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A b s t r a c t .  The concept of rotatability introduced by Box and Hunter (1957, 
Ann. Math. Statist., 28, 195-241) is an important design criterion for response 
surface design. Recently, a few measures of rotatability that enable us to 
assess the degree of rotatability for a given response surface design have been 
introduced. In this paper, a new measure of rotatability for second order 
response surface designs is suggested, and illustrated for 3 k factorial design 
and central composite design. Also a short comparison is made between the 
proposed measure with the previously suggested measures. 
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1. Introduction 

Suppose tha t  an exper imenter  is concerned with a system involving some re- 
sponse r] which depends on several independent  variables ~x,-- •, ~k. In general, the  
functional  relationship between the independent  variables and the mean response 
can be wri t ten  as r] = f ( ~ l , . . .  ,~k), where the explicit form of f is unknown or 
expremely complicated.  Response Surface Methodology (RSM) often involves the 
approximat ion of f by a low order polynomial  in some region of the independent  
variables. Usually, the original variables (~'s) are coded to the design variables 
(z's) in order to locate the origin to the center of region, the lat ter  normally being 
simple linear functions of the former. 

In this paper,  we will concentra te  on the second order model 

k k k 

i = 1  i = 1  i<j 

which may be wri t ten in matr ix  notat ion as 

(1.1) ' 
XS~ , 
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in which 

X' = (Xl,X2, .. . ,Xk), 

' ( 1 ,  Xl,X2, Xk,X~,X~,. .  ,X2,ZlX2, .  Z k - l X k )  , X s ~ . . . ,  . .., 

and fl is the rn x 1 column vector corresponding to the coefficients, where rn = 
(k + 1)(k + 2)/2. 

The coefficients in the polynomial are to be estimated, by the method  of least 
squares, from N observations on the response variable, 

y~ = r/(x~) + e~, u = 1 , 2 , . . . , N  

where 6~'s are assumed to be uncorrelated and have zero means and constant  
variance, a 2. The fl is then est imated by the method of least squares as follows 

(1.2) b = ( X / X ) - l x ' y  

in which X is the N x m matr ix of values of the m elements of xs's taken at the 
design points and y is the N x 1 matr ix  of observations. 

The predicted response value at a particular point x '  = (Xx, x 2 , . . . ,  zk) in the 
region of interest R will be denoted by ?)(x). This value is obtained by subst i tut ing 
the elements of fl in the model (1.1) by the corresponding elements of b in (1.2), 
i.e., ~)(x) = x 'b .  The variance function of the predicted value /) at any point 
x' = ¢ l , z 2 , . . . , x k )  is well known as 

(1.3) Var( (x)) = 2. 

Var(~)(x)) thus depends on the particular values of the independent variables 
through the vector x~, and also depends on the design through the matr ix  
(x,x)-l. 

A design D is said to be rotatable if the variance function (1.3) is a function of 
only r 2 = Xl+X2+..2 2 • +x~,  i.e., the variance of ?) is a function of only distance of x 
from the origin, not of direction. Thus, when a design is rotatable,  the prediction 
variance is the same at all points x tha t  are equidistant from the design center. 
Consequently, in the space of the input variables, surfaces of constant  prediction 
variance from concentric hyperspheres. 

A work which has generated initial interest in the use of RSM is a paper by 
Box and Wilson (1951). In recent years, interests in RSM have been increased and 
books on this subject have been writ ten by some authors such as Myers (1976), 
Box and Draper (1987) and Khuri and Cornell (1987). 

The concepts of rotatabil i ty was first introduced by Box and Hunter  (1957). 
Since it was first introduced, it has become an important  design criterion. If the 
circumstances are such tha t  exact rotatabil i ty is unattainable,  it is still a good idea 
to make the design nearly rotatable. Thus it is important  to know if a particular 
design is rotatable or, if it is not, to know how rotatable it is. Analogous to 
rotatability, the concept of slope-rotatability has been advanced by Hader and Park 
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(1978) and Park (1987). In this concept, the variance of O~l(x)/Oxi ({ = 1 , . . . ,  k) 
are equal for all x equidistant from the design origin. 

Recently, Khuri (1988), Draper and Gut tman (1988), and Draper and 
Pukelsheim (1990) suggest the measures of rotatability that enable us to assess 
the degree of rotatability for a given design. In this paper, another measure of 
rotatability, Rk (D), is introduced and illustrated. 

2. Proposed measure of rotatability 

In this chapter, a general measure of rotatability is proposed. This measure 
will enable us to appreciate the degree of rotatability for a given response surface 
design. Let 

(2.1) 
N 

v ( ~ )  = ~ Var(~)(~)) 

where Var(~(x)) = x : ( X t X ) - l x s o  -2. 
In the k-dimensional space (k _> 2), V(x)  can be expressed in terms of spherical 

coordinates of (p, ¢1,62, . - - ,  ¢k-2, 0) where 

X 1 = pC OS ~) I ,  

x2 = p sin ¢1 cos ¢2, 

(2.2) 

xk-1 = psin¢z s in¢2 . . ,  sin 6~_2 cos0, 

xk = p sin ¢1 sin ¢2 "'" sin ¢~-2 sin 0 

and p _> 0, 0 _< ¢1, ¢2 , . . . ,  ¢k-2 _< 7r, 0 < 0 < 27r. (See Fleming (1977), p. 218.) 
The absolute value of the Jacobian of this transformation is 

i j  ] = pk-1 sink-2 ¢1 sin k-3 ¢ 2 " "  sin 2 ¢k-3 sin ¢k-2. 

If we substitute (2.2) into (2.1), then (2.1) will be expressed as a function of 
/9, ¢1, ¢2 , . . . ,  ¢k-2, 0, i.e., V(x)  = w(p, ¢1, ¢2 , . . . ,  ¢k-2, 0). Let 

// (2.3) ~(~) = ~ . . .  w(~, ¢~, ¢2 , . . . ,  ¢k-2, 0)da 

where df~ = sin k-2 ¢1 "'" sin C k - 2 d ¢ l d ¢ 2  " "  dCk-2dO, and 

. . . .  d a -  r ( k / 2 ~  

~(p) means the averaged value of V(x) over all the points on the hypersphere of 
radius p centered at the origin. To be rotatable, 

w(p ,¢~,¢2 , . . . ,¢k_2,0)  = ~(p) for all p,@,O. 
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(2.5) 

where 

For a given design, the discrepancy from rotatabil i ty at p can be expressed as 

/o (2.4) h(p) . . . .  [w(p, ¢1, ~b2,..., ¢k-2, 0) - w(p)]2dfL 

If the region of interest is 0 < p _< 1, the proposed measure will be 

1 
Pk(D) = 1 + Rk(D) 

(2.6) Rk(D) = ~ pk-lh(p)dp, 

and Ek is a positive constant  depending only on k. Let us take Ek to be 

~0 
1 1 

Ek = pk-l Ikdp = ~ Ik 

for convinience. By this way, Rk(D) represents the average of (w - v~) 2 over the 
region of integration. Pk(D) is 1 if and only if a design is rotatable, and it is 
smaller than  one for a nonrotatable design. Note tha t  Pk(D) is invariant with 
respect to the rotat ion of the coordinate axes, since w(p), h(p) and Rk(D) are 
invariant with respect to the rotat ion of the coordinate axes. 

Now, we introduce the following fact which is useful for evaluating our mea- 
sure. 

(i) f d ~  = 2~/2/r(k/2), 
(2) f x~da = p2Ik/k, 
(3) f 2 ~jda = (I/3) f ~da = p~±k/k(k + 2) (i ¢ j), 
(4) f 2 2 2 4 2 x i x j x ~ d ~  = ( l / a )  f x i ~ d a  = (1/15)5x~da = p % / k ( k  + 2)(k + 4) 

(i ¢ j ¢ 5,  
(5) f 2 2 ~ 2 4 ~ 2 = = f x ixjdf i  (1/15) f x~x~df~ f xixjxzdf~ 4 4 xi x jx  I xmdf~ (1/3) (1/9) = 

= (1/105) fx~df i  = p8Ik/k(k + 2)(k + 4)(k + 6) (i ¢ j ¢ I ¢ m) 

where i, 5, l, could be 1, 2 , . . . ,  k, and f  eans fo L " "  L" The values of 
other integrals where at least one xi has an odd exponent are all zeros. 

In comparing designs, we have to consider the scaling of designs. The tra- 
ditional way of scaling is to set 1/N N 2 = 1. This was used by Box and E u = l  Xiu 
Hunter (1957), and Khuri  (1988). In this paper, as was adapted by Draper and 
Pukelsheim (1990), we scale designs so tha t  all of the points lie inside or on the 
unit  sphere. Therefore, if we have a set of points 

' (xli, x2i, . xki) i =  1, 2, ,N,  X i ~-- . .  , . . .  

then the scaled point, 9xi, should satisfy 

0 < gV(x l i )  2 + (x2i) 2 + . . -  + (xki) 2 _< 1 i = 1 , 2 , . . . , N .  

One advantage of this is that ,  when we add center points, the remaining points do 
not have to be rescale& For the 32-factorial design, the scaling factor should be 
g = 1 / 4 ~  - 0.7071. 
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3. Illustration of the proposed measure 

3.1 3 k factorial design 

For the  3 ~ factor ia l  design w i thou t  repl icat ions ,  it can  be shown t h a t  

2k + 1 2 
v o -  3k a , 

1 
Vi -- 2 × 3 k-1 0"2 (i = 1, 2, . . .  , k), 

1 
-- - - a  2 ( i =  1, 2, k) ,  Vii 2 X 3 k-2 " " '  

1 
viJ - 4 × 3 k-20.2 (i ¢ j ) ,  

1 
_ _ 0 . 2  (i = 1 , 2 , . . . , k )  Co,ii - -  3k_1  

where  Vo, vi, vii, vii and  Co#i deno te  Var(bo),  Var(bi) ,  Var(bii) ,  Var(bi j )  and  
Cov(b0,bi~), respect ively,  and  b' = (bo ,b l , . . . , bk ,  b u , . . . ,  bk~, b12, . . . ,  bk-l ,k) 
which  is exp la ined  in (1.2). 

T h e  o the r  values of var iances  and  eovar iances  not  men t i oned  above  are all 
zeros. Thus ,  we can ob ta in  the  following results ,  

N 
(3.1) V ( x )  = ~-5 Var(~)(x)) 

N 
- -  0" 2 [V0 -c- (V 1 -F 2c0,11)p 2 + v l lp  4 

q- (v12 2v11) 2 2 2 2 - ( x l z2  + . . .  + X~_lZk)], 

and,  

(3.2) 
1/ 

-- (7 2 v0 + (vl -t- 2e0,11)P 2 q- VllP 4 q- (v12 -- 2Vn) k(k  + 2) " 

There fore ,  

[ W ( p , ( ~ l , O 2 , . . . , O k _ 2 , 0 )  --  ~ ( p ) ] 2  

= ~ ( v ~ 2 -  2v11) 2 (x~x~ 

F r o m  this,  for (2.4) we can ob ta in  

2 2,2 (k - 1) 2 p8 
+ "'" + Xk- lXk)  + 4(k + 2) 2 

(k - 1) 2 2 4 l ( k ~  2) (x~x2 + " "  + Xk - l xk )P  " 

(3.3) N / 2 6(Vl 2 _ 2v11)2 (~ __ 1)pSlk 
h(;)  = 5~ (k + 2)2(k + 4)(k + 6) 
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Thus, from (2.6) 

k ( N )  2 6(v12--2Vll)2(k--1)Ik 
(3.4) Rk(D) = ~ ~ (k + 2)2(/; + 4)(k + 6)(k + 8 )  

If we take the scaling factor 9 = 1/x/~ in the 3k-factorial design, the variances V12 

and vzl become (1/94)v12 and (1/g4)v11, respectively, after scaling. So 

( N )  ~ 6 k ( ~ -  2 ~ ) 2 ( k -  ~) 
(3.5) R a ( D ) = . . ~  ( k + 2 ) 2 ( k + 4 ) ( k + 6 ) ( k + S ) g  s" 

Table 1 gives the values of Pk(D) = 1/[1 + R~(D)] for various k, which indicates 
tha t  as k increases 3~-factorial designs deviate more from rotatability. 

Tab le  1. Values  of  Pk (D) for 3k- fac tor ia l  des igns .  

k 2 3 4 5 6 

Pk(D) 0.468 0.115 0.040 0.018 0.010 

3.2 Central composition designs 
In general, the Central  Composit ion Design (CCD) consists of 2 k or a fraction 

of 2 k factorial points (±1, + 1 , . . . ,  ±1) ,  2k axial points of the form ( i a ,  0 , . . . ,  0), 
etc., and a center point (0, 0 , . . . ,  0). The center point may be replicated no times. 
Thus the total  number  N of experimental  points can be wri t ten as 

N = F + 2k + n o =  F + T 

where F is the number  of factorial points (F  = 2 k if a full factorial is used and 
F = 2 k-p (p _> 1) if a fractional factorial is used), and T = 2k + n o .  For the CCD, 
it can be shown that  for any fractional factorial configurations, 

kF + 2a 4 
v0 = 2a4( F + T - 2k) - 4aZkF + kFT or2' 

1 a2 (i = 1, 2, k), 
v i -  F + 2 a  ~ " "  

F 
{ 2 ,  ~ + 4(1 - k)~ 2 + (k - 1 )T}F + 2 ~ 4 ( T -  2k + 2) 2 

(i = 1, 2 , . . . ,  k), 

4~ 4 + 4 ~ F -  T F  2k)} °2 (i # j),  
Cii'jj = 2Ct4{(2Oz 4 -~ k T  - 4ka2)F + 2c~4(T - 

- ( F  + 2(~ 2) (i = 1, 2 , . . . , k )  
2c~4(F + T - 2k) - 4c~2kF + kF7 ~cr2 Co,ii 
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where ci<jj = Cov(bii,bjj) and Co,ii = Cov(b0,bii). Thus, we can obtain the 
following results: 

(3.6) 

(3.7) 

and 

(3.8) 

V ( x )  = ~2[VO 4- (V 1 -1- 2cO,ll)D 2 _L Vl lP  4 

2 2 
_c (v12 @ 2c11,22 -- 2Vll)(X 2x2 ~-""-c Xk_lXk)], 

%O(,O) ---~ ~ V 0 -~- (V 1 n- 2C0,11)P 2 + 7211;04 

( k -  1) ] 
+ (v12 + 2 .,22 - 2v 1) ?_)p4 

N )  6(v12+2c11,22 - 2 v l l ) 2 ( k  - 1)I~p s 
h(p)= ~-5 (k+2)2(k+4)(k+6) 

In the CCDs, the scaling factor, g, should be 

{ 1/c~, if c~ _> x/k 
9 =  1/x/k, if ct < k. 

Then  

(3.9) 
N )  6]~(V12 -[-2C11,22 --2V11)2(/~ -- 1) 

Table 2 gives the values of P~ (D) for various k, p and c~. 
Figures 1 through 3 give the contour plot ov V(x)  for the CCDs (k = 2, p = 0, 

no = 1) with a = 1.00, 2.00 and 3.00. Note that  when a = 1.00, the CCD is the 
32 factorial design. 

Table 2. Values of Pk(D) for CCDs for various k, p and a (no = 1). 

k = 2  k = 3  k = 4  k = 5  k = 5  k = 6  k = 6  

p = 0  p = 0  p = 0  p = 0  p = l  p = l  p = 2  

1.00 0.4675 0.0333 0.0034 0.0005 0.0013 0.0002 0.0006 

1.50 0.9911 0.8339 0.1413 0.0162 0.0595 0.0082 0.0292 

2.00 0.4675 0.6814 1.0000 0.3177 1.0000 0.1890 1.0000 

2.50 0.0932 0.1242 0.2699 0.8537 0.2576 0.8583 0.2548 
3.00 0.0209 0.0250 0.0445 0.1081 0.0419 0.1117 0.0413 

3.50 0.0059 0.0067 0.0108 0.0205 0.0102 0.0212 0.0100 

Rotatable a 1.41 1.68 2.00 2.38 2.00 2.38 2.00 
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- 1  0 1 
1 ~ 1 

Fig. 1. 

Fig. 2. 

- 1  - - -  - 1  
- 1  0 1 

Contour plot of V(m) for CCD (k = 2, p = 0, no = 1, a = 1.00). 

- 1  0 

0 

- I  
- I  0 i 

- 1  

Contour plot of V(x) for CCD (k = 2, p = 0, no = 1, a = 2.00). 

4. Comparison of rotatability measures 

I t  is of  interest  to  c o m p a r e  the  p roposed  measure  Pk(D) with  the  measures  
of  Khur i  (1988), D r a p e r  and  G u t t m a n  (1988) and  D r a p e r  and  Puke l she im (1990). 
B o t h  Khur i ' s  measure  and  D r a p e r  and  Puke l she im ' s  measu re  c o m p a r e  the  fo rm of 
X~X m a t r i x  f rom regression mode l  wi th  t h a t  of  r o t a t ab l e  design, and  can  be  used 
wi th  any  mode l  of order  d (>  1). However ,  b o t h  measures  do no t  p rov ide  infor- 
m a t i o n  a b o u t  var iance  con tou r  shape.  O n  the  o the r  hand ,  D r a p e r  and  G u t t m a n  
provide  an  index t h a t  charac ter izes  the  general  overall  shape  of var iance  contours .  
B u t  it is difficult to  app ly  this  index to  general  n o n s y m m e t r i c  designs. 

For  the  usefulness of  our  p roposed  measure ,  we wan t  to  men t i on  the  following 
facts. 
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- 1  0 1 

- 1  - 1  
- 1  0 1 

Contour plot of V(x) for CCD (k = 2, p = 0, no = 1, a = 3.00). 
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Table 3. Comparison of the four measures of rotatability. 

Criteria Khuri Draper & Draper & Pk(D) 
Guttman Pukelsheim 

Applicability 

to asymmetric Yes No Yes Yes 
design 

Invariance 
w.r.t the No No Yes Yes 
design rotation 

Information 
about variance No Yes No No 
contour shape 

Range 0 ~ 1 0 0  0 ~ + o o  0 ~ 1  0 ~ 1  

Order of the 
model to which the d >_ 1 2 d > 1 2 
measure applies 

Fi rs t  of  all, we can  easily ob t a in  the  var iance  con tou r  V(x) like Figs. 1-3  

f rom the  equa t ions  (3.1) and  (3.6), since V(x) is expressed  in t e rms  of  spher ical  
coord ina tes .  Next ,  it is t rue  t h a t  t he  p r o p o s e d  measu re  is on ly  appl ied  to  second 
order  designs. However ,  r o t a t ab i l i t y  is m a i n l y  discussed for second  order  response  

surface designs, and  this  l imi ta t ion  does no t  pose  any  p rac t i ca l  p rob lems  for the  
usefulness of  this  measure  in response  surface me thodo logy .  Las t  of  all, we have a 
c o m p u t e r  p rog ram,  n a m e d  S R O T A ,  which  c o m p u t e s  Pk(D) for any  second-o rde r  
design. This  p r o g r a m  can  be o b t a i n e d  f rom the  au tho r s  u p o n  request .  For  a given 
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design, this program obtains V(x),  compute @(p) and h(p), and then calculate 

In Table 3, we make a comparison of the four measures of rotatability on the 
basis of five criteria. 
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