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Abstract. In this paper, upper bounds on the probabilities of wrong deter-
mination of the rank of covariance matrix of random effects in one-way random
effects models are given, based on the information theoretic criterion. Under
weak conditions, the bounds are shown of exponential-type.
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1. Introduction

Consider a one-way multivariate random effects model:
(L.1) Ty = p+o;+ e

fori=1,...,k; j=1,...,m, where g € RP is the general mean vector, «; is the
vector of random effects of i-th column and z;; denotes the j-th observation on
i-th column and e;; is distributed as multivariate normal with mean vector 0 and
covariance matrix ;. Also, ¢; is distributed independent of e;; as multivariate
normal with mean vector 0 and covariance matrix . Let 35 denote the covariance
matrix of ;;, then Xy = ¢+ 3. It is of interest to test whether the rank of ¢ is r.
If ¢ is not of full rank, then we can take advantage of this knowledge in estimating
1. Specially, that r = 0 is equivalent to that there are no column effects. Anderson
(1984, 1985) and Schott and Saw (1984) have independently derived the likelihood
ratio test statistic for testing the hypothesis on the rank of ¢. Zhao et al. (1986)
suggests to use information theoretic criterion (ITC) to determine the rank of 4.
They have showed that the criterion is strongly consistent.

The main contribution of our paper is to give exponential-type bounds on the
probabilities of error determination under certain conditions, based on the ITC
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proposed in Zhao et al. (1986). The bounds tend to zero rapidly as the sample
size increases. The paper is organized as follows.

In Section 2, the preceding problem is generalized and some preliminaries are
given. In Section 3, several theorems about the rates of convergence of the ITC
are given and proved.

2. Preliminaries

In Model (1.1), let Sy and S,, denote the between groups and within group
sums of squares and cross products matrices respectively. Then S, and S, are
distributed independently as central Wishart matrices with k — 1 and k(m — 1)
degrees of freedom respectively, E(Sy) = (k — 1)(21 + my) and E(Sy) = k(m —
1)3;. Hence, we can generalize the problem as follows.

Suppose that y and u are p x 1 complex random vectors which are distributed
with mean vector 0, Fuu* = ¥; > 0, Eyy* = X5 > 0, where (-)* is the conjugate
transpose of (-). Also, By = T + 0%%;, where 02 is known and I' is a p x p
nonnegative definite matrix of rank ¢ with ¢ < p. Assume that two independent
sets of observations {u1, ..., un, } and {y1,..., Yn, } of u and y are available. Let
71131 = 2?:11 ’U,Z’LLZ* and TLQSQ = 2?221 yzyz* Then E(Sl) = 21 and E(SQ) = EQ,
respectively. We need to estimate g.

Denote the eigenvalues of SyS7* by 8; > --- > 6, and denote the eigenvalues
of 2221_1 by A1 > --- > Ap. Let Hy denote the hypothesis that

and let M, denote the model for which Hy is true. Without loss of generality, we
may assume that o2 = 1. Then, let

I(k,C(n)) = % S [log(an + Bubj) — Balogds] + Cn)w(k, p),

j=1+min(k,T)

where ap, = ni/n, By = na/n, n=ng +ng, 7= #L < p: b > 1}, vik,p) =
k(2p — k + 1), the number of free parameters in Hy, and C(n) is chosen to satisfy
the following conditions:

(2.1) im C™ _ . C(n)

n—oco N n—00 IOg logn -
In Zhao et al. (1986), an estimate § of g is proposed to satisfy
(2.2) 1(g,C(n)) = min{I(0,C(n)),...,I(p — 1,C(n))}.

This criterion was proven to be strongly consistent in Zhao et al. (1986).
Denote matrices X1, X, S1 and Sy as

by

Il

(0(4)), Sy = (sgé)), 1=1,2

iy



RATES OF CONVERGENCE OF ITC IN RANK DETERMINATION 617

and let their respective eigenvalues be )\gl) >0 > )\Z(,l) and 6§l) > > 61(;” for
I =1,2. The following lemma is needed in the proof of the main theorem.

LemMaA 2.1, Assume that p eigenvalues of Xy take t different values, say
p1 > - > pp > 0. For the matrices ¥y, S;, | = 1,2, if max|a§]l-) — 51('?[ <

a < XY /p then |\ — 6] < Ma where M :p2[K)\(2)(1/ A +1/ AW — por) +
P 1 P P

PN — pa)], and K = (2tp%//E) (0% /ming s s — gL+ or ) + 1/
+0°/(2v (e — pr)?).

For the proof, see Tam and Wu (1991).
The following inequality is also needed in the proof of the main theorem:

(2.3) z(l—z) <log(l+z) <=z
for |z] < 1/2.
3. Rates of convergence of the ITC

In this section, we study the rates of convergence of the criterion (2.2).

Let
p

Gky=— Y [log(§ + ¢65) — Clog 6]
j=1+min(k,7)

where £ +( =1, 0 < £ < 1. Define I(k,C) = ~G(k) + v(k,p)C where C =
2C(n)/n. It is easy to see that an estimate § of g such that

1(4,C) = min{[(0,C),...,I(p —1,C)}
is same as the one given by (2.2). We have the main theorem as follows.

THEOREM 3.1. Let S; : p x p be an estimate of ¥y, | = 1,2 as before. We
assume that the following conditions are true:
(i) max|0§§) - sg-)l <a,l=1,2.
(ii) There is a fized interval [a,b] C (0,1) such that & € [a,b].
(i) 0 <a <A /p.
)

(iv

Ag—1 1
1 i g —
(3.1) E<m1n{ 5 ,2}

where e = Mo, M is_ gwen in Lemma 2.1.

(v) (p—g)e® < C.

(vi) 2pC' < g(v0), where g(7o) = min{log((1 — ) + v(Ag + 1)/2) — vlog((Ag+
1)/2) : v in an interval [a,b] C (0,1)}.
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r D 2
(3.2) Pla#q| H) <Y Y > Pls) - off | 2 ).

ProoOF. By (i) and Lemma 2.1, we get that |\, — &| < e, 7 =1,2,...,p
Obviously, 6; > Ag — |[Aq — 8g| = Ag —€ > (Ag +1)/2 > 1. Thus min(g,7) = ¢ as
T > q.

Let k > g, then min(k, 7) > ¢. Thus we obtain:

min(k,T)

I(q,C) ~ I(k,C) = { > [log(€ +¢6) - Clogéi}} + (v(g,p) — v(k,p)) C.

i=l+q

For i > ¢, A; = 1. Since |A\; — 6;| = |1 — §;| < e < 1/2, by the inequality (2.3), we
have

log(€ + ¢6;) — Clog 6; < ((6; = 1) — ¢(& — )[1 — (& — 1)) = {(6; — 1)

Thus,
B min(k,r)
H(0,0)~ Ik ONC < 24 D =17~ (k= a2~ k-q+1)¢.
i=1+4¢q

By Condition (v), it follows that (1/0) 327, ¢(§ —1)* <1. As (k—q)(2p—k ~
g+1)>1,[I(q,C) - I(k,C))/C < 0or I(q,C) < I(k,C).

Let £ < g. Then 6§, > --- > 6, > 1 for ¢ < k. By condition (iv), 6, >
(Ag+1)/2>1foralli=Fk+1,...,q. The function f(6) =log(§ +¢6) —Clogé is
increasing for § > 1. As min(g,7) = ¢ and min(k,7) = k,

q

G(g) - G(k) = > [log(¢ +¢6;) — Clog ;)

i=k+1
> (g - )[log(£+< q+1>—clog/\q;1}

The function g(v) = log((1—~)+v(A\g + 1)/2) —7ylog (A; + 1)/2 is continuous. For
some interval [a,b] C (0,1), there is a v so that 0 < g(v) < g(v) since g(v) >0
for v € [a,b] C (0,1). Thus

G(q) - G(k) > (¢ — k)g(%)
and _ -
I(q,C) = I{k,C) = =G{(q) + G(k) + 2[v{q,p) — v(k,p)|C
< —(g—k)glr)+ (g-k)(2p—k—qg+1)C
=(q—k)(2p~k—q+1)C — g())-
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By (vi), I(q,C) < I{k,C). Hence § = q and

Pla#qlH) <Y YN P(s? ~ o] > a). O

j=1i=1 [=1

Remark 3.1. From the proof, it is easy to see that v(k,p) can be chosen as a
strictly increasing function of k.

Remark 3.2. The result here is different from the result in Bai et al. (1989).
In Bai et al. (1989), ¥ is an identity matrix and an independent estimation of ¥
is not required.

The proof is existential. When we are interested in the limiting properties, we
can choose o = a(n) and C(n) = nC/2 satisfying the following properties:

a(n) | 0,
¢t
(3.3) n
C(n)
na?(n)

— 0,

Then for large n, conditions in (3.1) hold. If C(n) satisfies (2.1), we can choose
o = a(n) so that (3.3) is true. We thus have the following.

COROLLARY 3.1. Ifa(n) and C(n) are chosen so as to satisfy condition (3.3)
and v(k,p) is strictly decreasing function, then upper bound (3.2) on the probability
of wrong determination holds.

From (3.2) we see that the probability of correct determination increases as
the value of o increases. Therefore, from (3.3) we observe that the probability of
correct determination increases as the value of C(n) increases, since a larger value
of C(n) allows us to take a larger value of a(n).

Up to now, no special assumption is made about S;, I = 1, 2. For the remain-
ing, we impose some moment conditions and obtain results as in Bai et al. (1989).
The proofs are similar to those in Bai et al. (1989) and will not be given.

THEOREM 3.2.  Suppose that 11, Yo, . . . are identically and independently dis-
tributed (i.4.d.) vectors of order p x 1 such that E(y1) = 0, E(y1y;) = L2 and
E|y1]?" < oo for n > 1 and that uy, us, ... are i.i.d. vectors of order p x 1 such
that E(w) = 0, E(uwu}) = X1 and E|w]?" < co. Also, let C(n) and afn) be
chosen so that they satisfy (3.3). Then for any s > n, we have

P(§#q| Hy) = O(n/(na)") + O((no®)~")  as n— co.

COROLLARY 3.2. In Theorem 3.2, if we take o = a(n) | 0 as a slowly varying
function and C(n) = na then

Pg#q| H) =0 "(a)™) as n— oc.
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The exponential-type bound on the probability of wrong determination is given
as:

THEOREM 3.3. Suppose that yi, s, ... are i.i.d. with E(y;) = 0, E(yy;) =
Yo and E{exp(n|y1]?)} < oo for some n > 0. Also let uy, uy, ... be i.i.d. with
E(w) =0, E(uiu}) = X1 and E{exp(n|u1|*)} < co. Then

P(G+#q| H,) < Cexp{—bna®}
as n — oo for some constants b > 0 and C > 0.

CorOLLARY 3.3. Ifa(n) | 0 is a slowly varying function, C(n) = na and
the conditions of Theorem 3.3 are true, then for any 6 > 0

P(G# q| Hy) < Cexp(—bn' %),

Remark 3.3. 1f n;S; ~ Wp(n;, %), i = 1,2, and Sy and S, are independent,
then the results in Theorem 3.2 and Theorem 3.3 hold.
Back to the original problem, the solutions follow from the above remark.
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