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A b s t r a c t .  Bertin and Theodorescu (1984, Statist. Probab. Lett., 2, 23-30) 
developed a characterization of discrete unimodality based on convexity prop- 
erties of a discretization of distribution functions. We offer a new characteriza- 
tion of discrete unimodality based on convexity properties of a piecewise linear 
extension of distribution functions. This reliance on functional convexity, as 
in Khintchine's classic definition, leads to variance dilations and upper bounds 
on variance for a large class of discrete unimodal distributions. These bounds 
are compared to existing inequalities due to Muilwijk (1966, Sankhy~, Ser. B, 
28, p. 183), Moors and Muilwijk (1971, Sankhy~, Set. B, 33, 385-388), and 
Rayner (1975, Sankhyg, Set. t?, 37, 135-138), and are found to be generally 
tighter, thus illustrating the power of unimodality assumptions. 

Key words and phrases: Discrete distributions, unimodality, convexity, vari- 
ance bounds. 

1. Introduction 

The  concept of unimodal i ty  as it appears  in most of the l i terature and text-  
books extant  is restr icted to non-discrete distributions.  Indeed, tha t  is the case 
for the following definition, due to Khintchine,  which is a widely used s tandard  
definition of unimodality.  

DEFINITION 1.1. A cumulat ive dis tr ibut ion function F is said to be unimodal 
with mode m if F is convex on ( - 0 %  m) and concave on (m, oc). We say F is 
unimodal about m. Denote the class of unimodal  dis tr ibut ion functions by N. 

First  a t t r ibu ted  to Khintchine by Gnedenko and Kolmogorov ((1954), p. 157), 
this definition, along with others, is discussed thoroughly  in the treat ise on the 
subject  by Dharmadhikar i  and Joag-Dev ((1988), p. 2). 

Unfortunately,  the only discrete uniInodal distr ibutions under  Khintchine 's  
definition are degenerate.  We are concerned with defining discrete unimodal i ty  
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in a manner analogous to that of Khintchine but without this drawback. Such a 
characterization affords, among other things, application of the many inequalities 
dependent on convexity. We shall demonstrate this utility by deriving variance 
upper bounds for a broad class of discrete unimodal distributions. 

In Section 2 we present our characterization of discrete unimodality. We de- 
velop a variance dilation for discrete distributions in Section 3. In Section 4 we 
derive variance upper bounds for certain discrete unimodal distributions. Finally, 
in Section 5 we compare the new bounds with previously obtained bounds, finding 
that  assumptions of discrete unimodality yield considerably tighter inequalities. 

2. A new characterization of discrete unimodality 

Let 5a be the collection of all discrete cumulative distribution functions 
(CDF's) with the support being a subset (not necessarily proper) of the posi- 
tive integers. Let F E jca with support S. The density of F with respect to 
counting measure shall be called a probability mass function (PMF) with support 
S. We denote the mean and variance of F by #F and ~F, respectively. 

Characterizations of discrete unimodality have been considered by several au- 
thors. The subject has been reviewed through about 1987 in Dharmadhikari and 
Joag-Dev (1988). The following definition is commonly used and is due to Keilson 
and Gerber (1971). 

DEFINITION 2.1. Let F E 5a have support S and PMF f .  Then f is said 
to be discrete unimodal about a mode m E S if f ( i )  k f ( i  -- 1) for i _< m and 
f ( i )  <_ f ( i  - 1) for i _> m + 1, i E S. The set of such points m is called the mode 
set and denoted by ~4. We shall say that  F is unimodal if f is unimodal. Denote 
the class of discrete unimodal CDF's by Ua. 

Characterizations of discrete unimodality based on convexity concepts have 
been advanced. Dharmadhikari and Jogdeo (1976) have made use of the convex- 
ity of the set of unimodal distributions on the integers 7/ with mode 0. Bertin 
and Theodorescu (1989) have noted that  one of the oldest definitions of discrete 
unimodality makes use of convexity and is due to Mallows (1956). Mallows' ap- 
proach, as well as that of Bertin and Theodorescu (1984), is based on a formal 
discretization of Definition 1.1. In particular, Bertin and Theodorescu have defined 
discrete unimodality with mode m as in Definition 2.1 but with the modification 
that  f ( i )  < f ( i  - 1) for i _> m + 2. The motivation for the change is that  the cor- 
responding CDF restricted to the integers satisfies Definition 1.1. Dharmadhikari 
and Joag-Dev ((1988), p. 107) have noted advantages to this nonstandard defi- 
nition, including the fact that the set of all unimodal distributions is the same 
under both definitions, with the indicated change made to Definition 2.1. A minor 
disadvantage is that  f ( m )  < f ( m  + 1) so that  m may not be a "mode" in the 
usual sense of that  word. 

In the main result of this section (Theorem 2.1) we offer a new characteriza- 
tion of discrete unimodality in terms of the convexity of a function of the CDF, 
namely the extended CDF. The characterization is intuitively appealing in that  



A CHARACTERIZATION OF DISCRETE UNIMODALITY 605 

it is analogous to Khintchine's  classic definition (Definition 1.1). We begin with 
several preliminary notions. 

Let A be a subset of the real numbers ~ and define An = A N •. Following 
Bert in and Theodorescu (1984), if A is an interval, An is called a discrete interval. 
Let s and g be the smallest and greatest integers, respectively, in A. Then the 
completion of the discrete interval Ad in ~ is the interval Is, gl- In addit ion to the 
usual definition of convexity of a function, we shall need an analogous definition for 
functions on 7/. For a discrete interval I define Int(I )  = {i E I :  [ i -  1, i + lid C I}. 
A function G : I --+ ~ is said to be convex at i E I if i ~ In t ( I )  or if G(i) <_ 
[G(i + 1) + G(i - 1)]/2. Concavity of functions on • is defined analogously. 

Let x f be the completion of I.  Denote by Ext(G) the piecewise linear extension 
to _f of a function G : I ~ •. In our characterization of discrete unimodal i ty  we 
shall make use of the following lemma, due to Bertin and Theordorescu (1984). 

LEMMA 2.1. Let G : I ~ R and suppose I is a discrete interval with com- 
pletion I .  The following statements are equivalent. 

(i) G is convex on I; 
(ii) For i e Int(I) ,  G(i) - G(i - 1) < G(i + 1) - G(i); 

(iii) G is the restriction to I of a convex function Ext(G) : [ ~ ~; 
(iv) Ext(G) is convex on i .  

Given F E 5n with support S, construct the extended CDF F* by distr ibuting 
the mass at i E S uniformly over (i - 1, i 1. Finally, define Res t (F)  to be the 
restriction of a CDF F to 7/; tha t  is, the function Res t (F)  is defined by the 
ordered pairs (z, F(z ) ) ,  z E ~_. Note tha t  F* = Ext[Rest(F)] .  

We now establish our characterization of discrete unimodality. 

THEOREM 2.1. Let F E Jzn have support S and extended CDF F*. Let 
M C S. Then F E bln with mode set M if and only i f  F* is convex on ( -oo ,  m] 
and concave on [ m -  1, oo) for all m E 2k4. 

PROOF. Let m 6 Ad. Note tha t  m is a jump point of F;  tha t  is, F ( m )  > 
F ( m - 1 ) .  By Definition 2.1, F ENd if and only i f F ( i ) - F ( i - 1 )  >_ F ( i - 1 ) - F ( i - 2 )  
when i _< m and F(i)  - F ( i -  1) > F( i  + 1) - F(i )  when i > m, i E S. Using (i) 
and (ii) of Lemma 2.1, this is equivalent to requiring tha t  Res t (F)  be convex on 
( -oc ,  mJd and concave on [m - 1, OC)d. By (iv) of the lemma, this is true if and 
only if F* is convex on ( -oo ,  m) and concave on [m - 1, oc), in which case F* ¢ N. 

[] 

Dharmadhikari  and Joag-Dev ((1988), preface) characterize the role of convex- 
ity in unimodal i ty  theory as a "unifying thread";  they  speak of a unified theory of 
unimodality.  Characterizations of discrete unimodal i ty  which are based on convex- 
ity, such as Theorem 2.1 or Bertin and Theodorescu's (1984), are desirable because 
they  fit easily into the unified theory and can be used to take advantage of the 
powerful tools of convex analysis. In the next section we shall see an example of 
tha t  advantage. 
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3. Variance dilations 

In this section, we develop a variance dilation for discrete distributions. A 
common method for comparing the variability of two distributions is to count the 
number of sign changes of the difference in their CDF's  (see, for example, Whi t t  
(1985), or Karlin ((1968), p. 20)). Let h : N ~ N and let $(h)  be the number 
of sign changes of h(w), where values of w such tha t  h(w) = 0 are ignored. Let 
F and G be CDF's  with PMF's  f and g, respectively. If $(g  - f )  = 2 with sign 
sequence + , - ,  +,  then f and g are said to satisfy the crossing condition and we 
write g ~ f .  If $ ( G  - F)  = 1 with sign sequence +, - ,  we shall say tha t  F and 
G satisfy the crossing condition and write G ;-- F.  It can be shown tha t  g ~- f 
implies G ~- F.  

The following variance dilation, which utilizes the crossing condition, is due 
to Shaked (1980). Note tha t  this result is not restricted to discrete distributions. 
For an overview of such results, see Shaked (1988). 

THEOREM 3.1. Let F and G be CDF's, and suppose #F = #c.  If G ~- F, 
then ~a >_ uF. 

In the next section we make use of this dilation by appealing to the properties 
of convex functions to establish the requisite crossings. We now present a discrete 
analogue to Theorem 3.1. The proof takes advantage of Bertin and Theodorescu's 
extension and restriction operators (Ext and Rest) discussed in the last section. 

THEOREM 3.2. Suppose F and G are discrete CDF's with common support 
S. Let F* and G* be the extended CDF's o f f  and G, respectively. Then G* ~- F* 

if and only if G ~- F. 

PROOF. First, let u and v be nondecreasing functions on 77. Then 

(3.1) ~z ~- v if and only if Ext(u)  ~- Ext(v).  

This result is easily seen when we note the fact tha t  Ext(u) and Ext(v) are piece- 
wise linear functions on 7/. Now, since G is a discrete CDF, G : S ~ [0, 1]. By 
definition, Rest(G) : S -~ [0, 1] as well, its image being a subset of the range of G; 
tha t  is, 

a e s t ( a ) ( z )  = a ( z ) W  ~ S. 

It follows tha t  G >- F if and only if Rest(G) >- Rest(F) .  From (3.1) we have tha t  
Rest(G) ~- Res t (F)  if and only if Ext[Rest(G)] ~ Ext[Rest(F)] .  But  Ext[Rest(G)] 
and Ext[Rest(F)]  are just G* and F*, respectively, concluding the proof. [] 

COROLLARY 3.1. Let F and G be discrete CDF's such that #F = #c.  If 
G* >- F*, then ~c >_ yF. 

PROOF. The proof follows immediately from Theorems 3.1 and 3.2. [] 

The variance dilations established in Theorems 3.1 and 3.2, as well as in Corol- 
lary 3.1, will enable us to obtain variance upper bounds for discrete unimodal  
distributions in the next section. 
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4. Variance upper bounds for discrete unimodal distributions 

Upper bounds on variance have been considered by several authors. For a 
concise overview, see Seaman and Odell (1988). Variance upper bounds for dis- 
crete distributions have been considered by Muilwijk (1966), Moors and Muilwijk 
(1971), Rayner (1975), and Klaassen (1985). Variance inequalities based on charac- 
terizations of distribution shape or location have been established for non-discrete 
distributions with bounded support by Gray and Odell (1967), Jacobson (1969), 
Seaman et al. (1987), and Dharmadhikari and Joag-Dev (1989). 

We shall use the variance dilations developed in Section 3 to derive variance 
upper bounds for discrete unimodal distributions. For the sake of simplicity, we 
restrict attention to distributions with finite support {1 ,2 , . . . , n} .  Denote the 
class of all distribution functions with this support by 5n. Let L/n be the class 
of discrete unimodal distribution functions with support {1, 2 , . . . ,  n}. All results 
may be proved for more general support. From Theorem 3.1 we immediately 
obtain the following inequality. 

THEOREM 4.1. Let  F E bt~ have P M F  f and suppose  that  1*F = (n  + 1 ) /2 .  

I f  f(1) < 1 / n  and f ( n )  < i / n ,  then  t'F < (n 2 - 1)/12. 

PROOF. The proof follows when we let g be the uniform PMF in Theorem 
3.1. [] 

To progress beyond this result, we shall make use of the characterization of 
discrete unimodality presented in Section 2 and the consequent variance dilations. 
We begin by deriving variance upper bounds for certain discrete unimodal distri- 
butions for which both the mean and a mode are known. 

Let F E/A~ with mean 1. and mode m = min(A4) # 1. Consider the PMF g, 
defined as follows: 

og I x = 1 , . . . ,  m - 1, 
g(x;1*, m )  = a2 x = m ,  . . . , n, 

0 otherwise, 

where o~1 = (n  - 21, + m ) / [ n ( m  - 1)], c~2 = (21. - m ) / [ n ( n  - m + 1)], 1. e (1, n), 
and m ~ (max{21* - n, 2 - 6}, min{21*, n + 6}) n Z with 6 C (0, 1). We shall refer 
to a PMF of the form g as a s t e p - m a s s  f u n c t i o n  wi th  s tep  at  m .  The quantities c~l 
and a2 will be used repeatedly in this section. 

The step-mass function defined above has CDF G defined by 

(4.1) a(x; 1., = { 
0 x < l ,  
c~lt t < x < t + l  and 1 < t  < m - l ,  
OJa(/y~ - 1) @ o~2(t- /n  @ 1) 

t < _ x < t + l  a n d m < t  < n - l ,  
1 x > n .  

We shall need the extended CDF G*, which is given by 

0 x < 0 ,  
c~lx 0 _< x < m -  1, 

(4.2) a * ( x ; p , m )  = 1 +  a2(x--  n) m - - l < _ x < n ,  

1 x k n .  
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Note t ha t  G* is a segmented linear funct ion of x having slope ctl between 0 
and m -  1 and slope a2 between m - 1 and n, and the two line segments  coincide 
a t x = m - 1 .  

THEOREM 4.2. Let G be defined as in (4.1). Let F E 5l~ with mode m = 
min(A4) ¢ 1, mean p, and PMF f .  I f  f (1 )  _< c~1 = In - 2p + m]/[n(m - 1)] and 
f (n)  < c~2 = [2# - m]/[n(n - m + 1)], then uF <_ uc; that is, 

L'F < m2(n--  2p + l) + m(p - -  l -- 2n--  n 2) + 2#n 2 + 3#n + p _ #2 =_ B~,m. 
- 3 ( n  - m + 1)  

PROOF. There  are four cases. First,  suppose f (1 )  < c~1 and f ( n )  < c~2. 
Define G and G* as in (4.1) and (4.2), respectively. Then  # a  = > and ~o = B,, ,~.  
Since F is unimodal  wi th  mode  m,  F* is convex on ( - o e ,  m - 11 and concave on 

I r a -  1, oc). Also, since f (1 )  < a l  and f (n)  < c~2, F* must  cross G* at least once; 
tha t  is, $ ( F *  - G*) _> 1. In fact, F* and G* satisfy the crossing condit ion (see 
Section 3) since they  change f rom convex to concave at the same point.  Thus,  
G* >- F* and by  Corol lary 3.1 ~c _> ~F. 

Now suppose f (1 )  = c~, and  f (n)  < a2. Then  F*(1)  = G*(1),  and,  since F* is 
convex on [1, m -  1], F*(x) >_ G*(x) for x _< m -  1. Since f ( n )  < c~2, F * ( n -  1) >_ 
G * ( n -  1). Fur thermore ,  since F*(x) is concave on [ m -  1, n], F*(x) >_ G*(x) on 
[m- 1, n]. Thus,  F* (x) _> G* (x) for all x so t ha t  the  means  cannot  be  equal. Since 
we have cons t ruc ted  G to have the  same mean  as F ,  we have a contradict ion.  

Next  suppose / (1 )  < a l  and f (n)  = a2. Then  F*(x) <_ G*(x) for all x so 
tha t ,  again, the  means  cannot  be  equal, and we have a contradict ion.  Finally, if 
f (1 )  = a l  and f (n)  = a2, then  F*(x) = G*(x) for all x, and ~F = ~a. [] 

The  variance upper  bound  in the  previous theorem is a function of the  mean  
and a mode.  If  the  mean  of a discrete unimodal  dis t r ibut ion can be res t r ic ted in 
a cer tain way then  we can obta in  a variance upper  bound  which is a function of 
only the  mode.  

COROLLARY 4.1.1. Suppose F C l~n with PMF f and unknown mean # E 
( m a x { m / 2 ,  1} ,min{(n  + m)/2, n}), where m = min(Ad) 7~ 1 and is known. I f  
f (1 )  < c~1 = I n -  2# + m l / [ n ( m -  1)1 and f (n)  < o~2 = [ 2 # -  m ] / [ n ( n -  m + 1)], 
then 

( - 2 . ~  2 + m + 2n 2 + 3n + 1) 2 + 12.~(n - .~ + 1)( .~n + m - 1 - 2n - n 2) 

~F --< 36(n -- m + 1) 2 

~= Bin .  

PROOF. The  proof  follows immedia te ly  f rom an appl icat ion of the  differential 
calculus. [] 

Al though exact  knowledge of # is unnecessary  to obta in  B,~, we mus t  have an 
upper  and lower bound  on p in order to check tha t  p E ( m a x { m / 2 ,  1}, min{(n  + 
m)/2, n}) and to verify t ha t  the condit ions on f (1 )  and f (n)  hold. We now obta in  
a result  for the  case when p is known and m is unknown. 
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COROLLARY 4.1.2. Let F E bl~ with P M F  f ,  known mean #, and unknown 

mode m =  min(3d) .  I f  m E (max{2p - n, 2(n - p ) / ( n  - 1)},min{2p,  n + 8 } )  •7/ 
with 5 E (0, 1) such that f (1)  < a l  = [ n -  2p + m ] / [ n ( m -  1)] and f ( n )  < a2 = 

[2~ - m] / [~ (~  - m + 1)], then "F _< G ,  whe,'~ 

{ ( 4 n +  1)_pp ~_ n(___n + 1) _ #2 

B~ = ~ _ 1 )  

(2n + 5)~ 5- 2(n + 1) _ ~2 

i f  2p > n + l, 

i f  2# = n + l, 

i f 2 p < n + l .  

PROOF. The  proof  is an application of the differential calculus. [] 

Example  4.1. Consider the three mass functions presented in Table 1. For 
these P M F ' s  the bounds are closest to the variance for the "flattest" mass function, 
f3 (x), and they  are far thest  from the variance for the mass function with the most  
prominent  mode, f2(x) .  

Table 1. Discrete distributions, means, variances, and variance upper bounds for Example 4.1. 

Distribution 
x Variance Bounds 

1 2 3 4 5 #F PF B~,m Bm B~ 

fl(x) .10 .40 .20 .20 .10 2.8 1.36 2.16 2.25 2.16 
f2(x) .10 .20 .50 .10 .10 2.9 1.09 2.203 2.208 2.09 
f3(x) .15 .20 .20 .30 .15 3.1 1.69 2.203 2.208 2.09 

The  bounds obta ined in Theorem 4.2 and Corollaries 4.1.1 and 4.1.2 utilize a 
step P M F  g with step at the mode  rn. Using similar methods  of proof, one may 
obtain slightly different bounds by allowing 9 to step at m + 1 or at m - 1 a l though 
there is no uniform advantage in doing so. Given the mean, one can specify which 
of these various bounds (i.e., Theorem 4.2, Corollaries 4.1.1 and 4.1.2 using a step 
at m, m + 1 or m - 1) is t ightest.  

5. Comparison with previous variance upper bounds 

We now compare  the bounds derived in Section 4 with variance upper  bounds 
for discrete distr ibutions found in the l i terature.  In part icular,  we shall compare  
the bounds derived in Theorem 4.2 (B~,m), Corollary 4.1.1 (B,~), and Corollary 
4.1.2 ( B , )  with those found in Muilwijk (1966), Moors and Muilwijk (1971), and 
Rayner  (1975). The  bounds we compare  make various assumptions concerning 
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what is known about the distribution in question. Thus, when deciding whether 
one bound is "better" than another, we must take care to consider the relative 
restriction of the assumptions employed. 

We should note that Chernoff-type bounds have been developed for discrete 
distributions. Such bounds require much more extensive knowledge of the distri- 
bution than those bounds presented here. At the other extreme is a bound which 
makes use of less information than any considered here the so-called " l /4 - th  
bound". That is, for any distribution which has support which is a subset of the 
interval [a, bl, the variance of that distribution cannot exceed (b - a)2/4. This 
well known result is of little interest here because, not surprisingly, it is inferior 
to all of the bounds considered in this paper. For a discussion of this variance 
upper bound see Seaman and Odell (1985, 1988) or Seaman et aI. (1992). For an 
overview of Chernoff-type inequalities, including bounds for discrete distributions, 
see Klaassen (1985). 

We begin by stating the bounds to be found in the literature. The most 
general has been given by Muilwijk (1966) and applies to any mass function having 
known finite support and expectation. We continue to state bounds in terms of 
support {1 ,2 , . . . , n} .  However, like the bounds developed in this paper, these 
inequalities hold for more general support. Again, denote by 5~ and H~ the class 
of discrete distributions and discrete unimodal distributions, respectively, with 
support {1, 2 , . . . ,  n}. 

THEOREM 5.1. (Muilwijk (1966)) If  F C .Tn, then uy <_ ( n - - p F ) ( p F  -- 1) = 
M, .  

Moors and Muilwijk (1971) have derived an upper bound which requires more 
knowledge about the probability distribution than the support and expected value. 
Specifically, the Moors and Muilwijk variance upper bound requires knowledge 
about the discrete probabilities themselves. 

THEOREM 5.2. (Moors and Muilwijk (1971)) Let F E Yn have P M F  f such 
that f ( i )  = r i / r ,  where r~ and r are positive integral numbers and r = y~ r~. Then 

uF <_ (n - PF)(PF -- 1) -- ('y -- "~2)(n -- 1)2/r ==- Mu,p, 

where "/ denotes the fractional part of r (#g  - 1 ) / ( n -  1). 

Rayner (1975) has obtained the following variance upper bound, which also 
assumes extensive knowledge of the probability distribution. 

THEOREM 5.3. Suppose F E 5n with PMF f .  Define t(x, y) = f ( x ) / [ f ( x )  + 
f(v)]. Then 

(n--  #F)(pF --1) -- C(1,2) if  f(1) and f(2) are known , 
~'F--< (n--UF)(UF 1) + ~(n -- l, n) i f f ( n - - 1 )  a n d f ( n )  areknown, 
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where c ( x , y )  = (y - x ) [ n -  PF - t ( x , y ) ( n  - 1)]. I f  both o f  the pairs {f(1) , f (2)}  
and { f ( n  - 1), f (n)}  are known,  then the bound becomes 

PF _< m i n { ( n -  # F ) ( p V  -- 1) -- c(1,2), (n--  #F)(PF -- 1) + c ( n - -  1, n)} =-- /~s,p- 

We now compare the bounds Bs,~ , Bs, and B~ with Ms, Ms,p, and /~s,p" 
The smallest support size for which Bt,,,~ , Bs, and Bm can be applied is n = 3. 
However, application of Rayner's bound for n _< 4 requires complete knowledge of 
the probability mass function f since pF must also be known. Thus, comparisons 
involving Rayner's bounds are of little interest for n < 4. 

We have found analytical comparisons to be intractable in all but two cases. 
We can show analytically that B ,  < M,  for all n _> 4. Furthermore, B~ < Rs, p 
when n > 5 and ( 4 n -  2)/(n + 1) < #F < (n 2 - 2n + a) / (n  + 1). Rayner (1975) 
has noted that Rs, p _< M~ for all # and p and has stated conditions under which 
R.,p < Ms, ;. 

We have empirically compared all of the bounds using several hundred differ- 
ently shaped distributions and a variety of support sizes. Examples for comparison 
were easily obtained by discretizing unimodal members of the beta family. A few 
representative examples are shown in Table 2 and Figs. 1 and 2. These results are 
typical of what was observed in our numerical comparisons. 

0.35" 

0.3" 

0.25- 

0.2- 

0.15" 

0.1: 

0.05 

Graph 2 Graph 3 

2 3 4 5 6 7 8 9 10 

Fig. 1. Discrete probability distributions for Table 2. 
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Fig. 2. Discrete probability distributions for Table 2. 
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For the examples in the table, the bounds Mt~ and M,,p are uniformly larger 
than B,,.~, B~, and B,~. The differences increase with the size of the support. For 
n = 5 the performance of B~,m and R~,p is similar with neither clearly dominant. 
(Note that we have employed R~,p, the minimum of the two applicable bounds 
given in Theorem 5.3. Of course, this choice is to the advantage of Rayner's 
bound.) 

In our empirical studies, as n increased beyond 5, B~.,~ was found to be 
markedly superior to all of the other bounds considered here indicating the value 
of knowing that a distribution is unimodal. 
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