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A b s t r a c t .  In this paper we address the problem of testing the equality of k 
intraclass correlation coefficients based on samples from independent p-variate 
normal populations, and explore various aspects of optimality through invari- 
ance. A UMPIU test is derived for k = 2, and LMMPIU test of SenGupta and 
Vermeire (1986) is indicated for k > 2. Several approximately optimum invari- 
ant tests are also proposed. The tests are compared with the approximate LR 
tests and Fisher's Z-tests derived in Konishi and Gupta (1987, 1989). As ex- 
pected, the performance of the proposed tests turns out to be quite satisfactory 
and superior to the LR tests and Z-tests. 
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1. Introduction 

The  intraclass correlat ion coefficient p is frequently used to measure the degree 
of intrafamily resemblence with respect to characteristics such as blood pressure, 
weight, height, s tature,  lung capacity, etc. Statist ical  inference concerning p for 
a single sample problem based on a normal  distr ibution has been studied by sev- 
eral authors  (Seheffe (1959), Rao (1973), Rosner et al. (1977, 1979), Donner  and 
Bull (1983), Srivastava (1984), Konishi (1985), Gokhale and SenGupta  (1986), 
SenGupta  (1988)). Surprisingly, however, its extension to mult isample problems 
based on several mult ivariate  normal  distr ibutions has received very little a t ten-  
tion. While simultaneous est imation of several intraclass correlat ion coefficients 
can be handled wi thout  much difficulty, the problem of test ing their  equali ty can 
indeed be challenging. Below we review the l i terature on this la t ter  problem. 

For test ing the equali ty of two intraclass correlat ion coefficients based on two 
independent  mul t inormal  samples, Donner  and Bull (1983) discussed the likelihood 
rat io test. This, however, involves an i terative maximizat ion  of the likelihood 
function. Konishi and Gup ta  (1987) proposed a modified likelihood rat io test  
and derived its asymptot ic  null distribution.  Th ey  also discussed another  test  
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procedure based on a modification of Fisher's Z-transformation,  following Konishi 
(1985). 

Most recently, Konishi and Gupta  (1989) t reated the problem of testing the 
equality of more than  two intraelass correlation coefficients based on independent 
samples from several mult inormal distributions. Noting tha t  the implementat ion 
of the true likelihood ratio test  can be very difficult, these authors proposed an 
approximate likelihood ratio (ALR) test, derived its asymptot ic  null and nonnull 
distributions, and also considered another test procedure based on a modification 
of Fisher's Z-transformation.  

The existence of an "optimum" test, however, for the problem of testing the 
equality of k (two or more) intraclass correlation coefficients based on mult inormal 
samples has not been a t tempted  so far. This is precisely the objective of  the present  
investigation.  By employing the powerful tool of invariance, we investigate the 
existence of either a uniformly most powerful invariant unbiased (UMPIU) test or 
a locally best invariant unbiased (LBIU) test for the above problem. It turns out 
that ,  for k = 2, a UMPIU test exists quite generally. For k > 2, al though a LBIU, 
more specifically locally most mean power unbiased (LMMPU) test of SenGupta  
and Vermeire (1986) can be easily described, its implementat ion seems to be quite 
difficult. Various approximately opt imum invariant tests are suggested for k > 2, 
and compared with the ALR and Z-tests of Konishi and Gupta  (1989). It turns 
out tha t  the performance of our proposed tests is far superior to those of Konishi 
and Gupta  (1989). 

To describe the invariance approach, suppose tha t  a random sample of size ni 
is available from the p-variate normal population Np[#il ,  G~{(1 - P i ) f p  + p i l l ' } l ,  

2 and fli are the common mean, common variance i = 1, 2 , . . . , k ,  where #i, cri 
and common intraclass correlation in the i-th population. By using a s tandard  
canonical reduction (Rao (1973)), the underlying statistical model can be described 
as involving the variables {Xi, Yi, Z.i, i = 1 , . . . ,  k} distr ibuted independently as 

(1.1) 
X i  ~ N [ # i ( p n i )  1/2, cry(1 + (p - 1)pi)], i = 1 , . . . , /~ ,  

1 2 Y~ G ] ( l + ( p -  )Pi)X,~, i =  l , . . . , k ,  

Zi cr~ (1 2 - -Pi)Xm~,  i =  l , . . . , k  

where ~i = n~ - 1, rni = n i (p  - 1), i = 1, 2 , . . . ,  k. 
A natural  group of transformations keeping the testing problem Ho : Pl = 

. . . .  pk versus Hi:  not  all pi 's are equal invariant is easily seen to be G whose 
typical element g can be expressed as g = (5~, ~i, i = 1 , . . . ,  k) where ~i's are reals 
and (i > 0, i = 1 , . . . ,  k. The group operation (action of g on [(X~, Y~, Z i ) , i  = 
1 , . . . ,  k]) can be described as 

(1.2) 9[(Xi ,  Yi, Zi) ,  i = 1 , . . . ,  k] = E~iXi + ~i, ~iYi, ~iZi,  i = 1 , . . . ,  k]. 

A maximal invariant statistic under the above action is the vector of ratios 
(Y i /Z i ,  i = 1 , . . . ,  k) and a maximal invariant parameter  is given by ((1 + (p - 
1)pi)/(1 - pi), i = 1 , . . . ,  k). Writing F~ = Y i / Z i  and 0~ = (1 + (p - 1 ) /p~) / (1  - pi), 
/ = 1 , . . . ,  k it then follows tha t  an invariant test of H0 versus H1 under G must 
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depend on the Fi's. In terms of the maximal  invariant parameters  0i's, the null 
hypotheses H0 corresponds to their  equality. By using the fact tha t  the r andom 
variables Fi 's  are independent ly  dis t r ibuted as scaled F-variables with 0i's as scale 
parameters ,  and employing yet another  group of scale mult ipl icat ion we derive be- 
low an op t imum test  of H0 versus H1. In Section 2, we consider the case k - 2 
and derive a UMPIU test. Some asymptot ic  approximat ions  are also suggested for 
large ni's. Section 3 deals with the case k > 2. A LBIU, more specifically L M M P U  
test  of SenGupta  and Vermeire (1986) test  is discussed and several asymptot ical ly  
op t imum invariant tests are proposed. It may be noted tha t  Cohen et al. (1985) 
and most  recently Kar iya  and Sinha (1991) discussed the LBI tests  for homogenei ty  
in mul t iparameter  exponential  families. However, this is not direct ly applicable 
in our problem since a scaled F-d is t r ibu t ion  does not belong to an exponential  
family. 

It should also be noted tha t  when the constants ~i's and rni 's are equal (this 
happens  when the sample sizes ni 's  from the k populat ions are the same), there  
exists a pe rmuta t ion  group 7) whose action keeps the underlying test ing problem 
invariant. In bo th  the cases of k = 2 and k > 2, we have used 5 ° to discuss relevant 
op t imum invariant tests when the equali ty of ni 's  holds. 

We conclude this section with the impor tan t  observation that ,  unlike the tests  
known so far which are valid only for large samples, our proposed op t imum tests are 
valid invariant tests irrespective of the na ture  of sample sizes. This is a significant 
improvement  for all k, and par t icular ly  for k = 2. Of course, as a referee pointed 
out, our invariant tests have the demeri t  tha t  neither equal differences nor equal 
ratios of the intraclass correlations are detected with the same probability. 

2. Test o f / t o  : Pi = P2 versus H1 : Pl 7 ~ P2 

For k = 2, the relevant invariant statistics are F~ ~ O~X~/X~,  0i -- {1 - 
(p - 1)pi}/(1 - Pi), i = 1, 2. Clearly the problem of testing H0 : 01 = 02 versus 
H1 : 01 # 02 remains invariant under  a scalar mult ipl icat ion by c > 0. A maximal  
invariant statist ic is U = F1/F2 whose pdf  depends only on ~ = 02/01 and is given 
by 

(2.1) = 
uvi/2 16~i/2 

x(~--"~) /2- i dx 1 . 
" [ fo~ (l + x)(,2+,~2)/2(1T~z~)(~,i+,~i)/2 J 

For test ing Ho : (~ = 1 versus H1 : 8 ~i 1 based on the ul t imate  invariant statistic 
U, we proceed in the usual fashion (see Lehmann  (1986), Chapter  4). It is argued 
below tha t  the UMPU test  ¢(u) based on U is given by 

1 i f u < d l  or u > d 2  
(2.2) ¢(u) = 0 otherwise 
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where dl and d2 are obtained from the size and (local) unbiasedness conditions 
given respectively by 

~ d 2  

( 2 . 3 )  1 - c~ = fs=l(U)du 
1 

and 

(2.4) o / '  ' = e (~) f~=~(~)d~ 

or, equivalently, 

fd d2 'U~ pl/2 r'l (1 - -  ( t )  = //'1 / 22  
~l-F'rrtl 1 = (7 ,~-~- )  = ( ~ - , ~ )  

f0 ° x('l+'~)/2d~ ] • ( 1  @ X)@2+rn2)/2(1 @ ttX) (rq-rml)/2-F1 dtt. 

That the above test is globally unbiased follows from a comparison with the trivial 
test ¢*(u) - c~ (see Lehmann (1986), pp. 136 137). For the original model  (1.1), 
this test is therefere UMPIU.  Following Lehmann (1986), for any fixed ~ ~ 1, the 
rejection region R of a U M P I U  test can be written as 

(2.5) 
,of~(~)  } 

= u: f5(%) ~ 1 ~ -  5=1 -F c;f6=l(u) . 

Using (2.1) and (2.4), R is equivalent to 

{ ~00 °° x(~l+rn'l)/2~(~)(~l_4_ml)/2 dx (2.6) ~R = ~ :  (1 + x ) ( ~ + - ~ ) / ~ ( l +  

.~00 °° ux('l +mx ) /2 dx 
_> cl (1 + x)('2+"~2)/2(1 + UX) (~1@ml)/2-}-1 

jfO °c x(r'l--ml ) /2-1dx } 
+~2 (1 + x) (~2+~) /2(1  + ~x)(~1+~,)/2 • 

Making the transformation v = ux, R can be expressed as 

{/0" (2.7) R = u :  
V(lq+ml)/2-1dv 

V (1 ÷ V(~) (yl~I fT~l)/2 (1 -I- ~-)(~2+~2)/2 
v(~i-l-ml)/2dr 

v ~ (.~+-~2)/2 1 -F ~ /  (1 -~- V) (ul÷mi)/2+l 

v(~l+'~)/2-1dv } " 
V 
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Define 

(2.s) ~(u)  = ; / °~ 
V(~14-ml)/2--1 

V ~ (v2+rn2)/2 J0 (1 + v)(~+~1//2 (1 + ~J  

• 

so tha t  R = {u : ~(u)  > 0}. It is proved in the Appendix tha t  ~(u)  is convex in 
u so that  R is outside an interval, i.e., R = {u : u < dl(6) or it > d2(6)}. Since 
d 1 (6) and d2(6 ) are obtained from (2.3) and (2.4), it follows that  dl and d2 are 
absolute constants, independent  of 6, which justifies (2.2). The power of the test  
¢(u) for any 6 ¢ 1 is obtained as 

~dd2 fd26 
(2.9) Power1(6) = 1 - f6(u)du = 1 - f6=l(u)du. 

I J d 1 6  

Computat ions  to evaluate dl, d2 and hence power can be somewhat  simplified 
using the following series expansion of the underlying integrands. Since, quite 
generally, it holds tha t  

fO e~ xr- l dx 
(2.10) (1 ÷ x)~(1 + ux) t 

t + j - 1  ( l _ u ) J B ( r + j , s + t _ r )  ' 0 < u < l  ± ( )  
= j=0 ' ]  

~ - ~ ( t ÷ J - 1 )  ( u - 1 ) J B ( r . s ÷ t ÷ j - r ) ,  u > l  

where ~ = ( a  + .~) /2 ,  ~ = (.~ + . ~ ) / 2 ,  ~ = ( a  + . ~ ) / 2 ,  we get 

~L" 1 /2  -- 1 (~M 1/2  

(2.11) f6(u)= 

t + j - 1  ( l _ u 6 ) J B ( r + j , s + t _ r ) ,  0 < u 6 < l  ) 
• j = 0  3 

~ ( t ÷ j  1 )  ( u 6 - 1 )  j • 
j=0 J ~ B ( r , s + t + j - r ) ,  u 6 > 1 ,  

so that 

(2.12) f6=l(U) 

• j = 0  ] 

• ~ B ( ~ , ~ + ~ + j - ~ ) ,  
j o 3 

0 < u ~ l  

u > l ,  
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and the integrand fe*--1 (u) in the RHS of the equat ion following (2.4) as 

(2.13) f~=l (~ t )=  
uvl/2 

• j=0 J 

~ (tq~J) ( I -u )  j . 
y=0 " ~ B ( r + l , s + t + j - r ) ,  

0 < u < l  

z t > l .  

We now proceed to provide two approximations of ¢(u).  Our one-step approx- 
imation of ~b(u) is based upon replacing Zi/rni by its a.s. limit ~ ( 1  - p i ) ,  i = 1, 2. 
This is easily justified even for modera te  sample size. Working with the statistics 
F ?  = Y i ~ l Z i  ~ 0 2 - iXa ,  i = 1, 2, derivation of an op t imum invariant test  based 
upon U* = F{/F], which is a maximal  invariant under  scale mult ipl icat ion of FI* 
and F~, is now straightforward.  Since the pdf  f6(u*) of U*, namely, 

/~*ui/2-- 1(~Ul/2 
(2.14) f~(u*) = 121 0 < %* < (Ng, 0 < (~ < 0<3 

/~ ( 7 ' ~ )  (1 -~-~'~*)/Jl-}-/J2 ' 2  

admits  an MLR property,  arguing as before, the U MP U  test  based on U* is readily 
obta ined as 

1 if  u* < e l  o r u *  > e 2  
(2.15) ~b(u*)= 0 otherwise 

where el and e2 satisfy the conditions: 

(2.16) 1 - a = 

and 

( 2 . 1 7 )  1 - ~ = 

j f e  e2/(l÷e2) x~'l/2-1(1Z_z)~'2/2-1dx 

e2/(lq-e2) X~,/2(1 __ x)~2/2-1dx 
- - ? - V l  - - ~  • B(y+ 1, y) 

The  power is then obta ined as 

(2.18) jfe e2 Power2(5) = 1 - fe(u*)du* 
1 
e28 

= 1 - / 6 = l ( U * ) d u *  
J e t 8  

= _ f~/(~+~5l x ~ 1 / 2 - 1 ( 1  _ x)~/2-1dx 
1 . . . . .  • 
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The parameter consistency of the above test is obvious because for 6 --+ 0 and 
-+ ~ ,  the power approaches 1. 

Our two-step approximation of ~b(u) is based upon the normal approximation 
of X~, for large ni's. It immediately follows from Lehmann ((1986), p. 376) that the 

2 optimum invariant test rejects H0 whenever ul u2 (ul + u2) {ln(U* u2/ul) } 2/8 > X1;~, 
and that the power of this test can be computed as 

(2.19) Power3((5) = P{X~(.X) > ;~;~} 

where the noncentrality parameter A = (ln (~)2ulp2/2(ul + u2). It is clear that the 
above power tends to 1 as rain(u1, u2) tends to oc, thus guaranteeing the (sample 
size) consistency of this test. Moreover, since A = (lnS-1)2u~u2/2(u~ + u2), it is 
obvious that Power3(5) = Power3(g 1). 

Remark 2.1. When nl = ft2, one obtains //1 = /22 and ml = m2, implying 
that F1 and F2 are exchangeable statistics. The action of the multiplication group 
coupled with the permutation group 7 ) boils down to the consideration of a maxi- 
mal invariant statistic V = max(U, 1/U) where U = F1/F2 as defined earlier, and 
the UMPI test rejects /t0 for large values of V i.e., for V > c. The constant c 
(obviously > 1) is obtained from the size condition (see (2.3) for a comparison), 

fccoz /1/ c (2.20) C~ = f6=l (u)du + 
dO 

The power of this test is given by 

(2.21) Power4(6) = 
fl/c + 
dO 

/( F + 
5 dO 

The series expansions given in (2.11) and (2.12) can be used to determine c and 
power rather easily. Obviously, as expected, Power4((~) = Power4((~-x). 

One-step approximation of the above test, which is analogous to (2.15), corre- 
sponds to the rejection of/=To for V* - max(U*, l /U*)  > e where e(> 1) satisfies: 

/( l--e) B 2 '  2 dO ~,2' 22 

with its power given by 

(2.23) fe x'/2-I ( 1 _ x) ' /2 -1dx 
Powers(5) = ~/(1+~) B ~ , ~  

1/(l+e/&) X~/2 1(1 _ x)U/2-1dx 
+ 

ao \ 2 '  2 /  
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Table l(a).  Exact cut-off points (c) of UMPIU test  for k = 2, a = 0.05. 

nl  ~2 p /3  4 5 6 

5 5 13.513 12.013 11.345 10.968 

10 10 5.236 4.804 4.600 4.480 

15 15 3.709 3.456 3.333 3.261 

Table l(a).  continued. Powers of UMPIU test  for k = 2, ct = 0.05. 

r~l -- 5~ rz2 = 5 

PiP2  0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 

p = 4  

0.1 0.050 0.076 0.154 0.333 0.735 

0.3 0.067 0.050 0.074 0.172 0.542 

0.5 0.125 0.069 0.050 0.084 0.344 

0.7 0.262 0.149 0.079 0.050 0.160 

0.9 0.636 0.469 0.303 0.149 0.050 

p = 3  

p = 6  

0.050 0.084 0.204 0.432 0.828 

0.083 0.050 0.074 0.204 0.616 

0.181 0.080 0.050 0.084 0.386 

0.388 0.191 0.088 0.050 0.173 

0.792 0.586 0.369 0.168 0.050 

p = 5  

n l  = l O ,  n 2 = l O  

O1 P2 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 

p = 4  

0.1 0.050 0.120 0.338 0.694 0.981 

0.3 0.096 0.050 0.116 0.384 0.906 

0.5 0.252 0.100 0.050 0.145 0.709 

0.7 0.565 0.314 0.127 0.050 0.354 

0.9 0.951 0.846 0.637 0.314 0.050 

p = 3  

p = 6  

0.050 0.165 0.465 0.824 0.995 

0.144 0.050 0.138 0.465 0.948 

0.408 0.129 0.050 0.165 0.774 

0.773 0.431 0.156 0.050 0.394 

0.990 0.933 0.749 0.378 0.050 

p = 5  

n l  = 15, n2 = 15 

pl p2 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 

p = 4  

0.1 0.050 0.167 0.501 0.877 0.999 

0.3 0.126 0.050 0.160 0.562 0.985 

0.5 0.374 0.132 0.050 0.207 0.888 

0.7 0.766 0.465 0.177 0.050 0.523 

0.9 0.995 0.963 0.831 0.465 0.050 

p = 3  

p = 6  

0.050 0.241 0.665 0.955 1.000 

0.206 0.050 0.197 0.665 0.995 

0.595 0.181 0.050 0.241 0.929 

0.928 0.623 0.227 0.050 0.578 

1.000 0.992 0.914 0.556 0.050 

p = 5  

A g a i n ,  as  e x p e c t e d ,  Power5(~5) = P o w e r s ( i S - i ) .  I n  t h e  c a s e  o f  t h e  t w o - s t e p  a p -  

p r o x i m a t i o n  d e s c r i b e d  ea r l i e r ,  t h e  n o n c e n t r a l i t y  p a r a m e t e r  k in  (2 .19)  s i m p l i f i e s  

to zJ(ln ~5)2/4. 

I n  Table l ( a )  we  h a v e  p r e s e n t e d  t h e  e x a c t  c u t - o f f  p o i n t s  (c) a n d  p o w e r  of 
o u r  U M P I U  t e s t  ( see  (2.20)  a n d  (2 .21))  for  n l  = n2 = 5 , 1 0 , 1 5 ,  p = 3 , 4 , 5 , 6  
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a = 0.05. 
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S i m u l a t e d  two-s ided  cu t -of f  p o i n t s  ( d l , d 2 )  a n d  powers  of  U M P I U  tes t ,  k = 2, 

n l  : 5 ,  n2 = 10 n l  = 10, n2 = 15 

p i p 2  0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 

p = 3, d l  = 0.088, d2 = 6.656 p = 3, d l  = 0.232, d2 = 4.298 

0.1 0.050 0.076 0.152 0.340 0.785 0.050 0.125 0.346 0.693 0.986 

0.3 0.080 0.050 0.078 0.189 0.604 0.104 0.050 0.131 0.422 0.931 

0.5 0.171 0.081 0.050 0.094 0.396 0.297 0.109 0.050 0.173 0.761 

0.7 0.386 0.209 0.100 0.050 0.189 0.643 0.367 0.143 0.050 0.422 

0.9 0.804 0.650 0.438 0.209 0.050 0.978 0.913 0.715 0.367 0.050 

p = 4, dl  = 0.103, d2 = 6.123 p = 4, d l  = 0.224, d2 = 3.825 

0.1 0.050 0.093 0.212 0.463 0.887 0.050 0.137 0.388 0.781 0.996 

0.3 0.089 0.050 0.090 0.242 0.706 0.137 0.050 0.131 0.440 0.953 

0.5 0.218 0.087 0.050 0.104 0.474 0.409 0.131 0.050 0.167 0.794 

0.7 0.481 0.251 0.103 0.050 0.225 0.788 0.465 0.167 0.050 0.406 

0.9 0.881 0.719 0.492 0.230 0.050 0.993 0.952 0.802 0.427 0.050 

p = 5, dl  = 0.097, d2 = 5.399 p = 5, d l  = 0.216, d2 = 3.552 

0.1 0.050 0.092 0.223 0.486 0.906 0.050 0.143 0.425 0.818 0.997 

0.3 0.117 0.050 0.085 0.237 0.717 0.184 0.050 0.125 0.451 0.962 

0.5 0.292 0.108 0.050 0.096 0.462 0.519 0.164 0.050 0.157 0.796 

0.7 0.586 0.308 0.125 0.050 0.205 0.859 0.543 0.200 0.050 0.396 

0.9 0.920 0.783 0.563 0.270 0.050 0.997 0.966 0.838 0.483 0.050 

and a = 0.05. In view of the symmet ry  of the power function with respect  to 
pl and P2, we have provided values of power for Pl _> P2 when p = 3,5, and for 
iol ~ /)2 when p = 4, 6. In Table l (b)  exact  cut-off points (dl, d2) and power of 
the UMPIU test  (see (2.2)) are shown for (n l ,n2 )  = (5, 10), (10, 15), p = 3,4, 5 
and c~ = 0.05. Finally, in Table 1(c), powers of our proposed large sample tests  
(see (2.23) and (2.19)) and those of ALR and ZT of Konishi and G u p ta  (1989) 
are given for a l  = n2 = 25, p = 3, 5 and c~ = 0.05. In Table 1(c), we have also 
included a negative value of p2. The  impressive superiori ty  of our proposed tests 
and their  simplicity are obvious. 

3. Tes t  o f  H 0 : Pl  . . . . .  Pk versus  H i  : p i 's  unequal ,  k > 2 

For k > 2, the relevant invariant statistics under  the action of the group ~ are 
(Fi ,  Fk) where F~ 2 2 . . . ,  , ~ O i X ~ , { / X ~ { ,  and 0{ : { l + ( p -  1 ) p i } / ( 1 - p { ) ,  i : 1 , . . . , l ~ .  

As observed in Section 2, the equivalent problem of test ing H0 : 01 . . . . .  Ok 
versus H1 : 0{'s unequal  remains invariant under  a scalar mult ipl icat ion of each Fi 
by c > 0. A maximal  invariant statist ic is easily seen to be U = ( U 1 , . . . ,  Uk-1) ' ,  
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where U~ = F~/Fk, i = 1 , . . . ,  k - 1, with its pdf  fa(u) given by 

-v~k--1/ v¢/2 lc~/2s"  
(3.1) fe(u) = I L = I  ~ui o~ ) 

k 

• X 1 

(1 + X~('k+mk)/2r~ .,[.i ± , 4: XUi(~i)( "{+m{)/2} 

where 6 : (61 , . . . ,  & 1) 1, 6i = Ok/Oi, i = 1 , . . . ,  k - 1 .  In terms of the final maximal  
invariant parameter  6, the problem reduces to testing the simple null hypothesis  
H0 : 6 = 1 versus Hz : 6 # 1. This is a genuine mul t iparameter  problem for 
which usually no uniformly op t imum unbiased test exists. It is also well known 
that  even a locally most powerful unbiased test of type  D (see Isaacson (1951)) is 
usually hard to construct.  Below, following the ideas in SenGupta  and Vermeire 
(1986), we describe a L M M P U  test which maximizes 'average' local power among 
unbiased tests• The following expressions follow directly from (3.1)• 

[ ~ oo ?~ i x 
aXe(u) L,i + mi fo 1 Z-uix ¢u(x)dx- 

(3.2) 
~ /  ~=1 = 2 fo ¢u(x)dx fe=l(U), 

(3.3) 

_ 2 )  
oo u~z t ~ ( x ) d x  r'i(~'i + mi)  fo 1 + uix  

2 / 0  

i :  1 , 2 , . . . , k -  1, 

t~(x)dx 
f~=l(U) ,  

where 

(3.4) 

i =  1 , . . . , k - i ,  

/( } ~)?/,(X) = X 1 ( 1 +  E ( I ÷  . 
1 

The size and unbiasedness conditions of a test function ¢ (u )  can be expressed as 

(3.5) / ¢(u)fe=l(u)du = ct, 

~ l-rk--1 Vi/2--1 {~000 } 
[ ~9u111 ui ui--x '~ (x )dx  du (3.6) ~ £  B T-~7-mT~i h 1 + uix J 

!1' i 
- - o z ,  i = 1 , . . . , k -  1, 
r,i ÷ mi 



and following SenGupta  and Vermeire (1986), the test  function O0 (u) of a L M M P U  
test  is given by 

(3.7) 

(3.s) 

k--1 oo 2 

/0 ( 1 if E ( ~  + mi)(~i + mi + 2) 1 + u i x ]  
1 

O 0 ( , U )  = k - 1  oc  oc  

> E c~ i + uix  
1 

0 otherwise 

where the constants  Co, c l , . . . ,  Ck--1 are chosen so tha t  ¢0(u)  satisfies (3.5) and 
(3.6). Unfortunately,  al though a formal description of a L M M P U  test  is available, 
its implementat ion turns  out to be quite difficult. For k = 3, the integrals involved 
in (3.7) above can be simplified as indicated below. The  simplification is essentially 
based on (2.10). 

Write r = Y ~  ~i/2, s = (Yk + ink)~2, ti = (zJ~ + m~)/2,  i = 1,2. Then,  

fo ~ ¢.(~)d~ = 
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~ ~1+j1-1. t2+j2-1  

jl=O j2=O ~1 ]2 

(1 - ~ ) J ,  (1 - ~ ) ~ B ( ~  + j~ + j~,  ~ + t~ + ~ - ~), 
for 0 < uz, u2 < 1 

E t z + j e - 1 ,  t 2 + j 2 - 1  

Jl =0 j2 =0 ]1 32 
(~2 - 1) j2 

(1 -- Ul) j '  ?zj~T2 B ( r  @ j1,8 ~- ~1 

for 0 < ul  

jl =0 j2=0 31 32 
- -  1 ) J l  

(u 1A_t 1 1  (1 -- u2)J2B(f ' -~- j2, .s +/;1 

for 0 < u2 

E E t l  -- jl. - 1 t2 ÷ j2. - 1 

jl=0 j2=0 ~1 J2 

(u l  -- 1) jl  (u2 -- 1) ~ 

+ t2 + j2 - r), 

< 1 < u 2 < o o  

+ t2 + j l  -- r) ,  

< l < u 1 < o o  

B(r ,  s + ]~1 Jr- ~2 -~- j l  + j2 -- r), 

for 1 < Ul,U2 < 00. 

The other  integrals 

/o ¢ ~ ( x ) d x  
1 + uix  1 + u~x 

can be analogously evaluated. 
As in the case of k = 2, our one-step approximat ion of Oo(U) is based upon 

replacing Zi/m~ by its a.s. limit cry(1 - p~), for i = 1 , . . . ,  k, which is equivalent 
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to working with the statistics F* = Y i m i / Z i  ~ Oix2,~, i = 1, 2 , . . . ,  k. For testing 
the hypothesis of homogeneity H0 : 01 . . . . .  0k versus H1 : 0i's unequal, 
we observe that under the action of a multiplicative group of transformations, 
the vector U* = (U~,. . . ,  U;_I) , U; = F?//V;, i ---- 1, . . . ,  k - 1, is a maximal 
invariant statistic with its pdf (depending only on a maximal invariant parameter 

= (61,.. . ,~k-1), /5~ = Ok/O~,i = 1 , . . . , k -  1) given by 

(3.9) 
(1 + E~--lu*~i) E~i/2" 

i = l , 2 , . . . , k - 1 .  

k-1 02 f5 (U.) 
E 
i=I 5=I 

= ( ~ ) ( 1  

2 

+ E 2 ) ( E u * ' ) / ( I + ~ I  ~ u * )  

- ,  )] 4- 2 ( 2  --1 fS:l(U*), 

Since 

(3.14) 

(3.12) f ¢(?.t*)f6=l(?,t*)d?/,* = 0~, 

/ ( (3.13) ¢(u*) 1 +  E1 k-lu~ 

To derive the LMMPU test based on u*, we compute the following 

(3.1o) of~(u*) [~ (E~ ,d<  f~=l(u*), i = l , . . . , k - 1  
~ /  5:1 = L 2( lq-  E k - I z ; )  

(3.11) °2f8(~*)o~ e=~ 

= -2- + 2(1 + E~-I<)  2 

(21 ~i)u~ ] 2 
+ ---~77T-1-, fe=l(u*),  i = 1 , . . ,  k - 1 .  

2(1 + E1  u~)J 
The size and unbiasedness conditions of a test function O(u*) can be expressed as 
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we conclude from SenGupta  and Vermeire (1986) tha t  the L M M P U  test  function 
e l ( u * )  can be wri t ten  as 

(3.15) 

k--1 , ) 2  

e l ( u * ) =  1 if ~-~ 1 , ci _>c0 
i=i \ 1 + 2_~i ui 

0 otherwise 

where the constants  Co, c l , . . . ,  ck-1 are chosen so tha t  e l ( u * )  satisfies (3.12) and 

(3.13). Making the t ransformat ion vi = u*/(1 + ~ 1 u~), i = 1 , . . . , k  - 1, the 
above can be simplified as 

(3.16) 

k-1 
(~I(V) = 1 if ~ ( v i - c i )  2 > co 

1 
0 otherwise 

where the constants  ci's satisfy the conditions 

(3.17) 

/ =., 

¢ l ( v ) v j 0 ( v ) d v  = - - o h  i = 1 , . . . , k -  1, 

and 

(3.18) 

• (1 - vi . . . . .  vk - i )  "~/2 

represents a Dirichlet density. Choosing ci = E(vi I Ho) = r,i/ E~  ui, = 1 , . . . ,  k -  
1, reduces (~1 (V) to 

(3.19) ¢ 1 ( v ) =  1 i f ~  vi T > c 0  
i E1 vi 

0 otherwise 

where the sole constant  Co satisfies the size condition. In general, the test  based on 
& (v) need not be unbiased. However, when Yl . . . . .  uk, in view of the sy m m et ry  
of fo(v), this test  is expected to be unbiased. We have computed  the power of 
this test  th rough simulation in Table 2(a), denoted as P1, when ul . . . . .  ~k. 

Our two-step approximat ion of 00(u)  depends on the normal  approximat ion 
of ehi-square, and follows directly from Lehmann ((1986), p. 376). We define 

(3.20) Q* = ~ ~ Zi k 2 



INVARIANT TESTS OF INTRACLASS C O R R E L A T I O N S  593 

Table 2(a). Powers of Proposed Tests (P1,P2)* and ALR, ZT tests**, k = 3, a = 0.05, n l  
n2 = n3 = 25. 

Pl P2 P3 /91 P2 ALR ZT P~ P2 ALR ZT 

p = 3  p = 5  

0 0.5 0.1 0.945 0.905 0.761 0.729 0.992 0.989 0.957 0.957 

0.2 0.924 0.874 0.721 0.685 0.988 0.982 0.948 0.941 

0.3 0.898 0.874 0.709 0.685 0.985 0.984 0.956 0.946 

0.4 0.888 0.905 0.754 0.729 0.988 0.991 0.970 0.965 

0.5 0.906 0.949 0.823 0.808 0.994 0.997 0.989 0.984 

0.6 0.949 0.984 0.914 0.899 0.998 1.000 0.996 0.996 

0.7 0.987 0.998 0.974 0.968 0.999 1.000 1.000 0.999 

0.8 0.999 1.000 0.997 0.997 1.000 1.000 1.000 1.000 

0.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

*exact (numerical  integrat ion) .  

**simulated (Monote  Carlo simulat ion) (see Konishi  and  G u p t a  (1989)). 

Table 2(b). Powers of Proposed Tests (P3)* and  ALR, ZT tests**, k = 3, a = 0.05, n l  = n2 = 
ft 3 = 25, 51 Jr- 52 = 2, (51,52) • (1, 1). 

Pl /)2 P3 P3 ALR ZT P2 Ps /~s ALR ZT 

p = 3  p = 5  

0.069 0.032 0.079 0.066 0.062 0.043 0.020 0.079 0.072 0.064 

0.143 0.063 0.182 0.120 0.101 0.091 0.038 0.182 0.119 0.112 

0.222 0.091 0.342 0.211 0.177 0.146 0.057 0.342 0.232 0.204 

0.308 0.118 0.572 0.331 0.301 0.211 0.074 0.572 0.378 0.355 

0.400 0.143 0.783 0.512 0.481 0.286 0.091 0.783 0.595 0.559 

0.500 0.167 0.935 0.731 0.695 0.375 0.107 0.935 0.799 0.778 

0.609 0.189 0.990 0.902 0.886 0.483 0.123 0.990 0.946 0.937 

0.727 0.211 1.000 0.989 0.985 0.615 0.138 1.000 0.995 0.995 

0.857 0.231 1.000 1.000 1.000 0.783 0.153 1.000 1.000 1.000 

*exact (numerical  integrat ion) .  

**simulated (Monote  Carlo simulat ion) (see Konishi  and G u p t a  (1989)). 

w h e r e  

2 = 2 / u i ,  i = 1 , .  k.  (3.21) = l n ( F ; / a ) ,  . . ,  , 

a n d  r e j e c t  t h e  n u l l  h y p o t h e s i s  w h e n  Q* > ~2 I t  s h o u l d  b e  n o t e d  t h a t  t h i s  k 1;c~ " 
t e s t  is  U M P I  i n  t h e  l i m i t i n g  n o r m a l  d i s t r i b u t i o n  u n d e r  a c t i o n s  o f  a p p r o p r i a t e  

o r t h o g o n a l  t r a n s f o r m a t i o n s .  T h e  p o w e r  o f  t h i s  t e s t  is g i v e n  b y  

(3 .22  / P o w e r 2  (6)  2 X2 = P { X k - I ( A )  > h-1;a} 



594 WEN-TAO HUANG AND BIMAL K. SINHA 

where the noncentrali ty parameter  I is computed as 

(3.23) k : E 7~ {i 
i=1 ai 

/~ (ln 5i)2 =~-~. 
2 

i=1 ai 

2 k 2 

since {i = lnSi, i = 1 , . . . ,  k. Obviously, 5k = 1. The values of the above power for 
some selected combinations of design parameters  appear  in Table 2(a) (denoted 
as P2). It may be noted that  when the ni 's are equal, k above reduces to k = 

(u/2) ~ 1 { l n 5 i  - ( 1 / k ) ( £ ~  lnSi)} 2. As before, the (sample size) consistency of 
this test is immediate.  

Remark 3.1. When  nl  . . . . .  nk, one obtains ul . . . . .  uk = u and 
ml  . . . . .  rnk = rn, implying thereby that  the invariant statistics F I , . . . ,  Fk 
under the action of the group G are exchangeable• Applying the multiplicative 
group on F 1 , . . . ,  Fk, this amounts  to the exchangeability of U1 , . . . ,  U~-I  with the 
joint pdf  given by (see (3.1)) 

( I F 1  ~d~/>~([I~ - '  ~)~/~ 
(3.24) f~(u) = 1 

• fo °° x~k/2-1dx 
(1 + x ) (~+m) /2[ I~- I  (1 + xuj i ) ] (~+ '~) /2 '  

We denote by 7 ° the permuta t ion  group of (k - 1)! elements and use "y = (71 , . - . ,  
% - 1 )  to denote its typical element. It is then clear tha t  the testing problem 
H0 : 5 = 1 versus H1 : 6 ~ 1 remains invariant under the action of 7 °, and the 
ratio of the nonnull to null distributions of a maximal invariant statistic T ( U )  is 
given by (see Wijsman (1967)) 

(3.25) 
/ 

.{ 
(k 1)! (1 + x)(u+rn)/2 

k--1 )] --(u÷m)/2 [U(l+xu~Q 
/// 

d x  

xZ'k/2-1dx } 
(1 + x)(~+~)/2[[I~-1(1 + x~d](~</2 " 
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Unfortunately, however, unlike in Cohen et al. (1985) and Kariya and Sinha (1991), 
inspite of the action of the group 7 ) (in addition to ~ and the multiplicative group), 
in general an LBIU test does not  exist (see Kariya and Sinha ((1989), p. 29) for 
a definition of LBI test). This is solely due to the nonexponential nature of the 
underlying joint pdf. 

On the other hand, derivation of an unbiased test function to maximize the 
local power in a specific direction is quite possible. For example, it can be shown 
that  a test function in the direction of rl = 0 essentially coincides with the LMMPU 
test ¢0(u) displayed in (3.7) where the u~'s and rn~'s have to be taken equal to 
u and m respectively, and Cl . . . . .  ck-1 = c* and Co are obtained such that 
the size condition (3.5) and the appropriate unbiasedness condition are satisfied. 
Again, for k = 3, (3.8) can be used to simplify some computations. 

A similar analysis based on the permutation group 79 can be easily done for 
our one-step approximate statistics U{ , . . . ,  U~_l, and it follows that, as in the 
previous case, in general a LBIU test does not  exist. However, in the direction of 
rl = 0, which makes sense owing to the nature of the alternative H1 : ~ • 0, a 
restricted LBIU test 0~(v) has the structure 

(3.26) 

k - 1  

~ ( v )  = 1 if ~--~(vi 0) 2 > co 
1 

0 otherwise 

where Co is chosen to satisfy the size condition. It should be noted that this test 
is different from the LMMPU test of SenGupta and Vermeire (1986) derived in 
(3.16) and also from its approximation 01(v) derived in (3.19). Of course, when 
the n~'s are all equal, the test function 01(v) in (3.16) reduces to 

(3.27) 

k - 1  

01(v) = 1 if ~ ( v ~ - - C l )  2 ~ C 0 

1 
0 otherwise 

where co and c 1 are chosen to satisfy the size condition and the appropriate unbi- 
asedness condition. 

In Table 2(a), we have presented the power of our proposed large sample tests 
(see (3.19) and (3.22)) as well as those of ALR and ZT tests of Konishi and Gupta 
(1989). Table 2(b) contains the power Pa of our another test 0~(v) (see (3.26)) 
and also those of ALR and ZT tests. As expected, in all the cases our proposed 
tests perform much better than the ALR and ZT tests. 
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Appendix 

Here we provide a proof  of the convexity of f ( u )  defined in (2.8). Making the 
transformation: w = v / (1  + v), ¢ (u )  is wri t ten as 

(A.1) fo i w~-~-l(1 _ w)~-i ¢(u)= ( 1 1 ~ + w  1 f(w)dw 

where 

1 
(A.2) f ( w )  - (1 + Ow) ~ c lw - c2 

and r = (vl + m l ) / 2 ,  s = (v2 + m2) /2 ,  0 = E - 1. We now use a powerful result 
of Karlin ((1968), p. 31, essentially Proposi t ion 3.2). It is easy to verify that  f ( w )  
is convex in w whenever E ¢ 1, and hence that  convexity of ~(u)  follows once we 
establish that  the function 

(A.3) K ( w , u )  = 
wr-s-1 (1 _ w).S-1 

+ - - - 1  
w 

is TPa (totally positive of order 3). Obviously it is enough to prove the TP3 
proper ty  of K*(w ,  u) = (1 /u  + 1 /w  - 1) -~. Now note the following representation 
of K* (w, u): 

(A.4) 
l 

K*(w,u)-  r(s) e-X/ e-X/ e x -ldz" 

Since e -x /~  and c -x /~  are both  TP3 in the respective variables, applying the Basic 
Composition Formula of Karlin ((1968), p. 31), we conclude that  K * ( w ,  u) is TP3. 
This implies the TP3 proper ty  for K ( w ,  u) and hence establishes the convexity of 
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