : 
(0, 1) --+ N and • : (0, 1) --+ N be given functions. Assumption 2.1 implies the 
continuity o f F  -1 on {x E N: 0 < F ( x )  < 1}; we write ~Y = ~ ( F - 1 )  : (0, 1) --+ N. 
We will focus on statistics of the type 

(2.9) Tn = ~2(x x))dF,~(x)  = - Cn~q2(Xi:n), 
oo Tt i = 1  

where & is obtained from J via (2.5) with q = ~ and c~i = J c ( i / n ) .  It is obvious 
that 

fro 1 ~ Cn~F(~i:~). ( 2 . 1 0 )  Tn d lu~F(t)J~(~n(t))d~n(~) = Tt i = 1  

The latter representation will be used throughout. 
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ASSUMPTION 2.2. The function J : (0, 1) -+ R is twice and the function 
9 F  : (0, 1) + N is once continuously differentiable. For numbers 

(2.11) a,/3 > 0 such tha t  a + / 3  < A, 

they satisfy (j(0) = j ,  q)~) = 9 F )  

IJu)l _< c R  ~+j on (0,1), 

(2.12) I ~ ) 1  _< c R  ~+j on (0,1), 

The parameter  ( in (2.10) satisfies 

1 
for s o m e 0 < A <  2 '  

j • {0,1, 2}; 

j • {0,1}. 

(2.13) 0 < ( < 1/{5(1 - A ) } .  

Because we use J( rather than  Y as a score function, it should be noted tha t  
the scores stay bounded for each n, but  are allowed to tend to oc (near 0 and 
1) at a certain rate when n --+ co. Since we don ' t  want to impose any further 
condition on the distribution of the ~i,,~(~), this additional control of the scores 
is technically very convenient. As it will turn  out, under Assumption 2.1 we may 
replace 9 F  by ~ r , ,  (obtained via (2.5) for a suitable q = r) without  affecting the 
weak limiting behavior of the statistics in (2.10). This replacement has similar 
technical advantages. Let us choose 

(2.14) r = 1/{2(1 - A)}, 

and consider qJF,~ obtained from ~ F  via (2.5) with q = r. Assumption 2.1 guar- 
antees the finiteness of the numbers 

]01 (2.15) #~ = 9F( t )J ( ( t )d t ,  fl~ = 9F,~(t)J¢(t)dt. 

Let us introduce 

f0 
1 

(2.16) ~ = ,l,F,~(t)Jdt~(t))aL~(t). 

Jointly with (2.14) it can easily be shown tha t  

(2.17) ~ / ~ ( T ~ - ~ ) - ~ / ~ ( f ~ - ~ ) L O  as ~ .  

Because ~F,~ is bounded, the statistics 2~ are easier to deal with. 
It follows from the mean value theorem tha t  for t E [0, 1] and On(t) E (0, 1) 

random, we have 

(2.1s) J~(r~(O) = s~ ( t )+~  ~/~u~(oa~)(~+o~(t)~-~/~u~(t)). 
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By substitution in (2.16) we find 

(2.19) ~1/2(~7% _ ~ . )  = Ao~ + AI , .  + / ) . ,  

where the ~]- and/ ) - te rms  are first and second order terms respectively given by 

/o (2.20) Ao~ = ~F,~(t)J<(t)dU7%(t), 

~01 (2.21) Ax~ = U~(t)~F,~.(t)J~n(t)dt, 

jr01 (2.22) /)~ = Un(t)~F,r(~)J~ 1) (t d- On(t)n-1/2Un(t))dF7%(t) - ~lln. 

The next assumption prescribes suitable orders of magnitude for the sequences of 
parameters in (1.2), depending on A in (2.11). 

ASSUMPTION 2.3. Let 4 satisfy (2.13). There exist re(n) = O(nQ,  e(n) = 
O(n-~) ,  as n --+ oc, with 

(2.23) 0 _< p < ¢(1 - 2A), ~- > 1 + 1/{2(1 -- A)}, 

such that 6(n) = n -~, as n -+ oc, with 

(2.24) cr > 1 + 1/{2(1 - A)}. 

Let us write, for brevity, 

(2.25) K7%(t) = qJF,~(t)J((t) + {l[0,~](t)- s} v~Fr(s)J~l)(s)ds., , t C [0,1], 

so that Ao7% + s]17% = E ~ = I {  ~ ( ~ )  - P~},  and consider the triangular array of 
m(n)-dependent centered random variables 

(2.26) 2~{ :/(7%(~i,~(~)) - EK~((/,~(~)) =/(7% (~/,~(7%)) - ;7%. 

Under the assumptions made above, we will prove (Sections 3 and 4) 

(2.27) f107% + J~ln - n -U2 ~ 27%i 
i=1 

7% 

= ~-~/~  Z { ( K 7 % ( ~ )  - ~ )  - (R~(~,~(7%)) - ;7%)} ~ 0 
i:1 

as 7~ --+ OO, 

(2.2s) /)~ m 0 as ~ ~ o o .  

To prove the asymptotic normality of n -~/2 ~{~1 27%{ we may apply Berk (1973) 
(see also Rao (1984)), provided that the next assumption is satisfied. 
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ASSUMPTION 2.4. The following conditions are fulfilled: 

(2.29) 

(2.30) 

Var ~ 2 ~  < c(k- j) for all 
i = j + l  

n ---+°o n 
i=1 

j ,k  e {0,1,... ,~}. 

THEOREM 2.1. When Assumptions 2.1-2.4 are satisfied we have 

(2.31) n~/~(T,-¢~)AH(O,~ ~) as n-~co, 

where f~, may be replaced by #~ (see (2.15)) and ~2 is defined in (2.31). 

3. Tools from empirical process theory 

Some properties of empirical processes based on decomposable models will 
be reviewed here. Proofs will not be given since they  are very similar to those 
in Nieuwenhuis and Ruymgaar t  (1990); see also Chanda  and Ruymgaar t  (1990). 
Since these properties hold true for arbi t rary n there is no need to specify the 
dependence on n of the parameters; in particular we will write m, ~, 6 for the 
parameters in (1.2). In applications, however, these parameters will usually depend 
on n in a suitable way. We will then e.g. choose e = e(n) in such a way tha t  
p(f~c ~ ) < n6(n) = O(n l-~Ar) --~ 0, as n --+ co, where cr A ~- = min{cr, T}. To ( )  - 

f o r m u l a t e  the results we need the function 

(3.1) ¢(A) = 2~ -2 log(1 + x ) d x ,  A > O; ~(0) = 1. 

It should be noted tha t  ¢(A) $ 0 as A T co. For further properties and the role 
this function plays in precise asymptotic  considerations the reader is referred to 
e.g. Shorack and Wellner (1986). We start  with a basic f luctuation inequality tha t  
might be of independent interest. 

THEOREM 3.1. Suppose that Assumption 2.1 is fulfilled. For all n E N we 
have 

(3.2) P ( ~ n ~ "  sup IY~(t)-~(s)l_>~}) 
[ . a < s < t < b  

where f~  -- {maxl<i<n 12<~1 < c}, provided that 

(3.3) ,~ _~ cn l / 2@ Jr- 6), b - a > C(c + 5). 



L-STATISTICS FOR TIME SERIES 693 

Because Nieuwenhuis and Ruymgaart  (1990) only exploit the decomposability 
property of the linear process the proof for the present Theorem 3.1 can be just 
copied. The proof of the next theorem requires only a minor modification of the 
slightly different weight functions that  will be used. For arbitrary 0 < 7 -< 1/2 and 
q > 0 consider the function Rq ~ (see (2.4) (2.8)). For the proof of the next theorem 
the pat tern of the proof of Nieuwenhuis and Ruymgaart  ((1990), Theorem 3.1) may 
be followed by using (2.8) in particular and by partitioning [0, 1] into intervals of 
length [nq] -1. 

THEOREM 3.2. Suppose that Assumption 2.1 is satisfied. For any 0 < ~/ <_ 
1/2 and q > 0 we have 

(3.4) P(~eA{oSUP<ll~(t) lUn(t)[>_/~})  

~ CTY~qexp ( - -~/~2~ {'i~/~Ttq(1-~/)~ 7~1/2 ) )  ' 

where f2~ is as above, provided that 

(3.5) /~ ~ CT?)/21%"/q(c -r- (~), 

As a corollary to Theorem 3.2 let us prove the useful property that,  for any 
0 < ' 3 < 1 ,  

I i }) (3.6) P f~N  F~(t)_>~t ,  f o r n  -q < t < 1 >_ 1 - C m n q e x p  

provided that  (3.5) is satisfied with A = An (l-q)~2. As a mat ter  of fact we have 
P(F~(t) >/3t, for n -q < t < 1) = P(inf~-q<t<l F~(t)/t  > fl) = P(sup~ q<t<l(t - 

~n(t))/t < 1 -  9) >_ 1 -  P(sup~ ~<~<~[u~(~)[/t > n~ /~ (1 -  ~)) _> 1 -  
P ( s u p ~  q<t<l Iu~(t)l/P/2 >- n(1 q)/2( 1 - ~ ) )  -> 1 -  P(suPo<t<l Rlq/21Un(t)l >_ 
An(~-q)/2). The lower bound in (3.6) follows by applying (3.4) with 7 = 1/2 and 
A = An (1-q)/2. 

4. The leading terms 

In this section we will be concerned with proving (2.27) and the asymptotic 
normality of the standarized sum of the Z~i. It follows from Assumptions 2.1-2.3, 
(2.1) and (2.23) that  

(4.1) ~ max ~i.~(n) _< Ilflloce(n)} D f2,(n), E~i,m(~) < Cn-~A*. [ l <i<n ' 

The definition of/~2~ in (2.25) implies that,  for i = 0, 1, 

(4.2) IfC(~{)r _< CRIER; ' -{  on (0, 1), 

(4.3) m a x  IK~({)(t)[ < Cn(~+<(~+{), 
0<t<l 



694 MADAN L. PUPal AND FRITS H. RUYMGAART 

where we use the fact tha t  0 < ¢ < r. 
Employing (4.1) (4.3) and the mean value theorem we see tha t  

(4.4) 
n 

- )) 
i : 1  i : 1  

< nl/2+<a+r(~+l) -crAr ' 

According to the asssumptions and (2.14) we have cr A r - 1/2 - ¢c~ - r(/3 + 1) > 
1/2 + 1/2(1 - A) - r A  - 1/2(1 - A) = 1/2 - r A  > 0, so tha t  the upper  bound in 
(4.4) converges to 0, as n -~ oc. Because I E / ~ ( ( { )  - E/~(~/ , ,~(~))  I _< EI/{~(( i  ) - 

-fi2n({i,,~(~))] we have proved (2.27). 
Let us now choose an incidental parameter  

(4.5) 7 : 1 /A  - 2. 

For such a 7 we have, again using 0 < { < r,  

(4.6) - ~ 2 + 7  sup EI2ni 12+7 <_ C sup 

_< CsupE(R( - 

_< C R-(~+9)(2+~)(t)dt  

+ Cn-~A'n¢~(2+~)+<~(2+~) +<. 

Since o - A T - - r - - ( ( ( ~  +r /3 ) (2- - 'y )  > g A T - - r - r A ( 2 ÷ I / A - - 2 )  = g A T - - 2 r  > 1 +  
1 / 2 ( 1 - A ) - 1 / ( 1 - A )  = 1 - 1 / 2 ( 1 - A )  > 0, it follows tha t  the upper  bound in (4.6) 
is bounded  by a finite number  because, moreover, (c~ +/3)(2  + 7) < A(2 + 7) = 1. 

Finally, let us note  tha t  the choice of p in (2.23) implies 

(4.7) n-l{m(n)}  2+2/~ ---+0 as n - -+oo ,  

because p ( 2 + 2 / 7 ) - 1  < { ( 1 - 2 A ) / 5 ( 1 - A ) } { 2 ( I - A ) / ( 1 - 2 A ) } - 1  = 2 / 5 - 1  < 0. 
Assumption 2.4 joint ly with (4.6) and (4.7) suffice for application of Berk 

(1973) which yields n -1/2V''~ 2 ~ i ~ A f ( 0 , 9 2 )  as n --+ oc. Since we have also 
, Z - ~ i = l  

proved (2.27), it follows tha t  A0~ + A I ~ A £ ( 0 , 5 2 )  as n --+ oc, which settles the 
asymptot ic  normal i ty  of the leading terms. 

5. The remainder term 

This section is devoted to a proof  of (2.28). This may be done with the 
help of the propert ies  in Section 3 in a way similar to tha t  in the i.i.d, case. 
As in Nieuwenhuis and Ruymgaar t  (1990), however, the present s i tuat ion of a 
decomposable process is more complicated and requires control over a larger set 
of parameters .  
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Let us introduce the intervals 

(5.1) [(1) = [0, 2n-¢], I(2) = [2n -<, 1 - 2 n < ] ,  I(3) = [1 - 2n -<, 1], 

and write, for brevity, 

(5.2) t + O~(t)n-1/20~(t) = t + O,~(t)(F~(t) - t) = F~(t), 

and note tha t  F~(t) is a random point between t and F~(t). Now the remainder 
term will be decomposed in to / )~  4 = }-~j=l/)~3, where 

(5.3) J~nj = f gn(f)~!JF, r(t) {J~l)(Fn(t)) - J~l)(~)}d~n(f), j E {1,2,3}; 
(J) 

/0 (5.4) ~)~a = U~(t)g~r,~(t)J~n(t)d{F~(t) - t}. 

Let us single out the subsets 

( 5 . 5 )  = s u p  <_ 
k0<t<l ) 

(5.6) f~n2 = {Fn(t )  >_ ~t Vt E [n-~, l ]}  , 

where the incidental parameter  u satisfies 

(5.7) u = ¢(1 - 2ZX). 

Jointly with (2.14) and (5.7) conditions (2.23) and (2.24) imply tha t  the conditions 
for application of (3.4) and (3.6) are satisfied and tha t  

(5.8) P(ft,~) ~ 1 as n -~ oc, with ['~n = Qe(n) N ~nl  n ~n2. 

Consequently it suttices to prove tha t  

(5.9) C~j=l f~nB~ j  P~O as n---~oc, for j = 1 , 2 , 3 , 4 .  

Our assumptions entail tha t  (note tha t  ¢ < r) 

(5.10) EICnII< CTtU/2fl [~r~(~)/~+a(t) // -- (1) /~1/2(t) d~ ~ CTtU/2 (1) J]~+/3+l/2(t)dt 

<_ Cn u/2+~(~+~)-¢/2 -+ 0 aS n --+ oc, 

because u/2  + ¢(c~ +/3) - ¢/2 = ¢(c~ +/3) - A < 0. Since J~ = J o n / ( 2 ) ,  we may 
apply the mean value theorem once more, which yields 
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where ~ ( t )  is also a random point between t and I)n(t ). It follows that  

(5.12) 

Hence we find by substitution (note that  ¢ < r) 

(5.13) EICn21 < C n - 1 / 2 n "  dt 

Cn -1/2+~ ~ "~  -r~--l(t)dt 
(2) 

<_ C n  -]/2+'+~(~+~) --+ 0 as n -~ oc, 

because -1/2 + r, + ¢(c~ +/3) < -1/2 + ¢(I - 2A) + <A = -1/2 + <(I - A) < 0 

by (2.13). The random variable Crz3 may be dealt with in a way similar to that  of 
C~1. 

Let us now consider C~4 and introduce the parameter 

1 - 2A 1 
(5.14) ¢ : 1 -  ¢ ( 1 - 2 A ) + l p >  1 2 (1 - -A)  + 2 p  > 0 '  

Partitioning the unit interval into subintervals of equal length [n¢] -1, we define 
the left continuous step functions 

(5.15) S~(t)  = 

1 

k 

k - 1  

f o r t = 0 = t 0 ;  

k - 1  k 
for •k-1 -- [nq5 ] < t ~ - ~ ,  1 < /~ < [~q~]; 

k - 1  k 1 
for ~ < t _< [n~---]' 2 [n¢] < k _< InCl. 

We need to decompose Cn4 into 

(5.16) D,,~I = 1~,~ fo 1 

(5.17) D~2 = 1~ n f01 

(5 .18)  Dn3 = lfl~ ~o 1 

1/(t) 

- U~(S~( t ) )gF ,~(S~( t ) )J~I ) (S~( t ) ) }dFn(~) ,  

I) (&(t)) 
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Let us note that 

(5.19) 
In ~ ] 

[D~I] : lf~,~n -1/2 ~--~{gn(s~(~k))~F,~(S~(tk)) 

• J~l)(Sn(f~k))}{Vn(/Jk) -- Yn(}Jk 1 ) }  

~ Cn-1/2n'/2nO { lf~,~ mkax ]Yn(tl~) - Un(tk-1)] } 

Choosing another  parameter  

(5.2o) A - 
1 3 1 3 ( 1  - 2A) 
2 2( (1  - 2A) > 2 5(1 - A) > 0, 

it follows from (3.2) that 

(5.21) P (~n N {n~xlUn(~k) -- gn(~k-1)l > n-N})  

_< P (~ax~k supl<_t<tk Ig~(G(t))-gn(t)l>-~-a) 
< ~ p sup ]g,~(t) - gn(s)l > n -a 

k=l \tk l <_s<t<_tk 
-An-2)' ~ Bn-X 

< C n ~ + P e x p (  n~¢_¢ ¢ \ nl/2_~ ) ) + nCnn-'. 

Condit ion (3.3) is indeed fulfilled, since - A  - 1/2 + ~r A T > 0 and - ¢  + cr A 7- > 0 
as follows easily fl'om the choices we made. In order to show tha t  the upper  bound  
in (5.21) converges to 0 as n --+ oc note  tha t  ¢ - p - 2A = 1 - (5 /2) ( (1  - 2A) - 
p/2 - 1 + 3((1 - 2A) > 0 by (2.23), and tha t  

1 
0 - ~ - A =  1 -  ( ( 1 - 2 5 ) -  ~ -  ~ ÷  4 ( 1 - 2 A )  < 0 .  

Combining these results we may finally conclude that 

(5.22) ]D~I I = Op(T~ 1 / 2 + v ' / 2 - - ¢ - - A )  = Op(1) as n --~ oo, 
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because 

f t . + O - i f - A =  ( ( 1 - 2 A ) + 1 -  ( ( 1 - 2 A ) + ~ p  2 2 + ( ( 1 - 2 A )  

< ~¢(1-2A)- ~¢(1-2A)+ i¢(i- 2A) + ~¢(1- 2A) = o. 

By taking expectat ions o f  a suitable upper  bound it follows tha t  D~2 may 
be dealt with in a similar way a s  Dn3, so tha t  we restrict  a t ten t ion  to the lat ter  
r andom variable. Wi th  the intervals I ( j )  as in (5.1) it can be shown as in the 
proof  of (5.10) tha t  the parts  of D~3 corresonding to a restr ict ion of the integral 
to either I(1)  or •(3) converge to 0 in probabil i ty as n ~ oc. Hence it remains to 
consider the par t  of D~3 corresonding to a restr ict ion of the integral to 1(2); this 
par t  will be decomposed into the sum of the r andom variables 

(5.23) 

(5.24) 

f 

d l  (2) 

H ~  = i ~  / V . ( t )  { L ~ ( S . ( , ) )  - L~( t ) }  ~t, 
.] I (2) 

where L n ( t )  = ~F,~(t)J~i)(t), t E [0,1]. 
Due to the way in which we have defined S~ in (5.15) it follows tha t  IL, , (S~(t))]  

_< CR~(S~(t))R~+~(S~(t)) _< CR~+s+I(S~(t)) _< CR~+~+~(t), for all t ~ I(2). 
Hence it is clear tha t  

(5.25) 

_< sup 

Reasoning as in (5.21) we see tha t  

(5.26) l ~ i  = o~(~  <(~+m ~) = o~(i) a~ ~ -~ oo, 

because A - ( ( ~  +/3) > 1/2 - (3/2)¢(1 - 2A) - ( A  > (2 - A) /{10(1  - A)} > 0 by 
subst i tu t ing the upper  bound for ( in (2.13). 

For H~2 let us apply the mean value theorem and employ the special construc- 
t ion of S,~ to find 

(5.27) IL~(S~( t ) )  - L~(t)l _< C n - %  ¢(~+~+2). 

This entails 

(5.28/ IHn2l = Op(n  v/2-c)+<(a--~--2)) = Op(1) as  TL ----+ (Do, 

since ~ - ( ( ~  + 9 + 21 - ~ / 2  _> 1 - ( 5 / 2 ) ( ( 1  - 2A) - ( ( A  + 21 - t l / 2 ) ( ( 1  - 2A)  > 0 
by subst i tut ing the upper  bound for ¢ in (2.13/. 
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6. Concluding remarks 

A. Sinplification variance 
In many  special cases (see, e.g., Chanda  et al. (1990)) the process XI,,~(~), • • •, 

Xn,,~(~) and hence the process 

(6 .1)  ~ l , m ( n ) , - . . ,  ~n,m(n) is s tr ict ly stationary. 

Note tha t  this condit ion which is not implied by (1.1) and (1.2) will be needed 
below. 

THEOREM 6.1. Let (6.1) be satisfied. Under the conditions of Theorem 2.1 
We havc 

(6 .2)  52 = Var(K~((1)) + 21imoo Z Cov(/(~((1),/~(~j)). 
j=2 

PROOF. Relat ion (4.6) entails tha t  EtZnlZnj I <_ C, for some C c (0, oo) 

independent  of n, where the 2~j are defined in (2.26). Due to the m(n) -dependence  

EZ~kZ~j = 0 for ]k - j[ > re(n) .  Writ ing v~-2 = EZ21 -[- 2 Z-@=2v'rn(n) EZnlZnj we see 
tha t  

(6 .3 )  Var  2 ~  - = o ( ~ o - ~ )  - ~  0 as ~ -~  oo,  
i=1 / 

because 1 - p > 1 - (1 - 2A)/{5(1  - A)} > 0. 
The  next  step is to show tha t  we may replace 2~i = K~(~i,~(~)) - ; ~  by 

/ ~ ( ~ i )  - ;2~. For a rb i t ra ry  1 _< j_< n, we have 

(6.4) IE{(K~(~) - ~)(P2~(~j) - Z%~) 

- (ff[n(~l,m(n)) -- ;n)(ff~n(~j,m(n)) -- ;n)}l 

] E { k n ( ~ l ) l X n ( ~ j )  - t (n (~ l ,m(n) ) ]Xn(~ ,m<n) ) } l  

-< E r f & ( ~ ) l l f & ( ~ l )  - f ; ~ ( ~ x , ~ ( ~ ) ) l  

By applicat ion of the mean value theorem we find tha t  I/2~ - /~11;2~ + ;2~1 -< 
Cn ~A~+~(~+I)+<~, and tha t  bo th  expectat ions  on the right in (6.4) are bounded  
by C n  -~A~+2(~+¢~)+~-. It is clear tha t  we may carry out the replacement  men- 
t ioned above, provided tha t  

(6.5) n -~/\~-+2(~+C~)+~'+p --+ 0 as n --+ oc. 
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The  assumed restrictions on the parameters  entail tha t  era ~-- 2(r /~+ @~) - r - p  > 
1 + 1/{2(1 - A)} - 2/3/{2 (1 - A)} - 2a /{5(1  - A)} - 1/{2(1 - A)} - (1 - 2 5 ) / { 5 ( 1  - 
A)} > (4 - 8A)/{5(1  - A)} > 0 indeed. [] 

B. Relations among parameters 
The  parameter  p measures how strong the dependence is among the first order 

parts  of the sample elements, the i.i.d, case being covered by p = 0. Even in the 
i.i.d, case the value a + fl or A should remain str ict ly below 1/2 in order to make 
sure tha t  the limiting variance exists. It is clear tha t  this asymptot ic  variance will 
increase with p for constant  c~ + ft. Therefore  we expect  tha t  a large p requires 
a small A, a relationship which is indeed expressed by (2.23). The  parameters  
T, cr control the amount  of noise around the t ractable  m(n) -dependen t  first order 
components  of the sample elements. These noise components  have a bearing on 
the values of random functions like J¢(Fn(x)) in (2.9). The  larger ~- and or, the 
smaller the influence of the noisy par ts  and the larger the value of A tha t  we can 
afford. 

C. Examples 
In the examples below we consider L-est imat ion of the sy m m et ry  point  v ~ E ]~, 

assuming tha t  the Xi have the d.f. F( .  - v~) for some F symmetr ic  around 0. We 
take for simplicity 

(6 .6)  = x ,  x so  t h a t  e F ( t )  = t (0, 1). 

Due to symmet ry  we may focus on the leR-hand tail of the distr ibutions and on 
values of t near  0. Let a and/~ be the parameters  in Assumption 2.2 tha t  control 
the growth of ]J[ and ] f  -1] near 0. 

First  let us take f ( z )  ~ a]z1-1-1/~, as z --+ - c o ,  for some 0 < a < co, which 
yields I F - ~ ( t ) l  ~ bt-~, as t I o, for some 0 < b < oc. For densities of this type  
the efficient score remains bounded,  so tha t  we may take any 0 < C < 2/5 and a 
arbi trar i ly close to 0 and hence fl in the entire range (0, A). 

Now let us take f ( z )  ~ a e x p ( - ] z ] v ) ,  as z --~ - o c ,  for some 0 < a < cc and 
7 > 1. In this case bo th  F -1 and the efficient scores are of logarithmic order, as 
t ,[ 0, and hence any small but  str ict ly positive value of c~ and any 0 < ~ < 2/5 
are suitable where also a small str ict ly positive value of ~ suffices. We can exploit 
this freedom by allowing a strong dependence i.e. a large value for p in the range 
[0, 2/5),  see (2.23). 

Finally let f be concentra ted on a finite interval [ -A ,  A], so tha t  the density 
has zero tails. More specifically let f ( z )  ~ a ( z + A )  -1+1/~. Then  F -1 is bounded,  
of course, with F - l ( t )  ~ - A  + (t/a) ~, as t ; 0. The  efficient score function is of 
order t -~ ,  as t ; 0. Since we can take ,3 arbi t rar i ly  small positive, for c~ the range 
(0, A) is available. 
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